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Abstract
Background: In the adult hippocampus, the granule cell layer of the dentate gyrus is a heterogeneous
structure formed by neurons of different ages, morphologies and electrophysiological properties.
Retroviral vectors have been extensively used to transduce cells of the granule cell layer and study their
inherent properties in an intact brain environment. In addition, lentivirus-based vectors have been used to
deliver transgenes to replicative and non-replicative cells as well, such as post mitotic neurons of the CNS.
However, only few studies have been dedicated to address the applicability of these widespread used
vectors to hippocampal cells in vivo. Therefore, the aim of this study was to extensively characterize the
cell types that are effectively transduced in vivo by VSVg-pseudotyped lentivirus-based vectors in the
hippocampus dentate gyrus.

Results: In the present study we used Vesicular Stomatitis Virus G glycoprotein-pseudotyped lentivirual
vectors to express EGFP from three different promoters in the mouse hippocampus. In contrast to
lentiviral transduction of pyramidal cells in CA1, we identified sub-region specific differences in transgene
expression in the granule cell layer of the dentate gyrus. Furthermore, we characterized the cell types
transduced by these lentiviral vectors, showing that they target primarily neuronal progenitor cells and
immature neurons present in the sub-granular zone and more immature layers of the granule cell layer.

Conclusion: Our observations suggest the existence of intrinsic differences in the permissiveness to
lentiviral transduction among various hippocampal cell types. In particular, we show for the first time that
mature neurons of the granule cell layer do not express lentivirus-delivered transgenes, despite successful
expression in other hippocampal cell types. Therefore, amongst hippocampal granule cells, only adult-
generated neurons are target for lentivirus-mediated transgene delivery. These properties make lentiviral
vectors excellent systems for overexpression or knockdown of genes in neuronal progenitor cells,
immature neurons and adult-generated neurons of the mouse hippocampus in vivo.
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Background
The hippocampus is a brain structure that forms part of
the limbic system and is involved in memory formation
and spatial navigation. The Dentate Gyrus (DG) field,
despite of being composed mainly by granule cells, is an
heterogeneous structure [1]. Moreover, the subgranular
zone (SGZ) of the DG, along with few other few areas of
the adult brain, is characterized by the existence of ongo-
ing neuronal generation known as adult neurogenesis
[2,3]. All in all, these and other important observations
have called for extensive attention to the study of the adult
DG and its functions.

In this respect, one challenging task is to identify and
employ genes and molecular mechanisms directly
involved in hippocampal functions, such as neuronal
plasticity and neurogenesis [4,5]. The ability to manipu-
late the genotype in vivo provides major opportunities for
studying gene function in the mammalian nervous system
and for developing novel therapeutic strategies [6].

Viral-mediated single-cell gene manipulation has proven
to be one of the most successful approaches to study
molecular mechanisms involved in adult neurogenesis in
an intact brain environment, [7,8]. With this aim, retrovi-
ral vectors have been extensively used in the study of neu-
rogenesis due to their ability to transduce only replicative
cells [7,9]. Also, lentiviral vectors have been extensively
used to deliver transgenes to replicative and non-replica-
tive cells, such as post-mitotic neurons of the CNS
[10,11]. Among lentiviral vectors, Vesicular Stomatitis
Virus G glycoprotein (VSV-G)-pseudotyped are the most
widely used due to their very broad tropism and stability
of the resulting pseudotypes. Moreover, they have
received considerable attention since they have recently
entered human clinical applications [11]. Interestingly,
numerous reports have described on the use of lentiviral
vectors on hippocampal neurons in vivo [6,12-18].

Aiming to demonstrate the usefulness of modified lentivi-
ral vectors to deliver transgenes to the adult mouse hip-
pocampus and extensively characterize the cell types that
are effectively transduced in vivo, we used a previously
described VSV-G-pseudotyped advanced generation lenti-
viral vector (AGLV) to express the enhanced green fluores-
cent protein (EGFP) under the control of the
cytomegalovirus (CMV) promoter [19].

EGFP expression was analyzed one and five weeks after
stereotaxic injection to the mouse hippocampus and the
local distribution of EGFP+ cells within different hippoc-
ampal sub-fields was compared. We identified the differ-
ent cell types transduced in the DG using cell-lineage
specific markers [20,21]. The distribution and location of
EGFP+ cells were also analyzed and quantified in the DG
and Cornu Ammonis 1 (CA1) fields for comparison.

We report that lentivirus-mediated transgene expression
in the DG is restricted to a subpopulation of NPC and
immature neurons present in the inner granule cell layer
(GCL), while presumably more mature granule cells
located in the outer layers are resistant to transgene
expression.

These results reveal for the first time the existence of hip-
pocampus sub-field and cell-type specific differences in
lentivirus-mediated transgene expression. These proper-
ties make lentiviral vectors excellent delivery systems for
studies aiming to characterize the functions of hippocam-
pal NPC and immature neurons, where in vivo gene
manipulation is requested.

Results
Lentivirus-mediated EGFP delivery to the DG
In order to transduce cells present in the DG of the mouse
hippocampus, we used a previously described AGLV sys-
tem where the CMV promoter controls EGFP expression
[19], further referred here as CMV-EGFP. This vector was
infused by stereotaxic injection into the DG (Fig. 1).
Under these experimental conditions we observed a
marked restriction of EGFP expression to the hilar region
and the SGZ and only few EGFP+ cells present in the GCL
one week after injection (Fig. 1A). This spatial distribution
is reminiscent of previous observations with murine
Maloney Leukemia virus (MMLV)-derived retroviruses,
transducing only dividing cells [9,22]. Notably, increased
EGFP expression from higher lentiviral vector delivery tit-
ers did not result in a substantially increased proportion
of EGFP+ cells located in the GCL, while the total num-
bers of EGFP+ cells were drastically increased, resulting in
massive EGFP expression in the hilar region and the SGZ
(Fig. 1B).

