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Abstract

Two fundamental goals of decision making are to select actions that maximize rewards

while minimizing costs and to have strong confidence in the accuracy of a judgment. Neural

signatures of these two forms of value: the subjective value (SV) of choice alternatives and

the value of the judgment (confidence), have both been observed in ventromedial prefrontal

cortex (vmPFC). However, the relationship between these dual value signals and their rela-

tive time courses are unknown. Twenty-eight men and women underwent fMRI while per-

forming a two-phase approach-avoidance (Ap-Av) task with mixed-outcomes of monetary

rewards paired with painful shock stimuli. Neural responses were measured during offer val-

uation (offer phase) and choice valuation (commit phase) and analyzed with respect to

observed decision outcomes, model-estimated SV and confidence. During the offer phase,

vmPFC tracked SV and the decision but not confidence. During the commit phase, vmPFC

tracked confidence, computed as the quadratic extension of SV, but not the offer valuation

nor the decision. In fact, vmPFC responses from the commit phase were selective for confi-

dence even for reject decisions wherein confidence and SV are inversely related. Con-

versely, activation of the cognitive control network, including within lateral prefrontal cortex

(lPFC) and dorsal anterior cingulate cortex (dACC) was associated with ambivalence, dur-

ing both the offer and commit phases. Taken together, our results reveal complementary

representations in vmPFC during value-based decision making that temporally dissociate

such that offer valuation (SV) emerges before decision valuation (confidence).

Introduction

Every day, we navigate a maze of choices, guided by our subjective preferences and goals.

When the route forks, multiple forms of value imbue the selection of one’s path. We assess the

value of potential actions from their relative costs and benefits, as well as the value of our own

judgment–accurate decisions are valuable decisions, regardless of the options.

Much progress has been made toward understanding how the brain resolves value-based deci-

sions [1, 2]. vmPFC, in particular, is crucial for integrating reward and cost attributes of choice

alternatives [3–6] and automatically tracking subjective value (SV)[7], which is the perceived util-

ity of objective value information relative to the decision maker’s preferences and goals[7, 8]. Neu-

roeconomic models benefit from mixed-outcome ApAv tasks, which pose realistic, consequential
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choice scenarios (e.g. accept or reject offers of appetitive rewards contingent on aversive costs).

Such fMRI studies in humans demonstrate multiple value representations in vmPFC including

rewards, decision variables, SV, and the valuation models that inform SV [9–12].

Recent research suggests that vmPFC also signals choice confidence, how strongly one can

believe they are making the best decision. For example, vmPFC activation varies with confi-

dence about perceptual judgments [13–15] and lesions lead to atypical confidence reports on

general knowledge tests [16] These findings could be evidence that vmPFC performs a valua-

tion of one’s judgment, assigning high value to high confidence decisions [17]. Confidence sig-

nals in vmPFC also accompany value-based decisions [17–19], which is intriguing given the

relationship between confidence and value. Self-reported confidence takes a U-shaped func-

tion with respect to first-order valuation judgments [7, 20]: decisions about extremely high- or

low-value items elicit stronger confidence than decisions about items with neutral or ambigu-

ous value. Similarly, vmPFC responses take a U-shaped function with respect to value in risky

decision making [21]. Accordingly, Lebreton et al. [17] operationalized confidence as the qua-

dratic extension of value and elegantly demonstrated that vmPFC tracks modeled confidence,

even in the absence of explicit ratings.

Given this literature, vmPFC should track both SV and its quadratic extension, confidence,

in mixed-outcome ApAv decision making, but this has not been explicitly tested. Specifically,

confidence about accept choices (typically positive SV) should increase as SV increases

whereas confidence about reject choices (typically negative SV) should increase as SV

decreases. It is unknown how vmPFC represents both SV and confidence in value-based

choices, particularly when confidence and value are inversely related (i.e. during decisions to

reject). One possibility is that confidence evolves in parallel with decision variables [22] and

the two signals are either integrated within a region or are represented in separate neuroana-

tomical substrates. In line with this hypothesis, early confidence-related signals have been

recorded from frontal and parietal sites [23, 24], including vmPFC [7, 14, 19]. Alternatively,

confidence and SV may have different time courses such that confidence evolves relatively

later during retrospective metacognitive judgments or continued deliberation after choice

commitment [25–29], both of which can recruit medial prefrontal cortex [30–32].

To test this, we deployed a two-phase ApAv task in which participants accepted or rejected

offers of monetary rewards paired with painful shock stimuli. BOLD responses were measured

during offer valuation (offer phase) and choice valuation (commit phase). Observed decision

outcomes and model-based estimates of SV and confidence were used to predict neural activ-

ity in vmPFC and throughout the brain during both phases of decision making.

Methods

Experimental design

Participants. We report the data from 28 paid volunteers that participated in the study

(17 women, 27 right-handed, mean age = 21.9, sd = 2.8). One additional participant completed

the study but was removed from analyses due to significant susceptibility artifacts causing

excessive errors in spatial normalization. No participants had a history of neurological injuries

or illnesses or current daily use of psychoactive medications. All participants provided written

consent to this research protocol that was approved by the Institutional Review Board at the

University of California, Santa Barbara.

Session overview. All testing was performed on the same day. Participants first provided

informed consent and were screened for disqualifying criteria. Because our task entailed ApAv

decisions with pain stimuli, participants next underwent a pain thresholding procedure and

were familiarized with the mapping between experimental stimuli and the pain intensities they
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represented. Then, participants performed the decision making task while in the MRI scanner.

Finally, after they had completed all experimental tasks and been removed from the scanner,

participants received the pain stimuli and monetary rewards associated with the choices they

made during the task.

Pain thresholding procedure. We used mild cutaneous electrical shocks as pain stimuli.

Pain thresholding allowed us to control for individual differences in pain tolerance for electrical

shocks such that a given experimental stimulus was associated with the same subjective experi-

ence of pain across participants. To identify participant-specific minimum and maximum

shock intensities, participants completed a pain thresholding procedure before the decision-

making task, outside of the MRI scanner. Electrical shocks were administered with a constant

current stimulator (Digitimer DS7A, Digitimer, Great Britain) controlled by a train generator

(DG2A Train/Delay Generator, Digitimer, Great Britain). Each shock had a duration of 1 s and

a frequency of 100 Hz with a 2 ms waveform. Two adhesive electrodes were placed on the back

of the participant’s hand approximately 1 inch above the wrist and connected to the stimulator.

When a shock was administered, electric current was run between the two electrodes, causing

an aversive sensation that is increasingly painful at higher levels of current.

The first stage of thresholding was a ramp-up procedure in which the experimenter deliv-

ered several shocks, each time increasing the intensity by 1 mV. The participant was instructed

to report three thresholds: the lowest intensity at which they detected the shock, the lowest

intensity at which the shock caused discomfort, and the intensity at which the shock became

unbearably painful. The second stage was a rating procedure in which the participant received

fourteen shocks with intensities between the discomfort threshold and unbearable threshold

and rated the pain from each on a 0–10 scale. Next, both the ramping and rating stages were

repeated to verify that we had accurately identified the participant’s pain tolerance. Finally, the

pain ratings and shock intensities from the second rating procedure were fit with a sigmoid

function to model the relationship between shock intensity and perceived pain for this individ-

ual[33]. Based on this sigmoid function, we identified the shock intensity that predicted a pain

rating of 8 out of 10. No payout trials during the decision task had costs exceeding this value.

Familiarization procedure. Before the decision making task, participants were shown

five example offer stimuli illustrating costs of 5%, 25%, 50%, 75% and 95% while the experi-

menter delivered a shock at the corresponding intensity relative to their discomfort and maxi-

mum pain thresholds (with 0% = minimal discomfort and 100% = maximal pain). Participants

were instructed to remember the sensation associated with the example shocks and use these

as points of reference when making choices during the task and that the real offers would

include shocks anywhere within the range of intensities, not only at the example levels.

ApAv task

Offer stimuli. We adapted an approach–avoidance task similar that implemented in non-

human primates by Amemori and Graybiel [4, 34] in which participants accepted or rejected

offers with mixed appetitive and aversive outcomes. On each trial, the participant was offered

a certain amount of money in exchange for receiving a shock of a certain intensity (Fig 1A).

The participant chose either to accept both the money and the shock or reject both (i.e. receiv-

ing a monetary reward was always contingent on also receiving its associated cost). Therefore,

trial stimuli were deterministic mixed-outcome choice scenarios as there were no manipula-

tions involving probabilistic chances or risks of receiving the shock and/or money that could

be used to form decision strategies.

