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ABSTRACT: DNA-encoded library (DEL) is a powerful ligand
discovery technology that has been widely adopted in the
pharmaceutical industry. DEL selections are typically performed
with a purified protein target immobilized on a matrix or in
solution phase. Recently, DELs have also been used to interrogate
the targets in the complex biological environment, such as
membrane proteins on live cells. However, due to the complex
landscape of the cell surface, the selection inevitably involves
significant nonspecific interactions, and the selection data are
much noisier than the ones with purified proteins, making reliable
hit identification highly challenging. Researchers have developed
several approaches to denoise DEL datasets, but it remains unclear whether they are suitable for cell-based DEL selections. Here, we
report the proof-of-principle of a new machine-learning (ML)-based approach to process cell-based DEL selection datasets by using
a Maximum A Posteriori (MAP) estimation loss function, a probabilistic framework that can account for and quantify uncertainties
of noisy data. We applied the approach to a DEL selection dataset, where a library of 7,721,415 compounds was selected against a
purified carbonic anhydrase 2 (CA-2) and a cell line expressing the membrane protein carbonic anhydrase 12 (CA-12). The
extended-connectivity fingerprint (ECFP)-based regression model using the MAP loss function was able to identify true binders and
also reliable structure−activity relationship (SAR) from the noisy cell-based selection datasets. In addition, the regularized
enrichment metric (known as MAP enrichment) could also be calculated directly without involving the specific machine-learning
model, effectively suppressing low-confidence outliers and enhancing the signal-to-noise ratio. Future applications of this method will
focus on de novo ligand discovery from cell-based DEL selections.

■ INTRODUCTION
DNA-encoded libraries (DELs) are widely used in drug
discovery for early hit finding, offering the opportunity to
screen an extremely large number of compounds at a miniature
scale with a fraction of the cost of traditional high-throughput
screening (HTS).1−16 Recently, DELs have also gained
momentum in academic research as an efficient tool for
discovering small molecule probes.10,11,17−19 In most cases,
DELs are selected against a purified protein target immobilized
on a matrix. Recently, new methodology developments have
enabled DEL selections in buffer or cell lysates,20−28 in water−
oil emulsion,29,30 on the cell surface,31−34 inside live cells,30,32

against the whole bacteria,35,36 and even in human sera.37

These selection modalities have not only expanded the target
scope of DELs but also enabled novel applications such as
functional and even phenotypic DEL assays.7,10,11

Membrane proteins on the cell surface perform a myriad of
biological functions and are important drug targets. Membrane
proteins account for >60% of the targets of all approved small
molecule drugs.38 DELs have been selected against the soluble
domain of membrane proteins,39−44 and the full-length
membrane proteins stabilized with detergent,45 nanodiscs,46

and mutations.47 Notably, novel allosteric antagonists and

orthosteric agonists have been identified from DEL selections
against the purified full-length G protein-coupled receptors
(GPCRs).45−47 However, since the structure and functions of
membrane proteins heavily rely on the hydrophobic lipid
bilayer of cell membrane and purified proteins may lose
important biological features, such as post-translational
modifications, co-factor binding, and complex formation, it is
highly desirable to conduct DEL selections against membrane
proteins directly on live cells. Previously, the Bradley group
pioneered PNA-encoded library screening against chemokine
receptors and integrin proteins on live cells;48,49 GlaxoSmithK-
line (GSK) selected several DELs against a cell surface GPCR
neurokinin 3 receptor (NK3);31 the Krusemark group
conducted DEL selections against the δ-opioid receptor, also
a GPCR, on live cells;32 and recently, the Neri group
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comprehensively optimized the experimental conditions for
cell-based selections.34 Intracellular DEL selections have also
been reported by the Krusemark group32 and Vipergen.30

However, cell-based DEL selections inevitably incur higher
background noise and lower enrichment of the true hits mainly
for two reasons.34 First, the complex landscape

of the cell surface results in numerous nonspecific
interactions, which may obscure the specific target-ligand
binding; second, the target protein may not have sufficient
abundance, i.e., effective molarity, on the cell to drive the
binding equilibrium toward ligand binding.11 Previously, target
over-expression30−32,34 and DNA tagging33,51 have been used
to address these issues; however, in general, cell-based DEL
selections are very noisy with significantly higher chance of
generating false positives. In fact, selection data analysis for
reliable hit picking is one of the key issues in DEL research,
especially for large DELs where the library quality is
compromised by the truncated and/or side products during
library synthesis.52−57