Spatial distribution of EGFP+ cells in the GCL after CMV-
EGFP injection
In order to account for the spatial distribution of the
EGFP+ cells in the GCL of the DG, we subdivided the GCL
in 4 different two-nucleus-wide regions, following the
method described by Kempermann et al., and extensively
used by others [8,23,24] (Fig. 2). These four regions were
designated SGZ, GCL1, 2 and 3 (Fig. 2C). Thereafter, we
applied semi-automated, software assisted, quantification
of the percentage of total EGFP+ cells present in each of
these regions. Although the numbers of total EGFP+ were
variable among different injections, as described for
MMLV-based retroviral vectors [9], the relative percent-
ages of cells present in the different subdivisions of the
DG were consistently reproducible. We found that one
week after stereotaxic injection, a large percentage of the
cells reside in the SGZ (57 ± 1%, n = 5 animals) and the
innermost layer of the GCL, GCL1 (32 ± 2%, n = 5 ani-
mals; Figure 2A, C and 2D). When the number of EGFP+
cells was assessed five weeks after stereotaxic injection, we
Page 2 of 19
(page number not for citation purposes)



BMC Neuroscience 2009, 10:2 http://www.biomedcentral.com/1471-2202/10/2
found that the larger percentage of EGFP+ cells still
resided in the SGZ (27 ± 4%, n = 5 animals) and the GCL1
(42 ± 3%, n = 5 animals) with a significantly higher per-
centage of EGFP+ cells located into the intermediate third
of the GCL (GCL2, 26 ± 3 vs. 9 ± 4%, 5 and 1 weeks

respectively, p < 0.05 Student t test, n = 5 animals each;
Fig. 2B and 2E). Notably, EGFP+ cells rarely reached the
outer third of the GCL (GCL3) and the percentage of cells
located in the GCL3 was not significantly different from
the one observed one week after injection (5 ± 3 vs. 2 ±

Lentivirus-mediated EGFP delivery to the DGFigure 1
Lentivirus-mediated EGFP delivery to the DG. Lentivirus-mediated delivery by stereotaxic injections to the hilar region 
of the hippocampus does not results in substantial EGFP expression in the GCL, despite low (A) or high (B) EGFP expression, 
1 week after injection. Each image shown is representative of 5 animals independently injected. Right panels represent the 
boxed area in the left panels of the figure. Scale bars: left panels 100 μm; right panels 20 μm.

Lentivirus-mediated EGFP delivery to the DGFigure 1
Lentivirus-mediated EGFP delivery to the DG. Lentivirus-mediated delivery by stereotaxic injections to the hilar region 
of the hippocampus does not results in substantial EGFP expression in the GCL, despite low (A) or high (B) EGFP expression, 
1 week after injection. Each image shown is representative of 5 animals independently injected. Right panels represent the 
boxed area in the left panels of the figure. Scale bars: left panels 100 μm; right panels 20 μm.
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EGFP+ cell location after injection with CMV-EGFP in the DGFigure 2
EGFP+ cell location after injection with CMV-EGFP in the DG. Distribution of EGFP+ cells in the GCL 1 (A) or 5 (B) 
weeks after stereotaxic injection of CMV-EGFP. The central panels represent the split confocal channels shown merged in left 
panels. Right panels depict pseudo-colored cell-localization maps, used for quantitative image analyses, generated with Cell Pro-
filer showing the automatically identified EGFP+ and total cells. Scale bars: 20 μm. Each image shown is representative of 5 ani-
mals independently injected. C, Schematic diagram depicting the subdivisions of the GCL used for quantitative image analyses, 
reproduced from [24], with permission from the authors. Distribution of EGFP+ cells within the GCL 1 (D) or 5 (E) weeks 
after the stereotaxic injection, normalized to the total number of EGFP+ cells. Each portion of the pie diagrams represents the 
mean percentage of EGFP+ within internal subdivisions shown in C, indicating the distribution across the GCL, color-coded 
according to (C).
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2%, 5 and 1 weeks respectively, n = 5 animals each; Fig.
2D and 2E).

Spatial distribution of EGFP+ cells in the GCL after 
CaMKII-EGFP injection
In order to asses the possibility that the distribution of
EGFP+ cells in the GCL after lentivirus transduction may
depend on the promoter used to control EGFP expression,
we used two other previously described lentiviral vectors
where EGFP expression is controlled by neuron-specific
promoters, the Synapsin I (denoted here Syn-EGFP) and
the CamKII (denoted here CaMKII-EGFP) promoters.
These vectors promote different levels of EGFP expression
in mature post-mitotic cortical neurons, presumably due
promoter's specificity for different neuronal developmen-
tal stages [10]. All lentiviral constructs were produced
with the same packaging system and pseudotyped with
VSV-G protein to avoid possible differences in cell-type
targeting due to the use of different pseudotyping proteins
[25]. When the spatial distribution of EGFP+ cells was
assessed one week after CaMKII-EGFP injection, we
observed that this distribution was significantly different
from that observed one week after CMV-EGFP injection
(Fig. 3). Injection of CaMKII-EGFP resulted in a signifi-
cantly smaller percentage of EGFP+ cells present in the
SGZ (12 ± 2 vs. 57 ± 1%, CaMKII-EGFP and CMV-EGFP
respectively, p < 0.05 Student t test, n = 5 animals each)
and a concomitant larger percentage present in GCL1 (45
± 4%, n = 5 animals) and GCL2 (36 ± 3%, n = 5 animals).
Nevertheless, GCL3 was still the layer with fewer cells,
with only 7 ± 2% of the EGFP+ cells present in this partic-
ular layer (Fig. 3A–B).

These results suggested that, although the promoter used
to control EGFP expression is relevant to obtain cell type
specific (neuronal) expression, the outer neuronal layer of
the GCL (GCL3) is not easily transduced by (VSV-G pseu-
dotyped) lentiviral vectors.

To test this hypothesis, we utilized a lentiviral vector
where the expression of EGFP was controlled by the Syn-
apsin promoter (Syn-EGFP). This promoter has been
shown to drive EGFP expression in earlier, presumably
more immature, stages during neuronal development
[10]. EGFP expression controlled by the Synapsin I pro-
moter led to a pattern of distribution of EGFP+ cells in the
GCL very similar to that obtained with CMV-EGFP, con-
firming that the promoter controlling EGFP is of relevance
for the spatial distribution of EGFP+ cells in the GCL
(Table 1). Nevertheless, a very small percentage of the
EGFP+ was found to be in the GCL3, as observed with the
other lentiviral vectors used in this study (Table 1).

Spatial distribution of EGFP+ cells in the CA1 after CMV-
EGFP injection
These observations prompted us to speculate that the
CMV promoter may not be highly expressed in mature
neurons. To test this hypothesis we delivered CMV-EGFP
to the CA1 region of the adult mouse hippocampus. One
week after virus injection, we observed a strong expression
of EGFP+ in the CA1 field. Typically, EGFP+ cells pre-
sented their somata in the CA1 region and extended long
dendrites into the Stratum radiatum (SR), phenotypically
resembling CA1 pyramidal cells (Fig. 4A). These results
confirmed that the CMV is capable of driving EGFP
expression in mature post-mitotic neurons, as previously
shown by others [26].