The offer stimuli were two horizontal bars, one had an overlaid $ symbol and illustrated the

offered reward and the other had an overlaid lightning bolt symbol and illustrated the
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contingent cost. The width of the bars represented the amount of each attribute being offered

on the current trial, with monetary rewards ranging continuously from $0.01 to $1.50 and

shock intensities ranging continuously from minimal discomfort to maximal pain. Each bar

was within a larger rectangular frame that illustrated the maximum possible bar width. The

bars were blue and yellow, and color-attribute mappings varied between participants. The rela-

tive position of the cost and reward bars (i.e. which bar was above the other) alternated

between blocks. The offer stimuli were centrally aligned and stacked just above and just below

the vertical midpoint of the display. Overall, there were 189 unique offers, each presented as a

single trial, unless the participant failed to respond, in which case the offer was repeated at the

end of the experiment. Trials were split between six functional runs, with each run containing

31 or 32 trials. All participants viewed the same set of offers, presented in the same pseudo-ran-

dom order that systematically covered all quadrants of the decision space.

Decision making task. On each trial, the participant first saw a fixation point in the center

of the screen for either 910 ms, 1820 ms or 2730 ms, randomly varied between trials. Then, the

offer stimulus was shown for 4550 ms. The participant was instructed to use this time to evalu-

ate the offer but could not yet indicate a choice. Next, the offer remained on the screen and

Fig 1. Experimental task and variables of interest. (A) Experimental Task: On each trial, the participant was offered

one monetary reward ($ bar width represents amount, ranging continuously $0.01-$1.50) contingent on enduring 1

painful shock (lightning bolt bar width represents pain intensity, ranging continuously from minimally to maximally

painful). Participants were instructed to use the offer phase to evaluate the offer and to decide if they would accept or

reject it, but they were not yet able to respond. During the commit phase, response mappings appeared and

participants made a left or right button press according to the location of the triangle representing their choice (up

triangle = accept, down triangle = reject), which varied randomly between trials to prevent preparation of motor

responses during the offer phase. After submitting a response, the corresponding triangle was highlighted. Finally,

feedback indicating whether the offer was accepted or rejected was added. On payout trials (10 random trials of 189

total), a payout alert followed the feedback. If the participant had accepted the offer, they would receive the monetary

reward and also endure the shock at the end of the task, otherwise the participant would receive neither. (B)

Illustration of variables of interest: We were interested in two types of value inherent in economic decision making: the

perceived value of the offer stimulus (SV) accounting for its cost and reward attributes, and the value of one’s

judgment (confidence), which measures the extent to which one believes they are making the best decision. For accept

decisions (blue bars), there is a positive relationship between SV and confidence: as SV increases, one becomes

increasingly confident that accepting the offer is the best decision. However, for reject decisions (red bars), there is an

inverse relationship between SV and confidence: one becomes increasingly confident about rejecting offers as SV

decreases. We tested whether they are evaluated simultaneously or whether they have a temporal order within the

course of decision making.

https://doi.org/10.1371/journal.pone.0225617.g001
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two response mappings appeared in left and right positions beneath the offer stimulus for 1820

ms. During this time, the participant was required to respond with a button press, indicating

their commitment to either accept (approach) or reject (avoid) the offer. All stimuli remained

on the screen for the remainder of the response interval, and after the response was submitted,

the response mapping corresponding to their choice was highlighted. Participants were

allowed to change their response within the 1820 ms response interval. The response mappings

were an upward pointing triangle representing the accept option and a downward pointing tri-

angle representing the reject option. The participant used either the index or middle finger of

their right hand to press either the left or right (respectively) button on a Cedrus LP-RH

response pad transmitting through a Lumina LSC-400 controller (Lumina, Cedrus Corporta-

tion, San Pedro, CA, USA), according to the location of their preferred choice option. The left/

right positions of the choice options varied from trial to trial, preventing the participant from

pre-planning a motor response before the response phase. Finally, a 910 ms feedback interval

followed the response interval. Feedback included the offer stimulus, which remained on the

display, and text stating whether the offer was accepted or rejected. On payout trials an addi-

tional 9100 ms payout alert followed the decision feedback.

Because we were interested in value-processing during different phases of decision making,

our analyses separately analyzed neural responses from the offer phase and the commit phase

of each trial. The offer phase was the 4550 ms in which the offer was displayed but the partici-

pant was not yet able to submit a response. The commit phase was the 2730 ms comprising the

response interval (1820 ms) and the feedback interval (910 ms).

Payouts. Participants did not receive the rewards and shocks for all accepted trials.

Instead, during trial generation, 10 pseudorandomly selected offers were tagged as payout trials.

On these trials, if the participant accepted the offer the payout alert indicated that they would

receive both the monetary reward and the shock. If they rejected the offer, the payout alert indi-

cated they would receive neither. The payout alert also showed the cumulative number of payouts

accepted so far. Participants were encouraged to assume that every trial was a payout offer and

decide to accept or reject it accordingly, as they would not see the payout alert until after they’d

submitted their choice. Although participants were notified whether an offer was a payout immedi-

ately after choosing to accept or reject it, the actual delivery of monetary rewards and shocks from

payout trials occurred after they had completed the entire decision making task and had been

removed from the MRI scanner. In pilot studies, we found that providing realtime payout feed-

back, relative to showing which trials were payouts at the end of a fixed-length block or at the end

of the task, reduced the proportion of offers that were accepted. We believe that this may indicate

that instant feedback reduces temporal discounting of future costs, relative to when that informa-

tion is delayed, even though in both cases the actual costs would be delivered after the entire task.

All participants also performed an additional cost-benefit decision making task after they

completed the approach-avoidance task, the results of which are not reported here. Twenty-

four of the participants also underwent simultaneous physiological recordings of impedance

cardiography while performing the decision making tasks in the MRI scanner, impedance car-

diography data is also not included here.

Behavioral statistical analysis

Estimating SV from decision behavior. The subjective value (SV) of each offer can be

represented as

SV ¼ b0 þ brroffer þ bssoffer

where roffer is the available reward, soffer is the contingent shock, βr and βs describe how strongly
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the individual subject weights rewards and shocks, and β0 is the individual’s intercept, in-

dicating their intrinsic motivations to pursue reward versus avoid shock (33). We separately

modeled each participant’s choice data with logistic regression, a specialized from of the gener-

alized linear model, using the glm package in R. Offers to which participants failed to respond

before the decision deadline were repeated at the end of the task. Choice outcomes from the

second presentation were included in the dataset used for generating valuation models but

these trials were excluded from the fMRI analysis. Participant-level models were used inversely

to estimate the perceived subjective value of each offer, SV, and the likelihood that it would be

accepted, P(Acc) specific to each individual on each trial.

SV ¼ b0 þ brroffer þ bssoffer ¼ log
PðAccÞ

1 � PðAccÞ

P Accð Þ ¼
1

1þ e� SV

Estimating confidence from SV. Here, we operationalize choice confidence as the extent

to which one can believe they are making the best decision. In our task, given the options to

either accept or reject, the best choice depends on the perceived value of the offer and conse-

quently choice confidence is maximized when SV unambiguously points to one choice over

the other. Therefore, confidence varies in a U-shaped function with respect to increasing SV

such that when SV is extremely high or extremely low, one can be highly confident in choices

to accept or reject the offer, respectively. When an offer’s SV is neutral there is more ambiva-

lence about the decision (Fig 1B). We quantify confidence in accordance with Lebreton et al.

[17], who operationalized decision confidence as the quadratic extension of perceived value,

and were therefore able to estimate trial-wise confidence in the absence of explicit confidence

ratings.

Confidence ¼ SV2

We used these trial-by-trial estimates to test whether behavioral response times and neural

activity varied with respect to choice confidence. Notably, because we did not collect metacog-

nitive self-reported confidence ratings, we do not intend to make explicit claims about the sub-

jective experience of confidence. Previous research has found mixed results regarding how

closely model-estimated confidence varies with self-reported confidence, see the discussion for

a further explanation. Therefore, we primarily aim to describe neural responses that vary with

model-estimated confidence.

We also inspected the relationship between confidence and choice outcomes. Trials were

categorized into confident accepts (AccCon), ambivalent accepts (AccAmb), confident rejects

(RejCon), and ambivalent rejects (RejAmb) by binning each participant’s trials into accepted

and rejected trials and then performing a median split on SV on both bins. Accepted offers in

the upper 50% SV were assigned to AccCon and the rest were assigned to AccAmb. Rejected

offers in the upper 50% SV were assigned to RejAmb, and the rest were assigned to RejCon.

Notably, because we observed substantial individual differences in subjective valuation, both

parameterizing and categorizing the offers according to individual-level model-based esti-

mates allowed us to describe objectively identical offers differently for each participant,

according to their unique preferences. This was a critical feature of our study that allowed us

to observe group-wide neural responses that were specific to decision outcome, SV, and confi-

dence, regardless of the objective properties of the stimulus.