Recently, many methods have been developed to process
noisy DEL selection data.52−66 A commonly used technique is
aggregation, which is used to reduce the variability from the
relatively small number of sequencing counts.57 Kuai et al.
proposed a framework for data normalization and enrichment
calculation based on the estimation of the Poisson confidence
interval.54 Faver et al. implemented a z-score metric approach
that has enabled the quantitative comparison of compound
enrichment between multiple experiments.60 Gerry et al.
developed a method to compute conservative estimates of
the normalized fold-change scores based on a statistical model
involving Poisson distributions that are appropriate for
counting relatively rare events.61 Recently, artificial intelligence
(AI) using neural networks has demonstrated robust perform-

ance in molecular property prediction.67−70 DEL selection
datasets offer large and highly structured information, which
constitutes a requisite for the implementation of machine
learning (ML). Thus, ML is considered to be a promising
approach for processing DEL datasets.52,53,65,66 Koḿaŕ and
Kalinic ́ have reported the use of ML to empower the
discrimination of the true potential binders from the
background noise (“deldenoiser”).52 McCloskey et al. trained
the classification models on aggregated DEL datasets and used
the models to perform virtual screening on large chemical
libraries.66 Lim and co-workers improved the regression
approach by directly modeling an enrichment metric (the
ratio between the counts from the target selection and an off-
target control selection) using a custom negative-log-likelihood
loss function derived from a Poisson ratio test.65 These
methods have greatly facilitated the data processing for DEL
selections with purified proteins; however, their effectiveness
on the noisier cell-based selection data remains unclear.

In this report, we describe an ML-based approach for
processing cell-based DEL selection datasets.71 As a proof-in-
principle, we synthesized a DEL (CAS-DEL) of 7,721,415
compounds.33,72,73 CAS-DEL is a 3-cycle peptide library
(Figure S1), which was prepared by using the previously
reported method with a 106-nt single-stranded DNA tag
(Table S1).33,72,73 The building block structures and DNA
sequences of CAS-DEL are provided in the Supporting
Information (Tables S2−S6). The library contains a
carboxybenzenesulfonamide (CBS) building block (BB),
which is a known binder of several carbonic anhydrase
isoforms,74 in the 3rd set of building blocks to bias the library
for carbonic anhydrase binding. In addition, the CBS BB will
not cause further truncations since it is incorporated in the last
cycle of the library synthesis.

Scheme 1. (A) Schematic Illustration of DEL Selections against Immobilized Proteins and Membrane Proteins on Live Cells
and (B) Workflow of the Machine-Learning-Based Data Processing for Cell-Based DEL Selection Datasets, Using a Maximum
A Posteriori (MAP) Estimation Loss Functiona

aMolecular fingerprint (ECFP6, 1024-dimensional bit vector) was chosen as the representation of the chemical structures50 and used as the inputs
of the Deep Neural Network (DNN).
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Combining CBS with other structural units is known to
affect the binding affinity to carbonic anhydrase proteins,74,75

which was also observed in many DEL selections.34,39,61,73

Additionally, the selection results of the CBS-containing DELs
have also been used in several studies to develop denoising
methods.52,65,76 Here, for simplicity, CBS is used in the library
as a “positive BB” representing all true binders, while the non-
CBS-containing compounds are considered as negatives. We
have assessed the structural diversity of CAS-DEL (Figures
S2−S4), which showed that CAS-DEL has sufficient diversity
to generate the selection datasets for modeling studies. In
addition, physicochemical property analysis showed that the
CAS-DEL compounds may be suitable for potential drug
development (Figures S5 and S6).

CAS-DEL was selected against three different types of
targets: a purified carbonic anhydrase II (CA-2), A549 cells
with a relatively high expression level of carbonic anhydrase
XII (CA-12), and hypoxic A549 cells overexpressing CA-
12.77,78 The sulfonamide group of CBS binds to the Zn(II)
cation at the active site of carbonic anhydrase isoforms.79

Specifically, CBS binds to CA-2 and CA-12 with similar affinity
(Kd: 760 and 970 nM, respectively).80 CA-2 and CA-12 have
similar structures at their catalytic pockets with a high degree
of conservative residues,79,81−83 and the amino acid residues
that interact with the inhibitor are nearly identical (Figure
S7).84 Certainly, the discrepancy between the two proteins
may complicate SAR study and/or hit ranking. However, this
study considers all CBS-containing compounds as “positives”
and focuses on developing the denoising method to facilitate
the identification of CBS-containing compounds holistically;
thus, we considered that the selection datasets of CA-2 and
CA-12 could be compared and were used as the model datasets
(Scheme 1A). Inspired by the NLL (negative log likelihood)
loss function reported by Lim et al.,65 by using a new
Maximum A Posteriori (MAP) estimation loss function and
taking chemical structures into account while analyzing the raw
sequencing data, we show that the ML-based approach was
able to ignore low-confidence outliers and identify the true
binders from the noisy cell-based selection datasets, thereby
facilitating reliable hit picking and clear identification of the
structure−activity relationship (SAR) (Scheme 1B).

■ RESULTS
Cell-Based DEL Selections Lead to a Higher Noise

Level Than the Selections with Purified Protein. We
conducted the selection of CAS-DEL in three formats: (1)
with purified CA-2 (P dataset); (2) with A549 cells expressing
CA-12 (A dataset); and (3) with hypoxic A549 cells
overexpressing CA-12 (OA dataset).78,85 Cell-based DEL
selections were performed following our previous reported
method.33,86 A “blank” selection was conducted with the beads
without CA-2, and it was used as the control for all three
datasets to calculate the enrichment level of the com-
pounds.56,65 Previously, Zhu et al. proposed that the DEL
data noise level was dependent on the sequencing depth and
the specific selection conditions.56 We have conducted three
biological replicates for each selection and employed sufficient
sequencing depth to minimize the impacts of these factors and
variables. The sequencing data under different experimental
conditions are summarized in Table 1. To compare the
reproducibility and the noise level of the selections, the scatter
plots of the log-scale count between the replicates of selection
samples are shown in Figure S8A, and the scatter plots for all

samples are displayed in Figure S9. Pearson correlation
coefficient (PCC) values and heatmap were used to evaluate
the correlation of the replicates (Figure S8B).

