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Ca2+ microdomains are critical for 
regulating cellular activity and 

often form at membrane contact sites. 
Such sites between lysosomes and the ER 
potentially provide a platform for signal-
ing by the Ca2+ mobilizing messenger 
NAADP. However, at present we know 
little of how Ca2+ release events are coordi-
nated at these experimentally intractable 
junctions. We therefore developed a com-
putational model of lysosome-ER micro-
domains, which suggested that small 
leaks of Ca2+ from the lysosome couple to 
Ca2+-sensitive Ins(1,4,5)P

3
 receptors on 

the ER to generate global, microdomain-
dependent Ca2+ signals. Here we discuss 
how the “mix-and-match” arrangement 
of different Ca2+ signaling proteins on 
the “source” and “target” membranes 
might generate functionally heteroge-
neous Ca2+ microdomains.

Membrane contact sites (MCS) are 
specialized structures, whereby cellular 
membranes are closely apposed (10–50 
nm).1 Such an arrangement facilitates 
information flow between different cel-
lular compartments.1 Ca2+ is a universal 
signaling currency that often makes use 
of MCS to direct cellular activity.2 The 
restricted space within MCS allows for-
mation of local Ca2+ microdomains where 
the Ca2+ concentration ([Ca2+]) is thought 
to reach high, micromolar levels (~10 μM) 
levels.2 These microdomains facilitate 
activation of downstream Ca2+-dependent 
processes. A high [Ca2+] within the dyadic 
junction of cardiac cells, for example, 
couples excitation of the sarcolemma to 
cellular contraction, driven by Ca2+ release 

from the sarcoplasmic reticulum (SR).3 
Similarly, high [Ca2+] microdomains at 
ER-mitochondria MCS drive excitation-
metabolism coupling.4 Recently, MCS 
between lysosomes and the endoplasmic 
reticulum (ER) have been identified.5 
These sites provide an anatomical basis 
for functional coupling of lysosomal Ca2+ 
stores with the ER through the Ca2+ mobi-
lizing messenger, NAADP.6 NAADP is 
thought to act via two-pore channels to 
evoke Ca2+ signals from acidic organelles 
that are then amplified by the ER to drive 
complex Ca2+ behavior.7,8 However, the 
function of lysosome-ER MCS and puta-
tive Ca2+ microdomains contained therein 
is currently unknown.

In our recent paper,9 we developed 
a model of Ca2+ dynamics within these 
putative lysosome-ER microdomains and 
the continuous bulk cytosol to simulate 
cellular Ca2+ responses. We modeled leaks 
of Ca2+ from the “source” lysosome mem-
brane, such as those produced in response 
to NAADP. These leaks activated Ca2+-
sensitive inositol trisphosphate receptors 
(Ins(1,4,5)P3Rs) on the “target” ER mem-
brane and generated global Ca2+ responses 
that were microdomain-dependent. 
Interestingly, we also found that varying 
either the distribution or density of the 
lysosomal Ca2+ leak altered the mode of 
coupling. For example, selectively increas-
ing the magnitude of the lysosomal Ca2+ 
leak into the microdomain, akin to chan-
nel clustering, broadened the concentra-
tion range over which NAADP produced 
responses. A uniform increase in Ca2+ leak 
density into both the microdomain and 
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non-microdomain compartments, mim-
icking channel overexpression, also had a 
broadening effect. However, in these sim-
ulations, microdomains acted to modulate 
the frequency of global Ca2+ oscillations 
rather than initiate them. Lysosome-ER 
Ca2+ microdomains can either drive or 
shape complex Ca2+ signals, depending on 
their composition.9