Timing of value in confidence in PFC
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In our paradigm, P(Acc) varies as a sigmoidal function of SV while choice confidence varies

as a U-shaped function of SV. Consequently, when P(Acc) is close to either 0 or 1 there is high

choice confidence in either accepting or rejecting the offer, respectively. When P(Acc) is close

to .5, there is ambivalence about committing to either choice. In a two-dimensional decision

space in which reward values are represented on one dimension, cost values are represented

on the other, and the modeled decision boundary is the vector along which P(Acc) = .5, the

choice confidence associated with a reward-pain offer pair increases with its distance from the

decision boundary. We present individual choice outcomes and binned choice confidence

overlaid on estimated P(Acc) throughout the decision space.

Neuroimaging data acquisition and preprocessing

Neuroanatomical ROI. We investigated task-related involvement within an a priori

region of interest (ROI), vmPFC. The ROI was anatomically defined from the Harvard-Oxford

cortical structural probabilistic atlas (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases), and

includes all voxels with at least 25% likelihood of being located within areas labelled Frontal

Medial Cortex or Subcallosal Cortex. The rationale for selecting this rather inclusive and

anatomically-defined ROI was that regions throughout vmPFC have been implicated with SV

and confidence processing. We did not have a priori hypotheses regarding about anatomically

specific loci within vmPFC that would be uniquely sensitive to value and confidence in our

task, and therefore no basis for dividing the ROI into smaller sub-components. Instead, we

extracted the most relevant regions from a commonly used atlas and applied a relatively low

threshold for inclusion to ensure that we did not inadvertently exclude cortex where we might

find relevant activity.

MRI protocols. Anatomical and functional MRI data were collected on a Siemens 3T

Magnetom Prisma Fit with a 64-channel phased-array head and neck coil (58 channels active

for functional coronal imaging). High-resolution 0.94 mm isotropic T1- (TR = 2500 ms,

TE = 2.2 ms, FA = 7˚, FOV = 241 mm) and T2�-weighted (TR = 3200 ms, TE = 570 ms,

FOV = 241 mm) sagittal sequence images were acquired of the whole brain. Next, functional

MRI recordings were collected while participants performed the decision making task. For

each functional run, a multiband T2�-weighted echo planar gradient-echo imaging sequence

sensitive to BOLD contrast was acquired (TR = 910 ms, TE = 32 ms, FA = 52˚, FOV = 192

mm, multiband factor 4) provided by the Center for Magnetic Resonance Research in accor-

dance with a current license. Each functional image consisted of 64 coronal slices acquired

perpendicular to the AC-PC plane (3 mm thick; 3x3 mm in-plane resolution). Coronal orien-

tation is necessary when acquiring simultaneous impedance cardiography to avoid artifact

[35].

MRI pre-processing. Anatomical data was skull-stripped using the brain extraction script

from Advanced Neuroimaging Tools (ANTs) [36]. All other image pre-processing was per-

formed with FMRIB’s Software Library (FSL, www.fmrib.ox.ac.uk/fsl). The first 10 volumes of

each functional run were removed to eliminate non-equilibrium effects of magnetization

occurring before the start of the task. The remaining functional volumes were skull-stripped

using BET [37] motion corrected using MCFLIRT [38], spatially smoothed using a Gaussian

kernel of FWHM 5mm, intensity normalized relative to the grand-mean of the entire 4D data-

set by a single multiplicative factor, and underwent high-pass temporal filtering (Gaussian-

weighted least-squares straight line fitting, with sigma = 50.0s).

In preparation for group analyses, participants’ six functional runs were registered to their

anatomical image and then to the Montreal Neurological Institute (MNI) 2mm averaged

152-brain template included with FSL distributions, using FSL’s linear image registration tool
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with 12 degrees of freedom (FLIRT; [38, 39]. Refinement of the latter transformation was car-

ried out with FSL’s nonlinear registration image registration tool (FNIRT) with a 10mm warp

resolution [40, 41].

Neuroimaging statistical analysis

fMRI analysis. FMRI data processing was carried out using FEAT (FMRI Expert Analysis

Tool) Version 6.00, part of FSL (FMRIB’s Software Library, www.fmrib.ox.ac.uk/fsl). Time-

series statistical analysis was carried out using FSL’s improved linear model (FILM) with local

autocorrelation correction [42]. We performed whole-brain statistical analyses with two gen-

eral linear models (GLMs), as described below. Both GLMs had separate terms for the offer

phase (off) and the choice commitment phase (com) of each trial. Offer phase regressors were

time-locked to the onset of the offer and had a duration of 4.55s, during which the participant

assesses the SV of the offer but cannot yet respond. Commit phase regressors were time-locked

to the onset of the response mappings and had a duration of 2.73 seconds, during which the

participant submits their decision about the offer and then views feedback confirming their

choice. Finally, the GLMs also included a nuisance regressor for payout notifications, which

were not used in analyses of interest but were intended to absorb variance in neural responses

associated with subjective value (as payout notifications included an image of the payout offer)

but unrelated to decision making processes. The payout regressor was time-locked to the onset

of the payout notification and had a duration of 4.55 s, and the remaining 4.55 s of the payout

notification screen was included with baseline activity.

Both analyses were performed at three sequential levels. First, at the run level, each partici-

pant’s six runs were separately modeled to find mean within-run activity corresponding each

regressor and contrast images were generated by estimating pairwise differences between con-

ditions. Then, at the participant level, run-level data was combined (fixed effects) to find the

participant’s overall mean response relating to each regressor and contrast. Finally, at the

group level, the participant data was combined (mixed-effects treating participant as a random

effect with FSL’s FLAME 1) to find the group-wide mean responses for each regressor and

contrast.

We tested the results of each contrast with non-parametric permutation testing at the

whole brain level with threshold-free cluster enhancement (TFCE), implemented with FSL’s

Randomise. This approach minimizes false positives by deriving a null distribution from the

voxelwise data rather than assuming a parametric null distribution. For one-sample t tests

(such as those in the present study), the distribution is created by iteratively multiplying statis-

tical map values by 1 or -1, we performed 5,000 permutations of each contrast. TFCE detects

clusters of contiguous voxels without setting an arbitrary cutoff for minimum cluster size or

voxel statistic but rather summarizes the cluster-wise evidence at each voxel, against several

types of cluster-forming thresholds and controls the family-wise error (FWE) rate at p = .05

[43, 44]. We present figures with voxel-wise T-values from all voxels that survived whole-brain

TFCE correction. Some contrasts yielded significant voxels across contiguous but widespread

regions of cortex, and consequently reporting only the peak voxel of a cluster would obscure

other local maxima in different anatomical regions. Therefore, we also report the coordinates,

t statistics, Brodmann area, and anatomical structure labels from Automated Anatomical

Labelling the of the MNI atlas for local maxima within each cluster in the supplementary mate-

rials. Local maxima were found with the cluster command provided with FSL and labelled

with label4MRI, a freely available toolbox for R (https://github.com/yunshiuan/label4MRI).

We additionally report results from sub-conditions of GLM2 restricted to and TFCE corrected

only within our primary ROI of interest, vmPFC.
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GLM1: Parametric analysis SV and confidence. GLM1 was a parametric statistical analy-

sis to observe neural activity modulated by SV and confidence (CD) during the offer and com-

mit phases of each trial:

Y ¼ boff Xoff þ bcomXcom þ bSVoff XSVoff þ bSVcomXSVcom þ bCDoff XCDoff þ bCDcomXCDcom þ bpayoutXpayout

þ ε

where Y is the time series of a given voxel predicted by a design matrix with one row for each

time sample and one column for each of 7 trial regressors, convolved with a canonical gamma

hemodynamic response function. The model included categorical terms for baseline activation

during the offer and commit phases (βoffXoff, βcomXcom). Parametric terms βSVoffXSVoff and

βCDoff XCDoff were both orthogonalized with respect to baseline activation during the offer

phase (βoffXoff) to capture variance in neural activity during the offer phase explained by trial-

by-trial SV and confidence. Likewise, βSVcomXSVcom and βCDcomXCDcom were orthogonalized

with respect to baseline activation during the commit phase (βcomXcom) and modeled neural

activity related to SV and confidence during the commit phase. The SV and confidence regres-

sor weights were trial-wise SV and confidence values, range normalized by z-score.

Note that SV and confidence terms were orthogonalized with respect to baseline activation

during the corresponding trial phase because baseline activation in itself was not a parameter

of interest. Therefore, orthogonalization essentially served to mean-center SV and confidence

independently at the run level. Orthogonalizing either or both of the SV and confidence terms

with respect to one another could have diminished the interpretability of the parameter esti-

mates associated with each [45].