Replicates of the P dataset showed the highest correlation
(PCC > 0.98), which is reasonable considering the simplicity
of the target. As expected, the PCC values of the A and OA
datasets are above 0.5, which are lower than the P dataset but
still gave acceptable reproducibility.87 Replicates of the P
dataset also exhibited a high maximal sequence count (2950 to
3626 for three replicates; Table 1), and the signal was strong
enough to clearly identify the highly enriched compounds. In
contrast, the A and OA datasets showed much lower maximal
sequence counts (143∼336 for three replicates; Table 1),
which are only 1−3 folds greater than the blank control
selection (Table 1). Moreover, the ratio of the random
sequencing noise (the boundaries of background noise were
defined as 85% agreement between the two replicates;56 Figure
S8A) and the maximal counts of the A and OA data sets are
much higher than the P dataset. Furthermore, the OA dataset
showed a higher maximal sequence count than the A dataset,
indicating that target overexpression could enhance the signal
of the enriched compounds and improve the signal-to-noise
ratio.

Previously, Kuai et al. suggested that the random noise in
DEL experiments could be reliably modeled using a Poisson
distribution.54 Lim et al. used a Poisson ratio test to evaluate
the consistency of the barcode counts observed in a DEL
experiment with a hypothesized enrichment ratio, and they
converted a z-score calculation to a probability score for a two-
sided alternate hypothesis.65,88 Here, k1 and k2 are the
observed counts from the two experiments (post-selection
and the blank control selection) with two different total counts
(n1, n2), and R is the ratio of the two Poisson rates.88 This z-
score should be modeled by a normal distribution with a mean
of 0 and variance of 1 (denoted by N(0,1)). Thus, the
maximum-likelihood enrichment fold proposed by Lim et al.
can be calculated by solving the equation z = 0, as shown
below.65

= ×
+

+
n
n

k

k
Maximum likelihood enrichment fold 2

1

1
3
8

2
3
8

In comparison, the traditional method for calculating the
enrichment fold24,89 is shown below:

= k n
k n

Enrichment fold 1 2

2 1

Table 1. Raw Sequencing Read Counts of the Selectionsa

experiment ID total mean max target

B01 26,343,500 3.4 114 blank
P01 16,294,398 2.1 2950 CA-2
P02 11,003,294 1.4 3420 CA-2
P03 16,254,498 2.1 3626 CA-2
A01 25,526,056 3.3 149 A549
A02 24,226,052 3.1 194 A549
A03 20,109,579 2.6 143 A549
OA01 22,392,907 2.9 220 A549
OA02 22,971,879 3.0 283 A549
OA03 22,837,349 3.0 336 A549

aB: blank control selection; 01−03 indicate selection replicates.
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Hence, maximum-likelihood enrichment prevents zero
division in computation, which is an advantageous feature
since the sequencing of the naiv̈e library almost always gave
zero read for some compounds, presumably due to problematic
DNA tagging during the library synthesis and/or insufficient
sequencing depth.56,61 For blank control selections, zero reads
also frequently occur since the compounds do not bind
strongly to the empty beads. Therefore, we used the maximum-
likelihood enrichment value as the primary enrichment fold
parameter. However, the original Poisson test was designed for
only two experiments, not for multiple replicates.88 To identify
robust hits with low false positive rate, we merged the
sequence counts of the replicates, i.e., the sum of the three
independent experiments were treated as one dataset, and the
sum of the counts of the individual compounds were calculated
and they still followed Poisson distributions.90 The merged
datasets contained higher sequence counts and thus conferred
higher confidence in the enrichment signal,56 and they have
been employed in our modeling studies. Statistical analysis of
the calculated maximum-likelihood enrichment folds of the
three merged datasets is shown in Table 2. For the A and OA

datasets, the average enrichment folds (1.74 and 1.80,
respectively) are much higher than the P dataset (0.99); the
higher average enrichment of the cell-based selections may be
due to the complexity of the cell membrane, which resulted in
more nonspecific interactions.56 Overall, this result further
demonstrated that cell-based selections had a significantly
higher noise level than with purified protein, and thus, data-
denoising is important. The plots of the calculated maximum-
likelihood enrichment values vs post-selection sequence count
are shown in Figure 1A,C,E. We observed that some datapoints
lie on straight lines emanating from the origin, which is
reasonable since the datapoints with the same blank-selection
counts (k2) share the same slope value as calculated by the
following equation:

=
+( )
n

k n
slope 2

2
3
8 1

In addition, this also does not affect the calculation of the
enrichment. In the P dataset, the CBS-containing compounds
showed higher enrichment values and higher postselection
counts than the “background” (compounds without the CBS
moiety); however, in the A and OA datasets, there were many
“background” compounds with relatively high enrichment,
which would mislead hit picking and lead to false positives.
Figure 1B,D,F shows the cubic visualizations of the top 500
calculated enrichment values of the three datasets. In the
selection with the purified CA-2, the CBS-containing
compounds were significantly enriched. In sharp contrast, no
obvious structure−activity relationship (SAR) could be
identified in the cubic visualizations of the cell-based
selections.