In analogy to the procedure applied for the GCL, we arbi-
trarily subdivided the CA1 layer in three identical width
regions (CA1-1, CA1-2 and CA1-3) and accounted the dis-
tribution of EGFP+ cells in them. EGFP+ cells were homo-
geneously distributed across the CA1 layer of pyramidal
neurons (Fig. 4B), indicating that the irregular distribu-
tion of EGFP+ cells observed in the GCL of the DG reflects
an inherent difference among granule cells in their per-
missiveness for lentivirus transduction.

To challenge this hypothesis we directed the stereotaxic
injection to the SR of the hippocampus (Fig. 5), arguing
that by doing so granule cells present in the outer layers
(GCL3) will be directly exposed to the lentivirus, bypass-
ing any possible physical barrier that may obstruct the free
diffusion of the lentiviral suspension through the GCL
when injected into the hilus. If the CMV-EGFP lentivirus
would be able to transduce granule cells present in the
outer shell of the DG, we should observe EGFP+ cells in
the GCL3. Interestingly, we observed strong EGFP expres-
sion in cells present in the Molecular Layer (ML) and CA1
and even some EGFP+ positive cells in the GCL2 but none
in the GCL3 (Fig. 5A). Increased EGFP expression from
higher lentiviral vector delivery titers did not result in a
substantially increased proportion of EGFP+ cells located
in the GCL, while the total numbers of EGFP+ cells were
drastically increased (Fig. 5B). These observations
strengthened our conclusion that cells present in the
GCL3 have inherent properties that make them less per-
missive to lentivirus-delivered transgene expression.

Transduction pattern of the CMV-EGFP lentivirus vector in 
the DG
In order to verify our hypothesis that the lack of transduc-
tion of GCL3 neurons is a consequence of inherent cellu-
lar properties and not of technical limitations of our
delivery strategy we performed a series of experiments,
presented collectively in Fig. 6.
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Correlational studies have demonstrated a large degree of
discrepancy among transcript (mRNA) and protein
expression levels in the mouse hippocampus [27]. Previ-
ous studies have used in situ hybridization to detect with
high sensitivity the expression of lentivirus-delivered
transgenes in the DG [12]. Therefore, we decided to use
this technique to assess EGFP expression levels in the DG
upon CMV-EGFP lentivirus delivery. As shown in Fig. 6A,

in agreement with our previous observations on protein
expression using EGFP native fluorescence, one week after
injection the EGFP in situ hybridization signal was mostly
restricted to the hilus and the SGZ, demonstrating that the
lack of EGP expression in the outer layers of the GCL is not
a consequence of possible post-transcriptional regulation
but more likely of lack of transgene expression.

EGFP+ cell location after injection with CamKII-EGFP in the DGFigure 3
EGFP+ cell location after injection with CamKII-EGFP in the DG. A: Distribution of EGFP+ cells in the GCL, 1 week 
after stereotaxic injection with CamKII-EGFP. Right panels represent the boxed area in the left panel of the figure. Scale bars: 
left panel 100 μm; right panels 20 μm. Each image shown is representative of 5 animals independently injected. B: Distribution 
of EGFP+ cells within the GCL 1 week after the stereotaxic injection, normalized to the total number of EGFP+ cells. Each 
portion of the pie diagram represents the mean percentage of EGFP+ within internal subdivisions of the GCL, color-coded 
according to (2C).
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To substantiate this conclusion we should be able to show
that there are no major physical obstacles to reach the DG
by stereotaxic injection into the SR. To achieve this goal
we used a fluorescently labeled transferrin-derived pep-
tide (T12-Cy5, Prosensa BV, Leiden, The Netherlands)
delivered by stereotaxic injection into the SR (1 μl; 30
μM). Transferrin-derived peptides have been shown to
increase delivery efficiency of molecular cargos to neuro-
nal cells in vivo [28,29]. Following this approach, 48 h

after injection we observed fluorescence distributed across
the SR and ML fields, reaching the CA1 and DG (Fig. 6B).
A closer observation of the DG clearly displayed a fluores-
cence pattern with maximal intensity in the ML and grad-
ually diffusing into the GCL, labeling Neuron-Specific
Nuclear Protein (NeuN)+ cells present in all sub-layers of
both blades of the GCL (Fig. 6C). These results demon-
strated that our stereotaxic injections to the SR can posi-
tively transduce neurons of the GCL, including those
located on the GCL3 and therefore that no physical (ana-
tomical) obstacles may preclude lentivirus transduction
of granule cells.

Although these findings support the conclusion that our
lentiviral system is not able to induce transgene expres-
sion in GCL3 neurons, we tested once more this hypothe-
sis in organotypic hippocampal slice cultures. Using this
model, hippocampal cells are directly exposed to the
virus-containing solution, avoiding the need of stereo-
taxic injection [19]. During the first postnatal weeks neu-
rons of embryonic origin are already present in the
immature GCL, while progenitor cells that will eventually
complete the neuronal layer are still present in the hilus

Table 1: Distribution of EGFP+ cells in the DG of animals 
transduced with three different lentivirus-based vectors.

CMV-EGFP Syn-EGFP CaMKII-EGFP

SGZ 57 ± 1% 45 ± 1% 12 ± 3%
GCL1 32 ± 2% 41 ± 1% 45 ± 4%
GCL2 9 ± 1% 12 ± 2% 36 ± 2%
GCL3 2 ± 1% 2 ± 1% 7 ± 2%*

Distribution of EGFP+ cells, expressed as percentage of total EGFP+ 
cells, with their soma within different domains of the DG (as defined 
in materials and methods) at 1 week post infection. Values represent 
mean + SEM (n = 5 animals; *: significantly different vs. CMV-EGFP; p 
< 0.05, Student t test).