We also examined correlations between terms in GLM1 in order to address concerns of

multicollinearity. The terms of interest were the columns of predictor values in the design

matrix from GLM1 corresponding to SV and confidence from the offer and commit phases

(XSVoff, XCDoff, XSVcom, XCDcom). First, we estimated correlations between the two terms of

interest from each trial phase (XCDoff ~ XSVoff, and XCDcom ~ XSVcom) at the run level. The R2

values were transformed into Fisher’s Z-scores and the mean Z-score across all runs and par-

ticipants was transformed back to an R2 value. Second, we estimated the variance inflation fac-

tor (VIF) for each term of interest (i), as 1/(1-Ri
2), where Ri

2 was the multiple R2 from

regressing the column of predictor values for the term of interest against all remaining col-

umns in the design matrix. Then, the median VIF for each term of interest was taken across all

runs and participants. Large VIFs would indicate a potentially problematic design in which

multicollinearity could inflate the estimated coefficients for the terms of interest.

For the purposes of visualizing gradual changes in neural responses over the course of the

trial, GLM1 was re-estimated with a finite impulse response (FIR) model. Rather than splitting

the trial into two phases, neural responses tracking SV and confidence were measured at each

TR (910 ms per TR) beginning at the onset of the offer stimulus. The model was identical to

GLM1 except for the following modifications. Instead of two categorical regressors for the

offer and payout onsets there was a single categorical regressor for the offer stimulus onset and

instead of two parametric terms for both SV and confidence there was only one for each.

Instead of convolving regressors with a gamma HRF, FIR basis functions sampled neural

responses at each of 18 discrete time points, with the first sample taken 0 s after trial onset and

the last sample taken 15.47 s after offer onset. Given the delay of the BOLD response, the 16

second window was intended to capture the full progression of neural responses that began

between offer onset and the end of the trial. FIR basis functions were fit for each of the trial

regressors (categorical offer regressor, parametric SV regressor, and parametric confidence

regressor) as well as the payout nuisance regressor, for which the appearance of the payout
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notification marked the stimulus onset. As in GLM1, these analyses were first performed at the

run level and then combined at the participant level, both of which were conducted in FSL’s

FEAT. Participants’ mean parameter estimates for SV and confidence from each of the 18 FIR

times were extracted from the anatomical vmPFC ROI and used for visualization.

GLM2: Categorical choice by confidence analysis. GLM2 estimated categorical variance

in neural responses during the offer and commit phases of each trial:

Y ¼ bACoff XACoff þ bAAoff XAAoff þ bRCoff XRCoff þ bRAoff XRAoff þ bACcomXACcom þ bAAcomXAAcom

þ bRCcomXRCcom þ bRAcomXRAcom þ ε

The first four terms modeled the offer phase of confident accepts, ambivalent accepts, confi-

dent rejects, and ambivalent rejects, respectively. The next four terms modeled the commit

phase of the same conditions. The ninth regressor modeled payout notifications. Our contrasts

compared each condition with baseline, tested main effects of choice outcome (i.e. accepted

offers vs. rejected offers irrespective of choice confidence) and choice confidence (i.e. high

confidence choices vs. low confidence choices irrespective of choice outcome) separately dur-

ing the offer and commit phases. Select pairwise comparisons within these conditions: AccCon

vs. AccAmb, and RejCon vs. RejAmb were inspected within our anatomical ROI, vmPFC.

Time courses of SV and confidence responses in vmPFC. To further characterize the

pattern of vmPFC responses during the offer and commit phases, we extracted mean parame-

ter estimates within vmPFC for each condition during each trial phase. We tested whether

vmPFC simultaneously tracks value and confidence, or if these two signals have a temporal

order within the decision making process. Following the logic of Lebreton et al. [17], we

assumed that the shape of the function of vmPFC activation with respect to trial conditions of

ascending value (RejCon< RejAmb < AccAmb < AccCon) would be indicative of the infor-

mation being processed during each trial phase. A linear increase of vmPFC response magni-

tudes with respect to offer value would suggest SV processing, whereas a quadratic function

would suggest confidence processing. If vmPFC simultaneously tracked confidence and value,

model terms for both the linear and quadratic extensions of value would be necessary to fully

explain the observed pattern of vmPFC activity.

To tailor the predictors in these models to individual participants, we used the mean per-

ceived value across trials from each condition, calculated separately for each participant. SV

varies substantially between participants depending on the consistency of their choice behavior

as slight changes in choice consistency cause substantial changes in participants’ model-esti-

mated SV predictors. Consequently, there was a large range of SV and SV2 throughout the

group and many participants’ data only spanned only a portion of that range, making it diffi-

cult to draw conclusions at the group level. P(Acc) and P(Rej) (the latter is equivalent to 1-P

(Acc)) are always restricted to the range of 0 to 1. Consequently, P(Acc)-P(Rej) normalizes

value to range from -1 to 1 while preserving the sign of SV, with negative values predicting

reject choices, positive values predicting accept choices, and values surrounding zero indicat-

ing decision ambivalence. Furthermore, whereas in GLM1 we measured parametric modula-

tion by SV, in GLM2 trials were binned according to observed choice, which is more

specifically related to P(Acc)-P(Rej). Therefore, we used P(Acc)-P(Rej) as value predictors in

our ROI analysis, which improved consistency for groupwide analysis while retaining the sign

of SV. Previous research has used a similar approach [17].

Each participant’s mean vmPFC parameter estimates from the four trial conditions were

predicted as a function of the mean P(Acc)-P(Rej) of that condition using linear mixed effects
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regression, implemented with the lme4 package for R [46].

Linear Model : �y ¼ b0 þ b1ðPðAccÞ � PðRejÞÞ þ ε

Quadratic Model : �y ¼ b0 þ b1ðPðAccÞ � PðRejÞÞ þ b2ðPðAccÞ � PðRejÞÞ2 þ ε

The linear and quadratic extensions of P(Acc)-P(Rej) were specified as fixed effects and we

included a random effect on the model intercept across subjects to account for baseline varia-

tion in vmPFC parameter estimates. Predictor values entered into the model were participants’

mean P(Acc)-P(Rej) of trials from each of the four conditions. Both models were separately fit

to parameter estimates of BOLD responses in vmPFC during the offer phase and during the

commit phase. Due to ambiguity in estimating denominator degrees of freedom, linear mixed

model fits are not best evaluated by p-values. However, significance can be inferred from con-

fidence intervals constructed by iteratively sampling the model posterior to estimate the likeli-

hood of the observed parameter estimates. We ran 5,000 simulations using the posterior

distributions over each parameter from the mixed models using the merTools package for R.

We report significant parameters with 95% CIs that do not span zero. For interested readers,

corresponding p-values estimated with Satterthwaite’s method implemented in the lmerTest

package for R are also provided. Model comparison (ordinary likelihood ratio test) and relative

AIC and BIC values were used to determine the best fitting model for the offer phase and for

the commit phase.

Temporally restricted value and confidence signals in vmPFC. As a stronger test for

temporally-restricted value and confidence representations in vmPFC, we conducted a con-

junction analysis to identify whether there were common voxels within vmPFC that preferen-

tially responded both to positive value during the offer phase and to confidence during the

commit phase. The set of voxels with this characteristic would have stronger responses to

accept decisions (AccAmb + AccCon) than to reject decisions (RejAmb + RejCon) during the

offer phase, and stronger responses to confident decisions (AccCon + RejCon) than to ambiva-

lent decisions (AccAmb + RejAmb) during the commit phase. Eliminating the trial types that

were common to both decision phases on the same side of the contrast leaves the set of voxels

with AccAmb > RejCon during the offer phase and RejCon > AccAmb during the commit

phase. We took the conjunction of voxels where both of these contrasts were statistically signif-

icant (surviving TFCE correction within vmPFC).

Behavioral correlates of SV and confidence

We aimed to measure neural correlates of implicit, naturalistic experiences of confidence dur-

ing decision making. Therefore, our task did not solicit metacognitive confidence ratings. We

estimated confidence as the quadratic extension of value in accordance with a similar study

that validated this operationalization by demonstrating that both response times (RTs) and

self-reported confidence were related by the inverse quadratic to value, and thus RTs and con-

fidence were negatively correlated. Notably, that study found that the quadratic extension of

value (i.e. model-based confidence) better predicted self-reported confidence than RTs, sug-

gesting that while RTs were a useful behavioral correlate of subjective confidence, they didn’t

fully explain variance in metacognitive confidence ratings [7, 17]. Consequently, we did not

take RTs to be a direct proxy for the subjective experience of confidence. Nonetheless, it was

important to verify that model-estimated confidence had a meaningful relationship with

behavior in our task, that is, to the time it took participants to commit to a decision. An inverse

quadratic relationship between behavioral RTs and model-estimated confidence would indi-

cate that it took participants longer to commit to decisions that were associated with lower
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degrees of model-estimated confidence. To test this, we fit RTs with mixed effects regression

(lme4 package for R; [46]). Fixed effects specified the linear and quadratic extensions of value and

a random effect on the model intercept was included to account for baseline variation in RT.