It is worth noting that all enrichment values were calculated
by using B01 as the control to evaluate the level of noise
induced by different target environment (P, A, and OA). We
have experimentally measured the CA-12 expression levels of
A549 cells under normal and hypoxia conditions (A and OA)
by using Western blot,78,86 and it showed that hypoxia
increased the expression of CA-12 to about 1.5- to 2-folds;
thus, we reasoned that the A dataset may not be suitable prior
in the MAP function analysis. Indeed, we performed the data
analysis by using the A dataset as the background (Figure S17
and detailed discussion in Section S2.3), and the results
showed that the CBS-containing compounds were not
significantly enriched in either the MLE or MAP metric,
presumably due to the moderate difference between CA-12
expression levels in the A and OA datasets. Moreover, in this
study, we intend to compare the three datasets (P, OA, and A)
as one group to evaluate the level of noise arising from
different environments of the targets; thus, the same blank
dataset was used as the common prior for modeling of the
enrichment fold (R).

More detailed comparisons of the distributions of the
calculated maximum-likelihood enrichments are shown in
Figure S10A, 10C, and 10E. There is an observable difference
between the CBS-containing compounds and other “back-
ground” compounds without the CBS moiety, but the level of
differences is inversely related to the level of noise. We
speculated that although the cell-based selection data may also
contain valuable information of the hit compounds, due to the
high noise level, hit ranking based on the maximum-likelihood
enrichment fold would still potentially lead to a high false
positive rate.

MAP Estimation Enrichment Denoised Cell-Based
Selection Datasets. Furthermore, we propose a new metric
approach to analyze cell-based DEL selection datasets (see
details in the Methods section). The MAP estimation
enrichment is a Bayesian-inference-based method proven to
be effective in processing noisy and uncertain datasets;91 thus,
we reasoned that it could also be applied to denoise the cell-
based DEL selection data. The MAP metric is based on two
assumptions: (1) All enrichments can be modeled by a
common exponential prior density distribution; and (2) DEL
datasets could be modeled by Poisson distribution. The first
assumption is based on the nature of the affinity-based DEL
selection experiment, in which only a small fraction of the
library compounds is significantly enriched and considered as
useful hits, and the majority of the library compounds having
no or low binding affinities are discarded. The distribution of
all calculated maximum-likelihood enrichment values and the
fitted exponential distribution of all the merged datasets are
shown in Figure S10(B,D,F). As shown in the figure, the
enrichments of the three datasets can be well modeled by an
exponential distribution: most of the enrichment values are
small, and only a few compounds have large folds of
enrichments, suggesting that a common exponential proba-
bility distribution may be used to model the prior distribution
of R, which is consistent with the first assumption. As for the
second assumption, a number of literature reports have shown
that DEL selection data could be modeled by simple Poisson
distribution.54,61,65 Several previous studies modeled DEL
datasets using different distributions, such as the dispersed
Poisson distribution,52 zero-inflated Poisson distribution,76 or
the negative binomial distribution.92 In some cases, these
distributions fit the data better than simple Poisson

Table 2. Statistical Analysis of the Calculated Maximum-
Likelihood Enrichment Folds of the Three Merged Datasets

P A OA

mean 0.99 1.74 1.80
std 4.77 2.63 2.45
min 0.01 0.01 0.01
max 3273.37 85.85 103.39
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distribution but also brought in additional parameters that may
lead to more significant variances. As generally variances tend
to increase when model complexity increases,93 it may not be
desirable for noisy cell-based DEL datasets, which can lead to
high variance in the model. In addition, the assumption of
Poisson distribution enabled us to apply the Anscombe
transform to transform the Poisson variables to approximately
Gaussian variables, which is fundamental to the derivation of
the two Poisson rates ratio test.65,88

The calculation of MAP enrichment contains a parameter α,
and α determines the prior density distribution of R and is

considered as an L1 regularization rate. Different α values
represent different strengths of the L1 regularization and will
lead to different estimates of the enrichment values. A large α
value will lead to a relatively low average of enrichment values;
however, the compounds with high-confidence enrichment
values will be less affected and thus become more outstanding
among all library members. Figure 2A shows the effect of
different α values on the merged DEL datasets. Using the MAP
enrichment metric, the “background” compounds without the
CBS moiety (Figure S11) exhibited significantly lower
enrichment values, whereas the “CBS” compounds showed

Figure 1. Scatter plots of the calculated maximum-likelihood enrichment values (y-axis) vs post-selection sequence count (x-axis); blue:
compounds without the CBS moiety (“background”); red: CBS-containing compounds (“CBS”). (A) P datasets, (C) A datasets, and (E) OA
datasets. The distribution of enrichment values was shown by the boxplot in the right side. Cubic visualizations of the top 500 compounds based on
the calculated enrichments: (B) P dataset, (D) A dataset, and (F) OA dataset. Code A, Code B, and Code C represent the code number in three
cycles of DEL preparation. The levels of enrichment folds are represented by a jet color bar; see the Methods section for calculation details.
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relatively higher enrichment values because of their high-
confidence counts. Therefore, the new metric is effective to
identify the true binders from the noisy cell-based selection
data. PR-AUC (Precision-Recall curve-Area Under the Curve)
and ROC-AUC (Receiver Operating Characteristic curve-Area
Under the Curve) are commonly used to evaluate the
performance of a machine-learning algorithm on a given
dataset.94 The definitions of Precision, Recall, and Fall-out are
shown in the Methods section.95 Here, they were used as the
evaluation indicators to present the results of the binary
decision problem (hits or not) of the DEL datasets.