EGFP+ cell location in CA1 after injection with CMV-EGFP in the SRFigure 4
EGFP+ cell location in CA1 after injection with CMV-EGFP in the SR. A: Distribution of EGFP+ cells in CA1, 1 week 
after stereotaxic injection of CMV-EGFP to the SR. Right panels represent the boxed area in the left panel of the figure. Scale 
bars: left panel 100 μm; right panels 20 μm. Each image shown is representative of 5 animals independently injected. B: Distri-
bution of EGFP+ cells within the CA1, 1 week after the stereotaxic injection, normalized to the total number of EGFP+ cells. 
Each portion of the pie diagram represents the mean percentage of EGFP+ within each internal subdivision of the CA1. SR: 
Stratum Radiatum; CA1: Cornu Ammonis 1; ML: Molecular layer; DG: Dentate Gyrus.
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Lentivirus-mediated EGFP delivery to the SRFigure 5
Lentivirus-mediated EGFP delivery to the SR. Lentivirus-mediated delivery by stereotaxic injections to the SR of the 
hippocampus does not result in substantial EGFP expression in the GCL, despite low (A) or high (B) EGFP expression, 1 week 
after injection. Right panels represent the boxed area in the left panels of the figure. Arrows (A) and arrowheads (B) indicate 
EGFP+ cells in the GCL. Scale bars: left panels 100 μm; right panels 20 μm. Each image shown is representative of 5 animals 
independently injected. SR: Stratum Radiatum; CA1: Cornu Ammonis 1; ML: Molecular layer; DG: Dentate Gyrus.



BMC Neuroscience 2009, 10:2 http://www.biomedcentral.com/1471-2202/10/2

Page 9 of 19
(page number not for citation purposes)

Transduction pattern of the CMV-EGFP lentivirus vector in the DG after delivery to the SRFigure 6
Transduction pattern of the CMV-EGFP lentivirus vector in the DG after delivery to the SR. A: In situ hybridiza-
tion for EGFP mRNA in the GCL, 1 week after stereotaxic injection of CMV-EGFP to the SR. Inset: higher magnification view 
of the boxed area. Arrowheads indicate positive EGFP expression in the hilus and SGZ. B: Stereotaxic injection to the SR of a 
fluorescently labeled transferrin-derived peptide (T12-Cy5, pseudocolored green). NeuN+ cells are shown in red. Inset: higher 
magnification view of the boxed area. Arrowheads indicate NeuN+ cells in the outer GCL positively transduced with the fluo-
rescent peptide (yellow). Animals were sacrificed 48 h after the injection. C: Higher magnification confocal image showing colo-
calization (yellow) of T12-Cy5 (red) and NeuN (green) in cells located across the suprapyramydal blade (top) hilus and 
infrapyramidal blade (bottom) of the DG. The orthogonal projection on the y-z axis shows a gradient of peptide expression 
from the ML to the H with highest expression in cells located in the outer GCL. D: CMV-EGFP transduction pattern in DIV-5 
organotypic hippocampal slice cultures. Inset: higher magnification of the boxed area. The split panels at the bottom show the 
corresponding EGFP and NeuN signals from the same area. Note the almost complete lack of colocalization. Each image 
shown is representative of 5 animals independently injected. Scale bars: A, B and D: 100 μm; C: 10 μm. CA1: Cornu Ammonis 1, 
SR: Stratum Radiatum; ML: Molecular layer; GCL: Granule Cell Layer;H:Hilus; SGZ: Subgranular Zone.
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[30]. Four days after transduction with CMV-EGFP lentivi-
rus the vast majority of the EGFP+ cells were negative for
NeuN (Fig. 6D), therefore substantiating our conclusions.
This is in agreement with previously reported observa-
tions, where we demonstrated that the CMV-EGFP lentivi-
rus transduces nestin/GFAP+ neuronal progenitor cells in
early postnatal hippocampal slices [19]. Moreover, others
have shown that although transgene expression increases
slowly with time after transduction of hippocampal slices
with VSV-G pseudotyped lentivirus, it may remain
restricted to CA1 and CA3 pyramidal cells [31].

Since we have used EGFP native fluorescence to directly
detect transgene expression, one possible technical limita-
tion in observing positive cells could have been a presum-
able low sensitivity of native EGFP fluorescence detection.
Indeed, in the reference protocol for transgene delivery to
granule cells the use of EGFP immunohistochemistry and
subsequent indirect fluorescence detection is recom-
mended [7]. Therefore, we followed this approach to
account for possible low detectability of EGFP-expressing
cells. As shown in Fig. 7A, immunohistochemistry
increased the detection of EGFP, as expected. Importantly,
this increase was most evident in the dendritic arboriza-
tions and axonal extensions of the labeled cells. To
account for this observation we used an Alexa 594-
labelled secondary antibody to discriminate in between
EGFP native fluorescence detected with an excitation
wavelength of 488 nm and the immunohistochemistry
signal detected with an excitation wavelength of 594 nm
(Fig. 7A). This approach showed a partial colocalization
of the two signals, with highest colocalization detected in
cell somata, and only partial colocalization in dendrites
and axons (Fig. 7A, boxed area and 7B). This phenome-
non has been previously described and explained by par-
tial antibody penetration under experimental conditions
similar to ours [32]. Therefore, in successive experiments
we utilized a combination of native fluorescence and
immunohistochemistry signal by using an Alexa 488-
labelled secondary antibody. Following this approach, 5
weeks after injection the morphology of EGFP expressing
cells transduced by the CMV-EGFP lentivirus was exposed
with great detail. As recently described with other retrovi-
ruses [32,33], we were able to observe the axonal projec-
tions of EGFP labeled granule cells into the hilus and the
stratum lucidum of the CA3 (Fig. 7C–F). However, the
distribution of EGFP+ cell somata within the GCL
remained very similar to that observed using native fluo-
rescence only, with almost no EGFP+ cells observed in the
GCL3 (Fig. 7G). Altogether these experiments further sub-
stantiate our conclusion that cells within the GCL3 are
less permissive to lentivirus-delivered transgene expres-
sion.

Identity of EGFP+ cells in the GCL after CMV-EGFP 
injection
To characterize the cell type(s) transduced by the CMV-
EGFP lentivirus more accurately, we performed a series of
immunohistochemical co-stainings for neuronal progeni-
tor (nestin), glial (GFAP), immature neuron (DCX), pro-
liferating (Ki67) and mature neuron (NeuN) cell markers
[20] (Fig. 8). EGFP+ cells present in the GCL were ana-
lyzed for co-expression of these markers one week after
lentivirus injection (Fig. 8A–E). Quantitative analyses of
these samples demonstrated that the majority of the
EGFP+ cells were DCX+, with phenotypes ranging from
putative dividing neuronal progenitors to early post-
mitotic immature neurons (Fig. 8). Nestin+, GFAP+ and
NeuN+ cells accounted each for approximately one third
of the EGFP+ cells, while Ki67 was coexpressed in a small
proportion of the cells (Fig. 8F). NeuN+ cells were further
analyzed for neuronal features such as the presence of
dendritic spines (Fig. 9). We found that 11 ± 4% of the
EGFP+ neurons present in the GCL had simple dendritic
arbors with dendritic spines (Fig. 9B–D), phenotypicaly
resembling immature, most probably adult generated
neurons [8,24]. Quantitative analysis of spine density
from EGFP+ neurons showed that these cells have relative
low protrusion densities (Fig. 9E; 7 ± 2 protrusion/10 μm,
n = 5 neurons, 420 protrusions counted) and present
morphological features compatible with immature neu-
rons [34]. Thee-dimensional reconstructions of EGFP+
cells revealed that these cells had narrow, low-complexity
dendritic arbors, normally with one primary dendrite and
relatively short secondary dendrites projecting into the
ML (Fig. 9F; mean maximal distance from soma 203 ± 20
μm, n = 25 neurons), characteristics all compatible with
being immature neurons [22,24].