�y ¼ b0 þ b1ðPðAccÞ � PðRejÞÞ þ b2ðPðAccÞ � PðRejÞÞ2 þ ε

Value predictors entered into the model were generated by sorting model-estimated value into

5 equally spaced bins and the dependent measures were participants’ mean RTs for each bin. The

model was tested again using z-scored SV as value predictors to verify that relationship between

value and RTs were consistent regardless of the method used to estimate value.

Results

Behavioral choice models

A separate logistic regression model was fit to each participant’s decisions to accept or reject

shock/reward offers made while undergoing fMRI. All participants’ model fits had signifi-

cantly positive reward coefficients and significantly negative shock coefficients, indicating that

both offer attributes influenced SV in the intended direction, despite individual differences in

their relative contribution to choice outcomes (rewards: βr estimates mean = .199, range =

[0.064, 0.547], p values all< .001; costs βs estimates: mean = -0.170, range = [-0.547, -0.050],

p values all< .001) (Fig 2). Moreover, there was sizable variation in participants’ model inter-

cepts with ranges that spanned zero, suggesting strong individual differences in baseline ten-

dencies to accept or reject offers (β0 estimates: mean = 1.057, range = [-6.420, 9.750]). On

average, participants tended to accept more offers than they rejected (mean = 61.3%, sd =

17.8%), and seemed to be engaged in the task (98.2% of all trials received responses before the

1.8s decision deadline).

GLM 1: Parametric modulation by SV and confidence

In GLM 1 we measured parametric modulation of BOLD responses by continuous regressors

for SV and choice confidence over the course of value-based choices. Comprehensive lists of

significant cluster activation from this and all following analyses are tabulated in S1 Table.

During the offer phase SV correlated significantly with activation in many regions of cortex,

including a network of value-related regions incorporating vmPFC, posterior cingulate cortex,

orbitofrontal cortex (OFC) the basal ganglia, posterior insula, and hippocampus, as well as

other regions known to be involved with perceptual and value comparison such angular gyrus,

lateral temporal cortex, and visual cortex (Fig 3A).

We additionally found a relatively smaller set of regions where activity negatively correlated

with confidence during the offer phase including areas associated with cognitive control and

conflict resolution such as dACC and right lPFC, right superior parietal lobule (SPL), premo-

tor regions, and visual cortex (Fig 3B). There were no voxels with activity negatively related

with SV nor any voxels that were positively related with confidence during the offer phase.

Notably, neural responses to neutral SV can’t be easily interpreted with the SV regressor alone.

Instead, the inverse of the confidence regressor can be interpreted as a measure of choice con-

flict. Both the dACC and lPFC demonstrated a strong inverse relationship with confidence,

consistent with previous results demonstrating their recruitment during ambivalence, conflict,

uncertainty, and choice difficulty during value based decision making and other tasks [21, 47–

53]. The inverse relationship between the confidence regressor and conflict-resolution and

positive relationship of the regressor with SV is compatible supports the idea that neural activ-

ity during the offer phase is primarily related to valuation processes.
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Surprisingly, we did not observe any BOLD responses, in vmPFC or elsewhere, that varied

with SV during the commit phase. Furthermore, during the commit phase, there were no

regions where activity varied negatively with choice confidence. Instead, choice confidence sig-

nificantly predicted activity in a cluster of voxels within vmPFC as well as other regions includ-

ing posterior insula, superior temporal cortex, and premotor areas during the commit phase

(Fig 3C).

Assessment of first-level design matrices for GLM 1 revealed minimal multicollinearity

between model terms. The mean R2 between SV and confidence was 0.42 for both the offer

and commit phases. While we thought it was valuable to examine this relationship, it is also

important to note that structural collinearity, such as including a variable and its quadratic

extension (i.e. SV and confidence), is not typically considered a design confound. Because the

distributions of VIFs for SV and confidence were right-skewed, we report medians rather than

means. For the offer phase, the median VIFs were 2.88 for the SV regressor and 2.94 for the

confidence regressor. For the commit phase, the median VIFs were 2.90 for the SV regressor

and 2.92 for the confidence regressor. In other domains, VIFs greater than 5 or 10 have tradi-

tionally been considered problematic, however to our knowledge there is no standard cutoff

for fMRI designs [45]. We determined that the VIF of these regressors of interest was accept-

ably low, considering the structural collinearity between SV and confidence.

To characterize the dynamic relationship between SV and confidence signals in the

vmPFC, we constructed an FIR model. As shown in Fig 4 beginning ~ 3 seconds after the pre-

sentation of an offer (consistent with a response delayed by the HRF), there is a rapid increase

of SV related activity in vmPFC lasting approximately seven seconds. In contrast, activity

Fig 2. Observed decisions and model-based estimates of confidence and value. Individuals’ choice outcomes are

plotted over the decision space, which is shaded according to model-based P(Acc). Each coordinate is a possible offer,

with the x-dimension representing percent maximum reward and the y-dimension representing the percent maximum

pain cost. Observed choices are overlaid points, the filled color represents the observed decision (red = reject,

blue = accept). The point outline represents model-based confidence (yellow = ambivalent, purple = confident).

Decision boundaries are overlaid in white. There were substantial individual differences in choice behavior and model-

estimated value, as well as differences in choice consistency (indicated by the width of the band of neutral color

surrounding the decision boundary). Note that decision boundaries diverged considerably from the boundary of

objective perceptual equality (the line of % maximum reward = % maximum pain, not illustrated), which comprises

the set of offers for which the physical sizes of the cost and reward stimuli were identical.

https://doi.org/10.1371/journal.pone.0225617.g002
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related to confidence emerges approximately 10 seconds after the offer (which is 5.5 seconds

after the presentation of the response cue). As this activity reaches a peak around 13 seconds,

SV related activity has already returned to baseline, demonstrating a clear cross-over in the

timing of these two variables.

Taken together, the key finding from GLM1 was that whether estimated by classic HRF

convolution or by FIR, vmPFC tracks SV but not confidence during the offer phase and confi-

dence but not SV during the commit phase. These results suggest that in value-based decision

Fig 3. GLM1: Parametric correlation of BOLD with SV and confidence. During the offer phase, vmPFC tracked SV but not confidence and during the commit phase,

vmPFC tracks confidence but not SV. Figures display all statistically significant results at p< .05 TFCE-corrected at the whole-brain level. (A) BOLD responses during

the offer phase that correlated positively with model-estimated SV. During the offer phase, a large cluster of voxels in vmPFC tracked SV while participants evaluated

the offer. Slice images show local peak activation in vmPFC, along with the MNI coordinates and t-value of the local maximum in this cluster. There was also significant

activation throughout the value network including within posterior cingulate cortex, the basal ganglia, insula, and hippocampus; regions involved with value-

comparison such as angular gyrus and lateral temporal cortex; and visual cortex. No voxels correlated positively with SV during the commit phase, suggesting that

value-responses, particularly in vmPFC, emerge relatively early in the decision making process. (B) BOLD responses positively correlated with ambivalence (inversely

correlated with confidence) during the offer phase. Areas involved with cognitive control and response competition, such as lPFC and dACC tracked ambivalence while

participants deliberated accepting or rejecting the offer. Slice images show local maxima in regions of theoretical interest (lPFC and dACC). No voxels in vmPFC or

elsewhere responded positively with choice confidence during the offer phase, suggesting that neural responses corresponding to high confidence emerge relatively later

than SV and ambivalence. (C) BOLD responses correlated positively with model-estimated confidence during the commit phase. During the commit phase, while

participants submitted a response and viewed feedback about their decision, a cluster of voxels in vmPFC tracked decision confidence, as well as regions including

posterior insula and lateral temporal cortex. Slices images show peak activation in vmPFC.

https://doi.org/10.1371/journal.pone.0225617.g003
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making, vmPFC responses are modulated by both SV and confidence, but this does not appear

to be a simultaneous process. Rather, there may be a temporal order to these signals such that

vmPFC is first involved in the valuation process before transitioning to signaling confidence

about that valuation. This interpretation supports the idea that vmPFC’s dual roles in value-

based decision making are more pronounced during separable stages of decision making.

GLM 2: Categorical choice by confidence conditions

While SV predicts choice outcomes (i.e. offers perceived as highly valuable are likely to be

accepted), SV and outcome are not perfectly related, especially when choices are closer to

one’s decision boundary. It is possible that SV is computed relatively early on, but that vmPFC

responses relating to the final choice (selected with respect to SV) occur later and concurrently

with choice confidence, during the commit phase. Therefore, in GLM2 we measured responses

related to choice outcomes and confidence. To do this, GLM2 modeled BOLD responses from

four trial conditions: AccCon, RejCon, AccAmb, and RejAmb. These analyses mirror GLM1

except that in GLM2 value is signified as trial by trial choice outcome rather than estimated

SV, and confidence is binned into high (confident) and low (ambivalent) categories. During

the offer phase, we observed that a similar network of regions to those that were parametrically

modulated by SV in GLM1 also showed significant contrasts for decision outcome in GLM2

such that BOLD responses were stronger preceding decisions to accept than decisions to reject

(Fig 5A). This extends our findings from GLM1, demonstrating that not only SV but also a

decision variable is represented within vmPFC relatively early in the decision making process,

in this case during the offer phase.