A higher PR-AUC or ROC-AUC score means a better
performance to distinguish the “positive” and “negative”
compounds.94,95 The precision rate is one of the most
important evaluation indicators for DEL data analysis since
the false positives would mislead the follow-up hit validation,

which is labor- and resource-intensive. For DEL selections,
even with a high signal-to-noise ratio, different settings of the α
values would change the distribution of the enrichment
calculation, suggesting that the MAP metric may also be
applicable to the selections with purified proteins. Figure 2B
shows that a larger α value led to higher PR-AUC and ROC-
AUC scores, and interestingly, at least to some extent, larger α
values led to the better performance. As for the optimal α
value, as proposed by Koḿaŕ and Kalinic,́52 the expectation of
the enrichment values should be 1. This assumption was
supported by the data shown in Table 2: the average
enrichment fold in the P dataset (with minimal noise) was
0.99, indicating that in an ideal situation, the expectation of all
enrichment folds in a DEL selection is likely to be ∼1.
Therefore, we chose α = 1 as the regularization rate in further
studies.

Figure 2. (A) Boxplots of the MAP enrichment values using different α values on the P dataset, A dataset, and OA dataset; Background:
compounds without the CBS moiety; CBS: CBS-containing compounds. (B) PR and ROC curves of the three datasets. Different α values are
represented in different colors as shown. PR curves: x-axis, precision; y-axis, recall. ROC curve: x-axis, recall; y-axis, fall-out.
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Extended-Connectivity Fingerprint-Based DNN
(ECFP-Based DNN) Using MAP Loss Function Effectively
Denoises Cell-Based Selection Datasets and Facilitates
SAR Identification. Although the new regularized MAP
metric can denoise the noisy cell-based selection datasets, it
only takes the raw sequencing data into account and focuses on
the identification of individual molecules. ML-based quantita-
tive structure−activity relationship (QSAR) modeling consid-
ers the molecular structure and the selection data simulta-
neously, and it may correlate the compound’s structure with
the potential target-binding affinity, thereby facilitating hit
ranking for follow-up hit validation.96 First, the CAS-DEL
compounds were transformed into extended-connectivity

fingerprints (ECFPs).50 The ECFP features, in the form of a
bit vector, represent the presence of particular substructures,
which can be calculated by using the Python package RDKit.97

ECFPs are designed to represent both the presence and
absence of functionalities, since both are crucial for analyzing
molecular properties;67 this form of molecular coding is highly
efficient for data storing, processing, and comparing.67

Although the absence of 3D structural information (e.g.,
chirality) is a potential limitation of ECFP-based approaches,50

Menke and Koch have suggested that neural fingerprints based
on fully connected layers and ECFPs could enhance ligand-
based virtual screening, proving that ECFPs contain sufficient
information for model training.98 Thus, we chose ECFP as the

Figure 3. Cubic visualizations (A,B) of the top 500 predicted enrichment values for all the models trained on the OA and A datasets, respectively.
Code A, Code B, and Code C represent the code number in three cycles of DEL preparation. The levels of the predicted enrichments are indicated
by color bars. SAR features are highlighted with red (code C-197) and blue (code B-34) arrows. The atom-centered Gaussian visualizations of the
representative compounds produced by the baseline model (left panel) and MAP model (right panel) are shown in (C) and (D), respectively. The
arylsulfonamide substructures are highlighted in red rectangles (C,D); the 2,4-dinitro-aniline moieties represented by code B-34 of the A dataset
(D) are highlighted in blue rectangles. The numbers indicate building block numbers; sequencing counts of the postselection (with target) and the
blank control selection (empty beads) are annotated. The high-resolution atom-centered Gaussian visualizations are provided in Figure S18.
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representation of the chemical structures, and the obtained
fingerprints were used as the inputs of a DNN model
implemented by the PyTorch Python package.99 The basic
architecture of the model is shown in Figure S12. We
performed the standard model training procedures.100 The
whole dataset was split into a train set, a valid set, and a test set
with a ratio of 8:1:1. Dropout and early stopping were used to
avoid overfitting. The weights of the model were updated by a
backpropagation approach.101 Hyperparameters such as
hidden layer size, batch size, and learning rate of the model
were tuned by using a Bayesian optimization approach (Table
S7).102 The configurations and hyperparameters used in
models are shown in Table S8. Outputs of the model are
predicted enrichment values of the compounds, which can be
considered as the denoised enrichment values because the
predicted enrichments not only depend on the raw counts data
but are also influenced by the chemical structures of the
compounds. As discussed above, we used α = 1 as the final
regularization rate to train the MAP model on the DEL
datasets, and the model trained with an unregularized loss
function (α = 0) was used as a baseline model. It should be
noted that all datasets conducted for model training only
contained ECFPs, preselection counts, and postselection
counts of library members. The pre-assigned tags for positive
or negative compounds were excluded in all model training to

make sure the models were not affected by any prior
knowledge of the positive control.