Discussion
In the present study we have used lentiviral vectors
expressing EGFP from three different promoters in the
mouse hippocampus and have identified sub-field spe-
cific differences in transgene expression in various cell
types of the GCL of the DG. Furthermore, we have charac-
terized the cell types transduced by these lentiviral vectors,
concluding that they target primarily NPC and immature
neurons present in the SGZ and more immature layers of
the GCL. Our observations suggest the existence of intrin-
sic differences in the permissiveness to lentivirus trans-
duction among populations of granule cells of the GCL. In
particular, we show for the first time that mature neurons
of the outer granule cell layer do not express lentivirus-
delivered transgenes, despite successful expression in
other hippocampal cell types. Therefore, only adult-gener-
ated neurons may be target for lentivirus-mediated trans-
gene delivery within the GCL.
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Transduction pattern of the CMV-EGFP lentivirus in DG and CA3 by EGFP immunohistochemistryFigure 7
Transduction pattern of the CMV-EGFP lentivirus in DG and CA3 by EGFP immunohistochemistry. A: Confocal 
microscope image and orthogonal projections onto the x-z (bottom) and y-z (right) planes showing co-localization (yellow) of 
the native EGFP fluorescence (green) and EGFP immunohistochemistry signal (red) in GC somata, one week after injection. B: 
Higher magnification of the boxed area depicted in A showing partial co-localization in dendrites of GC (top). The split panels 
corresponding to the EGFP native fluorescence signal (488 nm, center) and the EGFP immunohistochemistry signal (594 nm, 
bottom) are shown. C and D: Composite of 5 confocal z-projected stacks combining EGFP's native fluorescence and immuno-
histochemistry signal 5 weeks after injection, showing EGFP positive cells with their somata in the GCL (E) and projecting 
axons into the hilus (F) and the Stratum Lucidum of the CA3 field (G), were the synaptic boutons of these axons are evident (F 
and inset in G). Each image shown is representative of 5 animals independently injected. Scale bars: A: 40 μm; B: 25 μm; C: 200 
μm; E; F and G: 10 μm. GCL: Granule Cell Layer, H:Hilus. CA3: Cornu Ammonis 3.
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The DG of the mammalian hippocampus is progressively
constructed through a complex developmental program.
Embryology studies have demonstrated that the GCL can
be divided into an outer shell and an inner core, origi-
nated from separate embryonic progenitor pools. These
progenitors generate first the outer shell followed by the
development of the inner core by later-born granule cells
[35]. Therefore, the outer shell of the GCL is partially
assembled during embryogenesis and the majority of den-
tate granule cells, located in the inner shell are generated
after birth [36-38]. These and other observations have
generated the hypothesis that, in contrast to the neocor-
tex, the DG is built up following a life-long outside-in
arrangement, where new cells are incorporated in the GCL
following a downward gradient of positional cues [8].

In rodents, proliferative cells become largely confined to
the SGZ at the base of the GCL after postnatal day 30 [37].
Therefore, during the juvenile and adult periods the SGZ
is the source of newly produced granule cells [20].

Several groups have shown heterogeneous functional
properties of granule cells in the adult hippocampus. In
particular, new neurons generated by adult neurogenesis
display increased synaptic plasticity and increased excita-
bility suggesting that maturation of the neuronal pheno-
type includes changes in membrane excitability and
morphology, as well as the establishment of appropriate
connectivity [24,39,40]. Interestingly, it has been pro-
posed that functional and morphological differences
among granule cells are a function of their location within
the GCL rather than of their relative age [23,41].

Herein we report that the three different lentivirus systems
tested in this study, transduced mainly cells located in the
SGZ and inner layers of the GCL. Cells expressing the
reporter transgene EGFP one week after viral injection
were mainly immature neurons expressing DCX. These
observations resemble the EGFP expression profile
achieved using MMLV-derived vectors that transduce only
proliferating cells [24]. Therefore, the initial cell popula-
tion hit by the lentivirus was most probably a subpopula-

Identification and quantification of different cell types targeted by injection of CMV-EGFP in the DGFigure 8
Identification and quantification of different cell types targeted by injection of CMV-EGFP in the DG. Examples 
of EGFP co-localization with different markers of neuronal differentiation within the GCL. The orthogonal projections onto the 
x-z (bottom) and y-z (right) planes of cells indicated by hairlines are shown to confirm double labeling throughout the extent of 
EGFP+ cells co-expressing DCX and NeuN (A); Ki67 (B); GFAP (C); NeuN (D) or Nestin and NeuN (E). Each image shown is 
representative of 5 animals independently injected. Scale bars: 20 μm. F: Percentual distribution of EGFP+ cells expressing dif-
ferentiation markers within the GCL, 1 week after the stereotaxic injection normalized to the total number of EGFP+ cells.
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Morphological analyses and three-dimensional reconstructions of EGFP+/NeuN+ cells in the GCLFigure 9
Morphological analyses and three-dimensional reconstructions of EGFP+/NeuN+ cells in the GCL. Representa-
tive examples of EGFP+ neurons located in the GCL 1 week after the stereotaxic injection of CMV-EGFP. (A) Confocal image 
showing EGFP+ cells in the DG. The orthogonal projections onto the x-z (bottom) and y-z (right) planes are shown to confirm 
EGFP expression throughout the extent of the cells indicated with hairlines. (B) Z-axis projection of EGFP+ neurons from the 
area depicted in A, showing their morphological features. C and D: higher magnification of the areas boxed in B. E: three-
dimensional reconstruction of the dendritic segment depicted in C, shown as example of those used for dendritic protrusion 
analyses. F: Three-dimensional reconstructions of two example EGFP+ GCL neurons, showing their dentritic arborization and 
length. Cell somata are shown in cyan and dendrites in red. Similar neurons were used for quantitative analyses. Scale bars: A: 
50 μm; B, C, D, E: 10 μm; F: 100 μm. (Full-resolution animated 3D-reconstructions are available at http://bio-imaging.liacs.nl/
index.html).

http://bio-imaging.liacs.nl/index.html
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tion of NPC that evolved into the neuronal lineage as
judged by the predominance of DCX+ cells one week after
transduction, similar to reports using MMLV-vectors
[22,24]. Moreover, retro- and lenti-viral vectors have been
shown to target similar, although not completely overlap-
ping, populations in the hippocampus [8]. Therefore, the
use of adeno-associated virus-derived vectors may be
more adequate to target mature neurons of embryonic ori-
gin in the adult dentate gyrus [42].