There was substantial overlap between value-related responses in GLM1 and decisions to

accept in GLM2. These similarities are likely attributable to participants’ relatively stable

choice behavior, causing SV model estimates to be strongly predictive of choice outcomes.

Fig 4. Time course of vmPFC responses tracking SV and confidence. SV signals preceded confidence signals in

vmPFC. Neural responses were sampled once per TR (every 910 ms), beginning at the onset of the trial stimulus,

marked here as 0 s. Plotted lines (group means) and ribbons (SEM) represent vmPFC parameter estimates over the

course of the trial, estimated with an FIR model. The blue line traces the strength of the association between BOLD

responses in vmPFC and model-estimated SV, the purple line traces their association with model-estimated

confidence.

https://doi.org/10.1371/journal.pone.0225617.g004
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Consequently, neural responses associated with high estimated SV in GLM1 were also

observed duriinig accept choices in GLM2. The primary exception to this rule was visual cor-

tex, where activity tracked SV but not choice outcome, suggesting that visual cortex activation

varied with SV only insofar as it systematically related to visual properties of the offer stimuli.

Similarly, the contrast of BOLD responses from the offer phase of ambivalent versus confi-

dent choices revealed a similar network of regions as those that were negatively related to con-

fidence during the offer phase from GLM1, with the addition of the anterior insula for GLM2

(Fig 5B). There were no regions, including vmPFC, with stronger responses during the offer

phase of confident choices than the offer phase of ambivalent choices, nor were any regions

more responsive during rejected trials than accepted trials.

During the commit phase, there were robust and widespread differences between confident

and ambivalent choices, but no regions responded preferentially to one choice outcome

(accept or reject) over the other. Critically, clusters of voxels in vmPFC as well as posterior cin-

gulate, and an adjacent medial segment of superior parietal lobule showed a significant con-

trast between confident and ambivalent decisions during the commit phase, with stronger

BOLD responses to confident choices (Fig 5C, purple). The reverse contrast (ambivalent ver-

sus confident) revealed several of the same regions that responded selectively to ambivalent

choices during the offer phase, such as the anterior insula, lateral PFC, and dACC (Fig 5C,

Fig 5. GLM2: Contrasts of decisions and confidence conditions. vmPFC encodes decision variables during the offer

phase but not the commit phase, and encodes decision confidence during the commit phase, but not the offer phase.

Figures display all statistically significant results at p< .05 TFCE-corrected at the whole-brain level. (A) Contrasts of

response magnitudes from the offer phase of accept trials> reject trials: During the offer phase, clusters of voxels in

vmPFC and other regions in the value network, many of which were also parametrically correlated with SV, had

stronger response magnitudes preceding accept decisions than reject decisions. Slices images show peak coordinates in

vmPFC. No voxels exhibited this contrast during the commit phase, nor were there any regions with stronger

responses during rejected trials than accepted trials during either phase. (B) Contrasts of response magnitudes from

the offer phase of confident trials< ambivalent trials. Slice images illustrate peak activation in lPFC and dACC. (C)

Contrasts of response magnitudes from the commit phase of confident> ambivalent trials (purple) were observed in

vmPFC were stronger for confident trials than ambivalent trials. No regions showed the same contrast during the offer

phase. Clusters of voxels in lateral OFC, the anterior insula, and dACC showed the reverse pattern, with stronger

response magnitudes during the commit phase of ambivalent trials than confident trials. Note that, several regions

(dACC, lPFC, lateral OFC, and anterior insula) show the confident< ambivalent contrast during both the offer and

commit phases. Slice images show peak coordinates for confident> ambivalent in vmPFC and peak coordinates for

confident< ambivalent in lateral OFC, dACC, and anterior insula.

https://doi.org/10.1371/journal.pone.0225617.g005
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orange). This could possibly indicate sustained ambivalence-related activity that arises early in

the valuation process and may still be unresolved at the time of choice commitment for highly

difficult choices. The observed responses in vmPFC, which favored positive choice outcomes

during the offer phase and high confidence during the commit phase, provide additional evi-

dence of separable stages of activity over the course of a value-based choice.

Given the robust SV- (from GLM1) and choice-related (from GLM2) responses during the

offer phase, it is possible that apparent confidence-related signals in vmPFC activity during the

commit phase were in fact attributable to strong, sustained value-related responses carrying

over from the offer phase. That is, relative differences in vmPFC responses to AccCon choices

versus AccAmb choices could have driven the observed main effect of confidence–and more-

over these effects might be better explained by value than confidence. To verify that the appar-

ent effects of confidence could not be explained by relative differences in value, we measured

contrasts of confident versus ambivalent BOLD responses separately for accepted and rejected

offers. We were specifically interested in these comparisons within our a priori vmPFC ROI

and therefore restricted statistical correction to this region alone (Fig 6A). During the commit

phase, we observed a cluster of voxels with significantly stronger responses during RejCon ver-

sus RejAmb trials as well as a cluster of voxels that preferred AccCon to AccAmb (Fig 6B).

Notably, because SV of RejCon trials is less than SV of RejAmb trials, this result suggests that

Fig 6. vmPFC ROI analysis. (A) Anatomical vmPFC ROI (B) AccCon> AccAmb and RejCon> RejAmb contrasts

of BOLD responses during the commit phase. Figures display all statistically significant results at p< .05 TFCE-

corrected within the vmPFC ROI. During the commit phase, vmPFC responses are stronger for high confidence

choices, even for reject choices when confidence is inversely related with SV. (C) vmPFC Parameter estimates from the

offer (left) and commit phase (right). Small points are individuals’ raw vmPFC parameter estimates with respect to

their mean P(Acc)-P(Rej) of each trial condition. Large points are group mean vmPFC parameter estimates with

respect to the group mean P(Acc)-P(Rej) of each condition. The fit line indicates regression predictions and 95% CI

from the winning model for that decision phase. During the offer phase, vmPFC responses increased linearly across

trial conditions with increasing value. During the commit phase, they increased quadratically. (D) Comparison of

mixed effects regression models predicting vmPFC parameter estimates (GLM2) from the and quadratic (bottom)

extensions of value. Model estimates and 95% confidence intervals show fixed effects of linear and quadratic model

terms, confidence intervals not spanning 0 are considered significant. vmPFC parameter estimates from the offer

phase (left) were best fit with a linear model, indicating that during the offer phase, vmPFC tracks value. vmPFC

parameter estimates from the commit phase (right) were best fit with a quadratic model, indicating that during the

commit phase vmPFC tracks confidence.

https://doi.org/10.1371/journal.pone.0225617.g006
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during the commit phase, clusters of vmPFC activity are signaling choice confidence irrespec-

tive of SV. We found no voxels that demonstrated the same pattern during the offer phase, nor

did we find any voxels with stronger responses to ambivalent choices during either phase.

Time courses of SV and confidence responses in vmPFC

We examined the pattern of response magnitudes in vmPFC across trial conditions of increasing

value and in both decision phases and compared the fits of models with linear and quadratic

terms (Fig 6C). For the offer phase, the linear model best explained the observed pattern of

vmPFC parameter estimates across the four conditions as the additional term in the quadratic

model did not improve the model fit (Linear model: AIC = 901.1, BIC = 911.98; Quadratic

model: AIC = 903.1, BIC = 916.69; comparison of models: χ2(1) = .0018, p = .966), indicating

that vmPFC activity increased linearly with P(Acc)-P(Rej) during the offer phase (signaling

value). For the commit phase, the quadratic model best explained the observed pattern of vmPFC

parameter estimates (Linear model: AIC = 1014.5, BIC = 1025.3, Quadratic Model: AIC = 1002,

BIC = 1015.6, comparison of models: χ2(1) = 14.320, p< .001), indicating that vmPFC responses

take a quadratic function with respect to value during the commit phase (signaling confidence).

Model effects are plotted in Fig 6D and details about model fits are shown in Table 1.

In summary, vmPFC responses increased linearly across trial conditions of increasing value

during the offer phase, signifying early involvement with valuation of the offer stimulus, and

varied quadratically across the same conditions during the commit phase, signifying late

involvement with valuation of the decision and deriving confidence. Notably, no values associ-

ated with model-estimated confidence (such as those used in GLM1) were entered into the

Table 1. Comparison of linear mixed models estimating vmPFC responses from value.