Plots of the predicted MAP enrichment values vs the post-
selection sequence count of all models are shown in Figure
S13. Cubic visualizations of the top 500 predicted enrichments
for all models are shown in Figure 3A,B. Here, the ML model-
building process (training and cross-validation for hyper-
parameter tuning) was considered as a whole to denoise DEL
counts data for the entire library, with model-predicted
enrichment values considered as the denoised enrichment
values. The positive tags were not involved in model training
and only used in the end to evaluate the performance.
Moreover, in real DEL selection, we would be selecting hits
from the entire dataset; thus, the top 500 compounds
predicted by the model shown in Figure 3 were also chosen
from the whole dataset (consisting of train/valid/test data-
sets). For the OA dataset, the “positive” arylsulfonamide (CBS,
code C-197) was found to be the most distinctively identified
structural moiety with both the baseline model and the MAP
model (Figure 3C). However, for the A dataset where the
target CA-12 had a relatively lower expression level, the
difference between the baseline and MAP models began to
appear: the baseline model-predicted code B-34 (blue
rectangle, Figure 3D), a 2,4-dinitro-aniline moiety, as the
most distinctively enriched substructure, whereas the MAP
model further increased the significance of the CBS

Figure 4. (A) Boxplots of the enrichment values obtained by the following methods for the test set compounds of the OA dataset: (a) maximum-
likelihood calculation; (b) normalized fold-change (Fn);61 (c) fitness produced by the Deldenoiser;52 (d) calculated MAP enrichment (α = 1); (e)
DNN (baseline, α = 0); and (f) DNN (MAP loss, α = 1); background: compounds without the CBS moiety; CBS: CBS-containing compounds.
(B) Boxplots of the enrichment values obtained by the same methods for the test set compounds of the A dataset. (C,D) Bar plots of AUC of PR
curves (C) and ROC curves (D) for the two datasets.
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substructure. To visualize the SARs learned by the models and
evaluate the model’s performance, the atom-centered Gaussian
visualizations of the top predicted compounds for the model
were generated using the RDKit package.97 Substructures with
high weights contributing to enrichment are highlighted in
green, while those substructures contributing negatively to
enrichment are highlighted in pink. The color intensity
corresponds to the level of contribution to the predicted
enrichment. We chose a compound with a high predicted
enrichment from each of the two datasets. For both models,
the arylsulfonamide substructure was identified as a strongly
enriched moiety. However, with the A dataset, the MAP model
showed better performance because it decreased the
significance of the 2,4-dinitro-aniline (code B-34) structure
and enhanced the significance of arylsulfonamide, as shown in
Figure 3D. The top 20 compounds with high enrichment
predicted by all the models are listed in Table S9,
demonstrating that the MAP model may rank the compounds
that contain the true “positive” substructures to decrease the
false positive rate.

Furthermore, for comparison, we tested two published
methods to process the cell-based selection datasets, including
the open-source package Deldenoiser52 and the normalized
fold-change (Fn) scores proposed by Gerry et al.61 (Figures
S14 and S15).

A direct comparison of these methods is shown in Figure 4.
The distribution of the enrichment values of the “background”
and “CBS” compounds in the test set was used to evaluate the
performance of the methods. For all the datasets, the MAP
model exhibited the best performance in distinguishing the
“background” and “CBS” compounds (Figure 4A,B) on the
test set. We also used the PR curve and ROC curve as
validation metrics (Figure S16), and the AUC scores are
shown in Figure 4C,D. Again, the MAP model gave the best
performance, especially with the A dataset. Collectively, these
results demonstrate that the combination of ML and the new
enrichment metric is effective on processing the noisy cell-
based DEL selection datasets and could facilitate reliable hit
and SAR identification.

■ DISCUSSION
Methodology development for DEL selections against complex
biological targets has progressed significantly in recent years,
but it presents even more challenges in data processing due to
the increased noise level in the selection dataset. Cell-based
DEL selections follow a similar thermodynamic principle as the
ones with purified proteins, but the complexity of the cell
membrane and the abundance of the target protein, which is
often in the low nanomolar range,33 make the reliable
identification of true binders and SAR highly difficult. Here,
we show that the MAP-based enrichment metric could denoise
the DEL datasets and obtain high-confidence enrichment
values. Moreover, the combination of deep learning and the
MAP loss function provided better performance on predicting
the enrichments of library compounds, therefore reducing the
risk of recovering false positive hits from cell-based selections.
The development of the MAP loss function method was
inspired by the NLL (negative log likelihood) loss function
reported by Lim et al.65 However, the novelty of our work lies
in the modeling of the common distribution of all enrichments
and MAP estimation for DEL selection datasets.