An indubitable characterization of the cell type originally
transduced by the lentiviral vector may request the use of
cell type specific promoters restricted to NPCs [43]. How-
ever, in the adult dentate gyrus, DCX is only expressed in
cells contributing to adult neurogenesis and therefore can
be used as a bona fide marker of newborn adult-generated
neurons [44,45].

Our observations are in agreement with the described
ability of lentiviral vectors to transduce adult NPC in vivo
[46]. The presence of subpopulations of EGFP+ cells
expressing the NPC marker nestin and Ki67, a cell prolif-
eration marker expressed during the active phases of the
cell cycle [47] emphasize our conclusions.

Moreover, the reduced numbers of EGFP+/NeuN+ cells
found, their morphology and their location in the inner
layers of the GCL, indicate that these EGFP+/NeuN+ cells
have most probably originated from a population of
immature cells originally hit by the virus.

Crucial to sustain these conclusions are our experiments
in which we delivered the lentiviral vector to the SR, situ-
ated between the CA1 and the outer shell of the GCL. If
the pattern of EGFP expression restricted to the inner lay-
ers of the GCL would have been a mere mechanical effect
of the steric hindrance generated by the tightly packed
structure of the GCL [48], the lentiviral vector should have
been able to transduce cells in the outer layers of the GCL,
when delivered to the SR. Conversely, we observed strong
EGFP expression in cells within the ML and CA1, demon-
strating adequate diffusion of the lentivirus across differ-
ent cellular structures. Moreover, EGFP+ cells were
homogenously distributed within the CA1 layer, with pro-
fuse EGFP expression in the soma, axons and dendrites of
cells phenotypicaly resembling mature pyramidal neu-
rons. Our experiments using a peptide-cy5 conjugate,
depicted in Fig. 6, showed that this construct delivered
into the SR, could effectively transduce the neurons
located in the outer layers of the suprapyramidal blade of
the GCL and beyond into the hilus and the infrapyramidal
blade. These experiments demonstrated that stereotaxic
injection to the SR permits effective delivery to the GCL.

Our data from the CA1 cells demonstrated as well that the
CMV promoter is indeed able to promote transgene

expression in mature postmitotic neurons, as previously
described [26]. These observations made us to conclude
that, although the use of different (cell-type specific) pro-
moters is useful to promote different patterns of transgene
expression in the GCL, cells present in the outer shell of
the GCL only scarcely express transgenes delivered by len-
tiviral vectors. Interestingly, the Synapsin I promoter ren-
dered an EGFP expression profile more similar to that of
the CMV promoter than to that of the CaMKII promoter,
in accordance to its expression in earlier neuronal devel-
opmental stages [10]. Therefore, although further experi-
ments to investigate transgene expression mediated by
different promoters at later times post-injection seems
important to address the relevance of differential pro-
moter use, it escapes the objective of the present study.

One potential drawback of the use of the CMV promoter
may be its potential activation in astrocytes short time
after injury, described in the cerebral cortex and caudate-
putamen [49]. Nevertheless, this activation could be
dependent on virus titers and other factors such as the par-
ticular CMV sequence used and the time after the injection
[50]. For the interpretation of the data presented herein it
is worth to take into account that sections surrounding the
injection site were routinely discarded.

Specific transgene silencing after lentiviral vector-medi-
ated delivery has been described before [51]. Although we
can not exclude from this set of experiments the possibil-
ity that transgene expression driven by the three promot-
ers used in this study were selectively silenced in mature
neurons present in the outer layers of the GCL, the fact
that the CMV promoter was able to promote expression in
cells of the CA1 makes this possibility unlikely.

Overall, our observations are in agreement with previous
reports showing that lentiviral vectors can successfully
transduce mitotic and postmitotic cells [26,46,52]. How-
ever, the exact nature of the cell types and hippocampal
sub-fields targeted by lentiviral vectors remains controver-
sial. Previous reports did not find sub-field specific differ-
ences in GFP expression. This could be due to technical
differences such as the use of different GFP variants and
constructs, analysis of the samples at different time points
after stereotaxic injection or differences in the CMV pro-
moter sequence used to control transgene expression
[6,12]. Nevertheless, the disparity in EGFP expression
reported herein between cells located in the inner or outer
layers of the GCL seems to be a function of intrinsic differ-
ences between cells generated by embryonic or adult neu-
rogenesis. In this context, disparities in transgene
expression in granule cells, depending on their relative
location within the GCL and their progression into the
neuronal differentiation program, emphasize the hetero-
geneity between newly adult-generated neurons and pre-
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existing ones, probably originated during embryonic and/
or early postnatal development.

Although further experiments will be required to clarify
the exact nature of this heterogeneity among granule cells
of the DG, regarding their permissiveness to lentivirus-
delivered transgene expression, one possible explanation
could be the differential expression of receptor proteins
that recognize pseudotyping proteins by subpopulations
of granule cells. However, VSV-G pseudotyped viruses
have been shown to effectively transduce cells within the
GCL of the DG [6,12]. This suggests that, although pseu-
dotyping proteins can influence transduction efficiency
and tropism to hippocampal cell types [11,25], the recep-
tors for VSV-G glycoprotein are present in granule cells of
the DG. Moreover, transgene expression from VSV-G
pseudotyped lentivirus is pantropic in the rat brain, label-
ling a variety of glial and neuronal cell types depending
on the promoter used to control transgene expression
[52].