Fixed Effects Random Effect Model Fit Model

Comparison

Estimate 95CI t p SD Marg.

R2
Cond.

R2
AIC BIC χ2 p

Offer: Linear Model 14.58 0.05 0.70 901.1 912.0

Intercept -19.08 -24.74 -13.28 -6.56 <0.001

P(accept)-P(reject) 5.10 2.73 7.41 4.38 <0.001

Offer: Quadratic model 14.57 0.05 0.70 903.1 916.7 0.002 0.966

Intercept -19.00 -25.78 -12.20 -5.50 <0.001

P(accept)-P(reject) 5.11 2.76 7.40 4.33 <0.001

(P(accept)-P(reject))2 -0.12 -5.76 5.44 -0.04 0.967

Commit: Linear Model 19.17 0.01 0.55 1014.5 1025.3

Intercept -9.07 -17.08 -1.02 -2.28 0.031

P(accept)-P(reject) 3.63 -0.48 7.78 1.76 0.082

Commit: Quadratic model 19.18 0.07 0.61 1002.0 1015.6 14.43 < 0.001

Intercept -20.86 -30.57 -10.96 -4.20 <0.001

P(accept)-P(reject) 2.87 -0.96 6.63 1.49 0.140

(P(accept)-P(reject))2 18.16 9.21 27.27 3.91 <0.001

Results of model comparisons estimating vmPFC responses from value. The first column identifies the model and variables specified as fixed effects from that model.

Columns 2–6 give the model estimate, 95% confidence interval (95CI), and t statistic and p value estimated from Satterthwaite approximation. Column 7 is the standard

deviation (SD) of the random effect (Intercept | Subject). Columns 8–11 are overall model statistics: variance explained by fixed effects (Marg. = marginal R2), variance

explained by fixed and random effects together (Cond. = conditional R2), and overall model AIC, and BIC. The final two columns are with χ2 statistics and p values

from likelihood ratio tests (after refitting models with maximum likelihood estimates), describing improvement of fit from adding quadratic term to the original linear

model.

https://doi.org/10.1371/journal.pone.0225617.t001
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mixed effects models. Rather, the models estimated participants’ mean parameter estimates

from the four trial conditions (of GLM2) from their mean P(Acc)-P(Rej) for all trials of that

condition. Therefore, the plots in Fig 6C demonstrate that during the offer phase, vmPFC

responses naturally take a linear function across the four trial conditions of ascending value P

(Acc)-P(Rej), whereas during the commit phase, vmPFC responses naturally take a quadratic

function across the same trial conditions.

Strictly speaking, because P(Acc)-P(Rej) takes a sigmoid function with respect to SV and

that vmPFC increased linearly with SV in GLM1, vmPFC responses could theoretically take a

logistic function with respect to P(Acc)-P(Rej). Visual inspection of individual raw vmPFC

parameter estimates (Fig 6B) did not reveal that the underlying pattern of vmPFC parameter

estimates had a logistic shape. To verify that this was the case, we repeated the linear mixed

regression model, substituting SV predictors for P(Acc)-P(Rej) predictors, and found analo-

gous statistical results. While the fMRI parameter estimates had sufficient resolution to discern

between linear and quadratic functions, it is unlikely that a similar distinction could be made

between two monotonic functions such as linear and logistic functions. We present results

with respect to P(Acc)-P(Rej) because this measure improved the interpretability of group-

wide results by controlling the range of predictor values across the group while preserving the

sign of raw SV, as described in the methods above.

Temporally restricted value and confidence signals in vmPFC. An additional analysis

tested for the temporal dissociation of value and confidence processing within in vmPFC. We

took the conjunction of vmPFC voxels with activation during the offer phase that was signifi-

cantly stronger for accept decisions than reject decisions and activation during the commit

phase that was significantly stronger for confident decisions than ambivalent decisions,

excluding common terms between the contrasts. This revealed cluster of voxels within vmPFC

that switched from value-selective activation during the offer phase to confidence-selective

activation during the commit phase (Fig 7).

Behavioral RTs and confidence

Before analysis, trials with RTs exceeding 3 SD of the overall group mean were excluded

(1.56%). Additionally, trials exceeding 3 SD of the individual’s mean RT for each bin of each

analysis were excluded (0.98%). The model confirmed that RTs took an inverse quadratic

function with respect to value (Fixed Effects: (P(Acc)-P(Rej) estimate = -35.415, 95CI [-50.042,

-20.787], SE = 7.466, t = -4.743, p< .001; P(Acc)-P(Rej)2 estimate = -77.330, 95CI [-102.213,

-52.451], SE = 12.700, t = -6.90, p<. 001; Random Effect SD = 88.02), indicating that partici-

pants were slower to commit to decisions associated with low model-estimated confidence

(Fig 8). Notably, in addition to the quadratic relationship, there was also a negative linear cor-

relation between value and RTs, indicating that it took participants longer to commit to deci-

sions about low value offers versus high value offers. This may have been caused by the

observed bias for accept decisions over reject decisions, which meant that responses to lower

value offers required overriding the default decision to accept.

We observed statistically analogous, but somewhat weaker results when using SV as value

predictors (Fixed Effects: SV estimate = -27.198, 95CI [-32.326, -22.070], SE = 2.618, t =

-10.390, p< .001; SV2 estimate = -7.900, 95CI [-12.230, -3.563], SE = 2.212, t = -3.570, p =

.001; Random Effect SD = 8.020), which is likely due to large individual differences in esti-

mated SV, as described above. Taken together, the results of the RT analysis confirmed that

there was a meaningful relationship between model-estimated confidence and behavior. Par-

ticipants were slower to commit to decisions about offers we predicted would elicit ambiva-

lence, suggesting that these choices might have been more challenging to resolve. This is not
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an indication that RTs measure the subjective experience of confidence, but rather that there is

an empirical basis that model-estimated confidence captures aspects of our task associated

with decision difficulty. Importantly, because participants varied in their subjective prefer-

ences and their decision boundaries diverged considerably from the reward = cost line (Fig 2),

increased RTs for ambivalent choices cannot be explained by difficulty in perceptual discrimi-

nation (i.e. merely determining whether costs or rewards were perceptually larger).

Discussion

We measured behavioral and neural responses during a two-phase Ap-Av decision making

task with consequential mixed outcomes. Model-based SV, confidence estimates and decision

variables correlated with BOLD responses throughout the cortex, including within vmPFC.

Our series of results provides strong support for the recent suggestion that vmPFC encodes

both value and confidence during value-based decision making [17, 19, 21]. Importantly, the

present research is the first evidence of this phenomena in the realistic context of deterministic

approach avoidance choice scenarios. It extends previous findings from studies that have used

different approaches for assessing confidence, including explicit rating of hypothetical SV for

items or events [17], deciding between two positively-items [19], or decisions with

Fig 7. Conjunction of offer phase value responses and commit phase confidence responses. vmPFC voxels that

were sensitive to value during the offer phase and to confidence during the commit phase are shown in slices images

and in a glass brain. These voxels had significant contrasts for AccAmb> RejCon during the offer phase and for

RejCon> AccAmb during the commit phase (p< .05 TFCE-corrected within the anatomical vmPFC ROI), and

therefore switched from tracking offer valuation to tracking decision confidence during the sequential decision phases.

https://doi.org/10.1371/journal.pone.0225617.g007
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probabilistic risk [21]. We then presented novel evidence that such vmPFC signals have a tem-

poral order within the course of decision making. Specifically, vmPFC activation tracked offer

valuation (SV) and choice determination early in the trial as participants deliberated their deci-

sion and tracked decision valuation (confidence) relatively later. The following sections discuss

our key findings regarding neural signatures of SV and confidence as well limitations of this

study and suggestions for future research.

Early value responses in vmPFC

Our first finding was new evidence of approach-selective vmPFC responses preceding choice

commitment in an economic ApAv task. During the offer phase of each trial, participants

deliberated on accepting or rejecting offers and vmPFC responses increased with estimated SV

(GLM1). We complemented this finding by demonstrating that parameter estimates from an

Fig 8. RT analysis. Individual and group mean RTs (small lines) are plotted with respect to value (P(Acc)-P(Rej)). Fit

lines represent model predicted RTs and 95% CIs. RTs take an inverse quadratic function with respect to model-

estimated value. The time it took participants to commit to decisions was negatively correlated with model-estimated

confidence (the quadratic extension of value).

https://doi.org/10.1371/journal.pone.0225617.g008
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anatomical vmPFC ROI increased monotonically with P(Acc)-P(Rej) (GLM2), consistent with

a vast literature documenting vmPFC’s role in integrating items’ cost and reward attributes into

its overall SV [4, 11, 12, 54]. vmPFC also distinguished between decision outcomes during the

offer phase, with stronger responses anticipating accept decisions than reject decisions (GLM2).