Unlike other microdomains,4,10 the 
lysosome-ER microdomains simulated 
within our model did not achieve high 
[Ca2+]. Although kinetically distinct, 
Ca2+ signals in the microdomain were 
only marginally greater in amplitude than 
within the bulk cytosol.9 However, this 
result is not as counterintuitive as it may 
first seem. As Ca2+-release from Ins(1,4,5)
P3Rs on the target membrane can be acti-
vated by relatively low [Ca2+],11 small leaks 
of Ca2+ from lysosomes can raise microdo-
main [Ca2+] sufficiently to initiate Ca2+-
induced Ca2+-release via the Ins(1,4,5)
P3R. This arrangement differs from other 
Ca2+ microdomains. For example, ryano-
dine receptors (RyRs) on the target mem-
brane in the cardiac dyadic cleft have a 
lower affinity for Ca2+-induced activation 

than Ins(1,4,5)P3Rs (~0.8–1 μM, com-
pared with ~0.1–0.3 μM).12 They there-
fore require higher [Ca2+] for activation 
to generate a high [Ca2+] microdomain. 
Moreover, the mitochondrial Ca2+ uptake 
machinery on the target membrane in 
ER-mitochondria microdomains has an 
even lower affinity for Ca2+ (estimated 
between 10–100 μM).13,14 Thus, microdo-
main [Ca2+] may “match” Ca2+ affinity of 
target proteins.

The unexpectedly low microdomain 
[Ca2+] in our model was due to the pres-
ence of sarco/endoplasmic reticulum 
Ca2+ ATPase (SERCA) pumps within the 
microdomains, which efficiently take up 
the released Ca2+.3 SERCA pumps were 
required to balance a basal Ca2+ leak 
through the Ins(1,4,5)P3R at a resting level 
of Ins(1,4,5)P3. This arrangement differs 
from other studies utilizing RyR models10 
because, unlike Ins(1,4,5)P3Rs, RyRs can 
be gated directly by Ca2+. As such, these 
models contain no basal RyR leak and 
therefore do not require balancing Ca2+ 
uptake mechanisms within the microdo-
main. This allows for the accumulation of 
high [Ca2+] upon activation of the RyRs. 

Our hypothesis, that peak [Ca2+] within 
microdomains can be determined by the 
level of microdomain SERCA, may also 
extend to ER-mitochondria microdo-
mains. Here, the ER acts as the source 
membrane whereby Ins(1,4,5)P3Rs create 
high microdomain [Ca2+] to facilitate low 
affinity mitochondrial Ca2+ uptake. It is 
therefore of note that Ins(1,4,5)P3Rs are 
enriched within ER-mitochondria MCS, 
while SERCA is not.15 The potential 
absence of SERCA within these microdo-
mains might permit spontaneous activ-
ity within these junctions, potentially 
accounting for the proposed mainte-
nance of mitochondrial bioenergetics by 
basally active Ins(1,4,5)P3Rs.16 Ca2+ sig-
naling proteins may be “mixed” together 
to generate functionally heterogeneous 
microdomains.

Computational models of Ca2+ 
dynamics often have a modular design, 
whereby individual models for each Ca2+ 
transport process are assembled together 
to generate an appropriate, relevant sys-
tem. This rule is consistent at different 

levels of computational complexity.9,10,17 
We suggest that viewing “real” microdo-
mains in this modular fashion can aid our 
understanding of their architecture in live 
cells. As discussed, the variable expression 
of individual Ca2+ channels and pumps 
within MCS, on either the source or tar-
get membrane, can profoundly alter the 
properties of microdomains. This “mix-
and-match” approach may account for the 
functionally diverse behaviors that micro-
domains coordinate. (Fig. 1)
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Figure 1. Heterogeneity of Ca2+ microdomains at membrane contact sites. MCS between the source 
(top) and target (bottom) membranes allow functional Ca2+ microdomains to form between them. 
Ca2+ influx through voltage gated Ca2+ channels (Cav) in the PM-SR MCS of the dyadic cleft (left) 
forms a high [Ca2+] microdomain (dark circle) to initiate Ca2+ release from low-affinity ryanodine 
receptors (RyR). Ca2+ release through Ins(1,4,5)P3Rs (IP3R) in ER-mitochondria MCS (center) also forms 
a high [Ca2+] microdomain to facilitate mitochondrial Ca2+ uptake by the low-affinity mitochondrial 
uniporter (MCU). Ca2+ release through two-pore channels (TPC) in lysosome-ER MCS (right) forms a 
low [Ca2+] microdomain (light circle) due to the presence of SERCA (S) but which is nevertheless able 
to activate high-affinity Ins(1,4,5)P3Rs.
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