Interestingly, even though cell mitosis is not a requisite for
integration, transduction efficiency of lentiviral vectors is
dependent on cell-cycle progression of target cells, with
cells actively growing or arrested in phases other than G0
being more efficiently transduced in vivo [26,53-55]. As
demonstrated here, lentivirus transduced EGFP+ cells are
in their vast majority positive for progenitor (nestin),
astrocyte (GFAP), proliferation (Ki67) and immature neu-
ron (DCX) cell markers. Furthermore, Schmetsdorf et al
[56] have demonstrated that cells from distinct hippoc-
ampal fields, including CA1, CA3 and DG, express com-
pletely different repertoires of cell cycle-related proteins.
Therefore, although a more thorough elucidation of the
factors regulating lentivirus transduction of postmitotic
granule cells is beyond the scope of this article, our obser-
vations demonstrating lentivirus-mediated transgene
expression in NPC and immature neurons suggest that
cell-cycle progression is an important determinant in len-
tivirus transduction efficiency of hippocampal granule
cells in vivo.

Conclusion
Herein, we report on sub-field specific differences in per-
missiveness to lentivirus-delivered transgene expression
in the mouse hippocampus. Most interestingly, we
observed transgene expression preferentially in NPC and
immature neurons present in the SGZ and inner layers of
the GCL, where adult neurogenesis takes place and differ-
ent subpopulations of granule cells exist. Based on our
results, we conclude that this disparity in transgene
expression observed between cells located in the inner or
outer layers of the GCL seems to be a function of intrinsic
differences between cells generated by embryonic or adult
neurogenesis and therefore favour the hypothesis that

cell-cycle progression of target cells is an important deter-
minant of lentivirus transduction efficiency. These differ-
ences could be exploited in utilizing lentivirus for
transgene delivery to NPC and immature neurons of the
mouse hippocampus in vivo.

Methods
Experimental setup
We investigated expression of EGFP and cell-type specific
markers in hippocampal cells after transduction with
AGLV [57]. In these vectors, EGFP expression was under
the control of three different Polymerase II promoters, as
described in the Results section [10,19]. Hereto, animals
were divided into experimental groups of 5 animals each
and intra-hippocampally injected into the DG or SR with
one of the three types of lentivirus. One or five weeks after
injection, brain tissue was processed for immunohisto-
chemistry.

Cloning and Lentiviral vector production
Replication incompetent and self-inactivating Advanced
Generation lentiviral vectors were produced and titrated
as previously described [19]. All lentivirus batches used
for experiments had comparable titers ranging from 1 ×
108 to 1 × 109 transducing U/ml. Virus suspensions were
stored at -80°C until use and were briefly centrifuged and
kept on ice immediately before injection.

Animals
Male C57Bl/6J mice (seven weeks old at injection, Janvier
Biosciences, France) were housed 5/cage for one week
before surgery as acclimatization. Thereafter, mice were
single housed in filtertop cages, in a temperature and
humidity controlled room with 12:12 dark-light cycle
(light on at 08:00 A.M.). Mice had free access to food pel-
lets and water. All efforts were made to minimize animal
suffering and the number of animals used. All experi-
ments were approved by the committee of Animal Health
and Care, Leiden University and The Netherlands Com-
mission for the Use of Genetically Modified Organisms
and performed in compliance with the European Union
recommendations for the care and use of laboratory ani-
mals.

Stereotaxic surgery
Stereotaxic injections were performed essentially follow-
ing previously described methods [7]. Animals were
deeply anaesthetized by a mixture of Hypnorm (0.5 mg/
kg/ml) and Dormicum (5 mg/kg/ml) and Milli-Q purified
water (Millipore, Amsterdam, The Netherlands) at vol-
ume ratio of 1:1:2 (10 ul/g). Bilateral injections of lentivi-
ral vectors into the Dentate Gyrus (AP: -2.00 mm, ML: +/-
1.50 mm, DV: -1.90 mm, relative to Bregma) or the Stra-
tum Radiatum (AP: -2.00 mm, ML: +/-1.50 mm, DV: -1.50
mm, relative to Bregma), were conducted using a small
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animal stereotact (900 series, David Kopf Instruments,
Tujunga, CA) and an injection pump (Harvard Apparatus,
Holliston, MA) with injection volume = 1 μl, rate = 0.4 μl/
min, connected to a Hamilton needle (5 μl, 30 gauche),
and customized borosilicate glass micro-capillar tips of
approximately 100 μm. After surgery animals were placed
under a heating lamp until awakening and further moni-
tored and weighted daily.

Immunohistochemistry
One or five weeks after injection, animals were sacrificed
and brains were fixed by transcardial perfusion. Before the
procedure the animals were deeply anaesthetized by IP
injection of sodium pentobarbital (Nembutal 60 mg/ml,
0.1 ml). Animals were transcardialy perfused with 0.1 M
PBS for 10 minutes. Brains were removed and kept in 25
ml 4% PFA for one hour. Then, they were washed in 0.1
M PBS and immersed in 15% and subsequently 30%
sucrose solution for 3–4 days. Brains were blotted dry and
snap-frozen for 10 sec in isopentane on dry ice and stored
at -80°C until sectioning.

Serial coronal 20 μm-thick sections, were obtained using
a cryostat (Leica CM 1900, Leica Microsystems, Rijswijk,
The Netherlands). All brain sections containing the hip-
pocampus were collected and thaw-mounted on Super-
Frost microscope slides and stored at -80°C until further
use.

Immunofluorescent double and triple labelling was per-
formed as described [58]. Primary antibody were from:
Santa Cruz Biotechnology, Inc; Heidelberg, Germany
(Doublecortin (C-18), used 1:200; Ki67 (M-19), used
1:100; GFAP, mouse monoclonal, used 1:1000); Chemi-
con-Millipore International BV, Amsterdam, The Nether-
lands (NeuN (A60), used 1:200), BD Biosciences, Breda,
The Netherlands (Nestin, (556309), used 1:200) or
Molecular Probes/Invitrogen, Breda, The Netherlands
(GFP, chicken polyclonal, used 1:500). After 24 h incuba-
tion at 4°C with continuous stirring, sections were incu-
bated with correspondent Alexa488 or Alexa594-
conjugated secondary antibodies (1:400, Molecular
Probes/Invitrogen) for 2 hrs at RT in 100 μl 1 × PBS/0.3%
TritonX-100. Sections were counterstained with Hoechst
33342 when indicated, as previously described [58]. Sec-
tions were embedded with Aqua-Poly/Mount (Poly-
sciences Europe, Eppelheim, Baden-Württemberg,
Germany). Similar samples were processed in parallel
excluding primary antibodies and used for comparison as
negative controls (not shown).