These results may be partially explained by goods-based models of value-based decision mak-

ing, which propose that economic choices are made between goods rather than actions [55],

and can therefore be settled prior to planning the action to submit the decision [56].

Remarkably, we found no regional activation that was significantly modulated by SV

(GLM1) or that differed by choice outcome (GLM2) during the commit phase, even when sta-

tistical correction was restricted to vmPFC (GLM2). This result was unexpected given previous

findings that vmPFC representations of subjective preferences are automatically elicited by

task stimuli, including contexts in which such information is task-irrelevant [7, 57]. Moreover,

SV responses in vmPFC can sustain the entire presentation of value stimuli with durations far

longer than the time needed to make a decision, regardless of whether the additional time

affects decision behavior [58]. Together, these prior findings suggested that in our study,

vmPFC would encode SV whenever the offer stimuli were visible, including during the com-

mit phase. One possible explanation for why we did not find such effects is that we imple-

mented a two-phase decision task whereas other paradigms require immediate responses, only

briefly present value stimuli, or rapidly transition from choice commitment to decision out-

comes. A two-phase decision task may better accommodate observation and analysis of the

temporal ordering of offer valuation and decision valuation processes within vmPFC.

An alternative hypothesis is that there were in fact enduring but relatively weak SV repre-

sentations in vmPFC during the commit phase that did not reach statistical significance.

Inspection of the group mean vmPFC parameter estimates during the commit phase (GLM2)

suggests a somewhat asymmetrical quadratic function such that accepted offers, on average,

were associated with larger response magnitudes than rejected offers. However, a linear model

provided only a marginal fit to the same data, consistent with only a subtle positive correlation,

if any, between vmPFC activation and value during the commit phase. Nonetheless, these

observations left open the possibility that vmPFC continued to track offer value, albeit weakly,

through the commit phase, even if this effect was markedly exceeded by confidence. To obtain

more direct evidence of a temporal dissociation between value and confidence processing dur-

ing decision making, we conducted a conjunction analysis (GLM2 conjunction), which

revealed a cluster of vmPFC voxels that switched from value-selective activation while partici-

pants evaluated the offer to confidence-selective activation as participants committed to a deci-

sion and received feedback. This result, which does not rely on interpreting null effects as

evidence of absence, lends strong support for the conclusion that value and confidence pro-

cessing within vmPFC temporally dissociate.

Late confidence responses in vmPFC

There have been various empirical and theoretical suggestions that confidence signals emerge

early in decision making, evolving in parallel with processing of choice stimuli and the deci-

sion itself [17, 22, 23, 59]. Others have reported evidence that confidence lags behind decision

variables and value estimates, emerging closer to the time of choice commitment or even later

[25, 27–32]. We presented a series of results that converged to decidedly endorse the latter,

and to our knowledge provide the first evidence for delayed confidence processing in the con-

text of value-based decision making.

Specifically, we did not observe any BOLD responses that were parametrically correlated

with confidence during the offer phase (GLM1) nor any regional activation during the offer
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phase that was selective for confident over ambivalent choices (GLM2), even when statistical

correction was restricted to vmPFC. Instead, it was during the commit phase of the decision

process, while participants submitted a choice and received feedback, that vmPFC responses

increased parametrically with decision confidence (GLM1) and similarly were stronger for

confident choices than ambivalent choices (GLM2). Inspection of vmPFC parameter estimates

from the commit phase revealed a quadratic function with respect to increasing value (GLM2).

Therefore, during the commit phase, vmPFC responses were stronger for confident choices

than ambivalent choices, even for rejected offers when high confidence is associated with low

SV. Visualization of the time course SV and confidence responses in vmPFC (GLM1 FIR)

illustrated a distinct temporal order of early value-related signal and late confidence-related

signal in vmPFC. It is noteworthy that the SV and confidence regressors peaked at similar

delays following the onset of the offer stimulus and response cue, respectively. While the delay

of the BOLD response makes it difficult to identify precisely when in the trial this transition

occurred, this may be preliminary evidence that the most robust confidence-related response

was triggered by the cue for the participant to commit a response.

Neuroanatomical substrates of value and confidence

Beyond vmPFC, we observed extensive overlap between regions that parametrically correlated

with SV during the offer phase (GLM1) and regions that preferentially activated during the

offer phase of accept decisions compared with reject decisions (GLM2). This was observed in a

larger value-network including regions important for sensory association, value-comparison,

and reward processing such as angular gyrus, posterior parietal cortex, lateral temporal cortex,

posterior cingulate cortex, and the ventral striatum. The value network likely encodes finer-

grained distinctions between SV and choice outcome than were apparent in our analyses. For

example, others have suggested separable time courses for evolving value signals and decision

variables [60]. Our paradigm was well suited for SV and confidence signals but not necessarily

for dissociating SV from decision variables, given the strong correlation between the two.

Future research aiming to find finer dissociations of SV and decision variables may benefit

from novel variations of our task.

Furthermore, our anatomical vmPFC ROI was selected a priori and is somewhat inclusive,

combining subcallosal cortex and medial frontal cortex from the Harvard-Oxford atlas, which

comprise structures that others have labeled medial OFC, pregenual or subgenual ACC. Thus,

we cannot draw meaningful conclusions about functional or temporal specificity at a smaller

scale but we appreciate that others have made interesting discoveries on this front. For exam-

ple, it has been suggested that over the course of stimulus processing, OFC is the first cortical

site where appetitive stimuli are assigned reward, whereas later processing in vmPFC trans-

forms value representations into choices [54] that guide action selection [61]. Another recent

study found a spatial gradient of information processing in mPFC with ventral regions

responding more strongly to value and dorsal regions responding more strongly to confidence

[62]. Interestingly, we did not observe the same pattern. In our analyses, the most robust confi-

dence effects were observed in ventral and posterior portions of mPFC surrounding subgenual

ACC and the most robust SV and approach-selective effects were observed relatively dorsal

and anterior within mPFC, closer to the frontal pole. One possible explanation for this discrep-

ancy is that De Martino and colleagues’ task [62] enabled participants to incorporate other

individuals’ value ratings into confidence judgments, which may have recruited theory of

mind processing in dorsomedial prefrontal cortex [63]. Other previous research that employed

a strategy game requiring choices to attack or defend reported that an adjacent region, rostral

ACC, preferentially responded when participants defended versus attacked and tracked the
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value of deploying defense strategies but not attack strategies [10]. While we did not observe

regional activation that correlated negatively with SV nor regions that selectively responded to

reject choices, the conceptual equivalent to defending, the notion of separable but adjacent

neural bases for approach and avoidance behaviors is compelling. Combining finer parcella-

tion of prefrontal cortex with fMRI models that include terms for individual offer attributes

reveal separable patterns of responses to reward, SV, and choice outcome may be an interest-

ing avenue for future research. However, this was beyond the scope of our study.

Implicit choice confidence

It has been previously demonstrated that model-based confidence estimates correspond

closely to self-reported confidence [17] and the strength of the relationship between model-

based confidence and vmPFC activation strongly predicts the relationship between self-

reported confidence and vmPFC activation [15]. A key aspect of our study was the characteri-

zation of confidence without a reliance on post-hoc self-report or metacognition. Using a nat-

uralistic task and implicit measures of confidence, we replicated previous findings that model-

estimated confidence had an inverse quadratic relationship with RTs [17], such that increasing

model-estimated confidence predicted faster decision commitments (Fig 7), suggesting that

model-estimated confidence captures an element of choice difficulty.

A similar study by De Martino et al. [19], which incorporated explicit confidence ratings

with an fMRI value-based choice task suggests separable neural signals corresponding to

model-based and self-reported confidence and found that while vmPFC tracked unsigned

value differences between choice options (which roughly correspond to our model-estimated

confidence), rostrolateral PFC (rlPFC) tracked self-reported confidence. They used this basis

to ground a hypothesis that rlPFC probes internal confidence signals, represented in vmPFC,

and makes them available for metacognitive self-report. Others have made similar claims [64].

Notably, rlPFC responses correlated with ambivalence in our task (which did not require

explicit confidence ratings), suggesting that our task did not elicit similar metacognitive

appraisal processes. While there is not yet broad consensus regarding the loci of implicit versus

metacognitive confidence–it seems evident that decision tasks requiring metacognitive confi-

dence judgments may recruit unique neural resources from tasks that model confidence

directly from decision behavior. Nonetheless, our results support recent suggestions that

implicit confidence, the valuation of one’s judgment, shares a neuroanatomical basis with a

variety of other valuation processes, vmPFC [17, 20, 30]. We add to this growing theoretical

framework evidence for a dynamic process by which vmPFC shifts from valuation of external

stimuli to valuation of internal value representations and the decisions they inspire.
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