There are several aspects that warrant further development.
First, this study takes a simplified approach where all CBS-

containing compounds are considered “true binders” without
differentiating the affinity variations among the combinations
of CBS with other BB units. Also, no significant enrichment of
non-CBS-containing compounds was observed in the P dataset
(Figure 1A), indicating that a larger, more chemically diverse
library may be needed to identify novel non-CBS binders.
Applying the denoising method to larger cell-based DEL
selection datasets for de novo ligand discovery is certainly a
major direction for future studies. Second, some BBs may
result in truncations and byproducts, which may interfere with
hit identification.52,53,64 For example, BBs that induce extensive
truncations will also show up as “planes and lines” in the 3D
plot. In this work, they are not considered in the MAP metric
or MAP model; thus, future work will need to adapt more
advanced ML models that can take truncated and byproducts
of DELs in consideration.52,53 Moreover, CBS is incorporated
into the CAS-DEL library in the last cycle; thus, it will not lead
to further truncations in library synthesis. Any library
compounds that failed to couple with CBS will become
“negative compounds” and not interfere with SAR identi-
fication. In addition, such kind of problematic BBs that cause
extensive truncation are often filtered out by BB validation
experiments prior to library synthesis. Third, CAS-DEL only
contains the tripeptide scaffold and has limited chemical
diversity,103 which makes it difficult to be generalized to
unknown datasets; fourth, the framework used in the project is
a traditional fully connected network, a different and more
complex machine-learning method may lead to better
performance.69 Finally, the denoised method was proof-of-
principle, and it has not been applied on other cell-based DEL
datasets for further comparison. Thus, future work will include
modeling DEL datasets with larger scale and higher chemical
diversity and adapting more advanced ML models that can
take truncated and byproducts of DELs in consideration.52,53

and exploring more other targets on live cells not limited to
carbonic anhydrase. In summary, we show that the approach of
the ECFP-based DNN model with the MAP loss function can
be applied to effectively process and denoise cell-based DEL
selection datasets, and the method may also be suitable for
other types of complex biological targets,11 and this approach
also demonstrated its potential for in silico screening of
chemical libraries.

■ METHODS
Library Design and Synthesis. The carbonic anhydrase-

specific DNA-encoded library (CAS-DEL) was prepared by
using the previously reported method.33,72,73 The library was
constructed with 201 amino acids as the cycle-1 building
blocks, 195 amino acids as the cycle-2 building blocks, and 197
amino acids as the cycle-3 building blocks. The arylsulfona-
mide building block CBS was encoded in cycle-3 (BB3−197).
More details of CAS-DEL design and synthesis are provided in
the Supporting Information.

Journal Purity Statement. No small molecule com-
pounds were used in this study.

Chemical Diversity Analysis. UMAP projections were
generated by using the UMAP package.104 2048-bit radius-3
ECFPs of a random 1% of CAS-DEL, 11,274 compounds from
the Drugbank database,105 and 32,552 compounds from the
Natural Products database were used for UMAP embedding.
The parameters used in UMAP training were the same as
reported by Lim et al. (metric = “jaccard,” n_neighbors = 15,
min_dist = 0.1, n_components = 2).65 Tanimoto similarities of
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all building blocks’ ECFPs were calculated with the publicly
available Python package RDKit.97

Simple property parameters of all CAS-DEL compounds
were generated by using RDKit. The parameters include the
following molecular descriptors: molecular weight MW < 500
Da; calculated octanol/water partition coefficient ClogP < 5;
number of hydrogen bond acceptors HA ≤ 10; number of
hydrogen bond donors HD ≤ 5); and Veber descriptors (polar
surface area PSA < 140 Å2; number of rotatable bonds RotB ≤
10).106,107 The principal component analysis used for
dimensionality reduction was performed with the scikit-learn
package.108

Selection with the Immobilized CA-2. Carbonic
anhydrase 2 (CA-2; Sigma, cat. # C2522, 200 pmol) in a
sodium bicarbonate buffer (0.2 M NaHCO3, 0.5 M NaCl, pH
8.3) was immobilized to the NHS-activated Sepharose 4 fast
flow matrix (Cytiva, Cat.# 17,090,601, 15 μL) following the
manufacturer’s protocol. The resulting CA-2-linked beads were
capped with 100 μL of 0.1 M Tris−HCl (pH 8.5) at 4 °C for 4
h. The beads were washed with 100 μL of 0.1 M Tris−HCl
(pH 8.5) three times and 100 μL of 0.1 M NaAc, 0.5 M NaCl
(pH 4.5) three times. The washing steps were repeated twice,
followed by washing with 100 μL of PBS (50 mM sodium
phosphate, 100 mM NaCl, pH 7.4) twice.

To the CA-2-linked beads, 80 μL of PBST buffer (50 mM
sodium phosphate, 100 mM NaCl, 0.05% v/v Tween 20, pH
7.4), 5 μL of PBST-HS buffer (50 mM sodium phosphate, 100
mM NaCl, 0.05% v/v Tween 20, 0.2 mg/mL herring sperm
DNA, pH 7.4), and 15 μL of 10 μM library (107 copies of each
molecule for each selection) were added. The selection was
incubated at 4 °C for 4 h. After binding, the beads were
washed with 100 μL of PBS 5 times. H2O (100 μL) was added
to the beads, and the suspension was heated to 95 °C for 20
min to elute the bound molecules. After PCR amplification, all
replicates were quantified, validated with Sanger sequencing,
and then submitted for high-throughput sequencing.