Organotypic hippocampal slice cultures
Early postnatal rat hippocampal slices were produced an
cultured as previously described [19]. Briefly, slice cul-
tures were prepared from 4- to 6-day-old male Wistar rats
(Charles River Laboratories, Inc., Frankfurt, Germany)

using the modified interface culture method. At the time
of the first medium change (day in vitro (DIV) 1), hippoc-
ampal slices were inoculated with 10 μl of the CMV-EGFP
lentiviral vector stock. Slices were fixed 4 days later with
4% paraformaldehyde for 1 h at 4°C and used for
immunofluorescence studies.

In situ hybridization for EGFP mRNA
Perfused mouse brain sections were used for in situ
hybridization with a 720 basepair long digoxigenin
(DIG)-labeled EGFP riboprobe (antisense to NCBI gene
ID DQ768212). The in situ hybridization was performed
essentially as described by Schaeren-Wiemers and Gerfin-
Moser [59], with small modifications. Briefly, sections
were fixed in 4% paraformaldehyde (PFA) for 5 minutes,
treated for 10 minutes with 10 ug/ml proteinase K and
0.1% Triton-X100 in phosphate buffered saline (PBS, pH
7.4), followed by 10 minutes extra fixation with 4% PFA.
Thereafter, sections were rinsed 3 times in PBS for 3 min-
utes. After acetylation for 10 minutes (0.25% acetic anhy-
dride in 0.1 M triethanolamine), sections were washed 3
times in PBS for 5 minutes and prehybridized for 2 hours
at room temperature in hybridization solution, contain-
ing 50% deionized formamide, 5× SSC, 5× Denhardt's
solution, 250 μg/ml tRNA Baker's yeast and 500 μg/ml
sonicated salmon sperm DNA. 150 μl of hybridization
mixture containing 400 ng/ml DIG-labeled riboprobe was
applied per slide, covered with Nescofilm and hybridized
overnight at 68°C. The next morning slides were quickly
washed in 2× SSC followed by 0.2× SSC for 2 hours, both
at 68°C. DIG was detected with an alkaline phosphatase
labeled antibody (1:5000, Roche, Mannheim) using NBT/
BCIP as a substrate. After DIG in situ hybridization, slides
were counterstained with 0.5% methyl green, quickly
dehydrated in ethanol, cleared in xylene and mounted
using Entellan.

Histological analyses and confocal microscopy
Quantification of EGFP+ cells and quantitative analysis of
different classes of neuronal cells in the hippocampus of
treated animals were performed using the optical fraction-
ator sampling method, as described by Encinas and
Enikolopov [60]. Briefly, every tenth hippocampal section
was collected starting at the DG following the fractionator
scheme, to ensure that each slice is 200 nm apart from the
next slice within each collected set of approximately 11
slices [60]. For quantification of EGFP+ cells, three sets of
slices from at least three independently injected animals
from each experimental group were used. Sections sur-
rounding the injection site were routinely discarded. For
quantitative analysis of neuronal cell-types other three
sets of slices from at least three independently injected
animals from each experimental group were used. Confo-
cal images were acquired using a Nikon C1si Spectral con-
focal microscope, as described [19]. Expression of markers
and cell-localization analyses were done counting more
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than 50 EGFP+ cells per animal. Co-localization was
assessed through the entire z-axis of each cell, using an
optical slice of 0.3–0.6 μm. Morphology was analyzed
from three-dimensional reconstructions of series of
sequential confocal images taken at 0.3–0.6 μm intervals
in EGFP+ cells.

Image analysis
For EGFP+ cell-localization analyses within the DG or
CA1 sub-fields, maximum intensity z-axis projections of
series of sequential confocal images were constructed
using ImageJ, as described [19]. Using these projections,
EGFP+ cells were automatically identified and counted
using Cell Profiler http://www.cellprofiler.org[61]. This
procedure was validated by comparison to manual count-
ing performed by an experienced operator using the opti-
cal fractionator method sampling scheme and unbiased
stereology estimation of cell numbers as described by
West and co-workers [62]. The "pipeline" used to auto-
mate cell counting was composed of the following Cell
Profiler's modules, in the specified order: LoadSingleIm-
age, ColorToGray, CorrectIllumination_Calculate,
CorrectIllumination_Apply, IdentifyPrimAutomatic. By
using this pipeline we routinely found a strong correlation
between the manual unbiased stereology method and the
automated procedure (r = 0.985, Pearson's correlation test
performed with GraphPad Prism 4, GraphPad Software,
Inc., La Jolla, CA). EGFP+ cells were individually pseudo-
colored to facilitated visualization and cell-localization
maps were generated using Cell Profiler. Subsequently,
based on a previously described manual method to study
granule cell location within the GCL [63] the GCL was
subdivided in four 2-cell-body-wide sub-layers using
ImageJ http://rsb.info.nih.gov/ij/ to generate a superim-
posed grid, guided by Hoechst 33342 staining of cell
nucleus. These sub-layers were denominated: subgranular
zone (SGZ) and granule cell layer (GCL) 1 to 3, as
described by others [8,23,24]. Then, the pseudo-colored
cell-localization maps generated with Cell Profiler were
used to manually assign and count individual EGFP+ cells
to the 4 sub-layers of the GCL of the DG. In all cases,
EGFP+ cells present in the apex of the DG were excluded
from the analyses. A similar procedure was used in exper-
iments comprising EGFP+ cells in CA1.

For quantification of different cell-type markers in EGFP+
cells, total EGFP+ cells were automatically identified and
counted using Cell Profiler from z-projected confocal
images. From the same images, cells positive for each indi-
vidual co-stained marker were also automatically identi-
fied and counted with Cell Profiler using the
corresponding confocal channel. Cells positive for each
marker analyzed were expressed as percentage of total
EGFP+ cells. All image analyses procedures were per-
formed in hippocampal slices from at least three inde-

pendently injected animals as described above. In all
cases, image analyses were performed by an operator
blind to treatment.

Dendrite tracing and three-dimensional reconstructions
Three-dimensional reconstructions of dendritic arbors
and spine density analysis were performed using TDR3D
software package http://bio-imaging.liacs.nl/
tdr3dbase.html, using a simulated fluorescence process-
based algorithm [64,65]. Briefly, three-dimensional
reconstructions for morphological analyses were gener-
ated from series of confocal images of EGFP+ neurons
taken at 0.3–0.6 μm intervals from at least three inde-
pendently injected animals. All cells used for morpholog-
ical analyses were positive for the neuronal marker NeuN
(not shown). Quantification of dendritic protrusions and
dendritic lenght was done with ImageJ (NeuronJ plugin).
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