Cell-Based Selections. CA-12 is a membrane-associated
homodimeric ectoenzyme, which is hypoxia-induced and
upregulated in many types of cancers.85 Normal A549 cells
were maintained in DMEM medium supplemented with 10%
(v/v) fetal bovine serum at 37 °C in a humidified 5% (v/v)
CO2 atmosphere. To obtain CA-12 overexpressed cells, A549
cells were cultured in a hypoxic atmosphere with hypoxia
cultivation78 (AnaeroPack; Mitsubishi Gas Chemical) at 37 °C
for 36 h. Cell-based DEL selections were performed following
our previous reported method.33,86 In brief, cells were
detached with 2 mL of trypsin for 3−5 min. After complete
detachment, 6 mL media was added. Cells were centrifuged for
5 min at 1000 rcf to remove the supernatant and washed twice
with cold PBS. Then, the cells were suspended in PBS to reach
3 million cells per mL and two cell batches were used per
selection. After being split in 1 mL aliquots into 1.5 mL
Eppendorf tubes, cell suspensions were centrifuged at 500×g
for 3 min at room temperature. The supernatant was discarded,
and the cells were suspended in a 200 μL selection buffer
(PBS, containing ∼200 pmol CAS-DEL). The selection
process was performed for 1.5 h at 4 °C in an incubator.
After incubation, the selection samples were centrifuged to
remove the supernatant. After being washed twice with 1× PBS
buffer (pH = 7.4), the cells were dissolved in 40 μL of PBS,
eluted by heating the cells in 1× PBS to 95 °C for 10 min, and
centrifuged 15 min at 13,000 rpm to retain the supernatant
that contained the library members. After PCR amplification,

all samples were quantified by qPCR, validated with Sanger
sequencing, and then submitted for high-throughput sequenc-
ing.

Preprocessing of Sequencing Data. All raw data (fastq
files) were transformed into processed datasets of clean reads
by using a custom method reported by Neri and coworkers.109

For different postselection datasets, the summation of the three
replicates’ reads was calculated for reducing the sequencing
noise. The primary maximum-likelihood enrichment values
were calculated by solving the equation z = 0.
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In comparison, the traditional method for calculating the
enrichment fold24,89 is shown in the equation below:

= k n
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Previously, Lim et al. reported a maximum-likelihood
enrichment calculation method rooted in the ratio testing of
two Poisson rates reported65 since the next-generation
sequencing data of DEL selections correspond well with the
Poisson distribution.54,110 Inspired by this work, we applied
MAP estimation, a Bayesian-inference-based method that has
been proven to be effective in processing noisy and uncertain
datasets,91 to denoise the cell-based selection data. The ratio of
two Poisson rates (R) can be modeled by a common
exponential prior density distribution shown in the equation
below.52,88 R can be identified as enrichment since it can
represent the ratio of the most likely values for these two
Poisson distributions (selection with the target or the blank
control selection).
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According to Bayes’ theorem, the posterior distribution of R
is proportional to the product of the likelihood P(z | R) and
the prior P(R), written as the equation below:
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Hence, the negative log-likelihood function of the posterior
distribution can be written as follows:
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To maximize the posterior likelihood, we can minimize the
above equation by solving the equation below to calculate the
MAP estimation enrichment folds of all library compounds.
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The definitions of Precision, Recall, and Fall-out are shown
below:

= =
+

precision confidence
true positive

true positive false positive
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recall sensitivity
true positive

true positive false negative

=
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fall out false positive rate
false positive

false positive true negative

The calculation of normalized fold-change (Fn) scores
proposed by Gerry et al.61 is shown in the following formula,
where λ− and λ+ denote the lower and upper boundaries of
95% confidence intervals of the Poisson distribution. Fitness
values of CAS-DEL were obtained by using the open-source
package Deldenoiser (https://github.com/totient-bio/
deldenoiser.git).52

=
_

+Fn
post selection

beads only

All calculations were implemented in Python.
Model Training and Hyperparameter Optimization.

All random seed values were set to 0. Baseline models and
MAP models were implemented by using the PyTorch Python
package.99 The DEL dataset was randomly split into the train
set, valid set, and test set, with a ratio of 8:1:1. Specifically, the
train dataset was used to process the model training, the valid
dataset was used to evaluate the level of overfitting and early
stop, and the test dataset was used to compare the
performance of all the methods we used. The datasets that
were subjected to model training only contained the
sequencing data and the ECFPs of the library compounds
without any prior knowledge of the positive control; thus, the
predicted enrichments reflected the collective results of
considering both the chemical structures and the sequencing
counts. Hyperparameters such as the hidden layer size,
dropout, and learning rate of the model were optimized with
Bayesian optimization-based102 using the Python package
pyGPGO.111 Early stopping was used to avoid overfitting
and reduce training time.

■ ASSOCIATED CONTENT
Data Availability Statement
Detailed information of CAS-DEL (DNA sequences, chemical
structures of building blocks) has been included in the
Supporting Information. The SMILES file of all compounds of
CAS-DEL, the count data for samples in Table 1, and sample
Python scripts are provided in associated contents. The

PyTorch implementation of ECFP-based DNN using MAP
loss function can be found at https://github.com/uohiuR/
MAP_DNN.
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