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The therapeutic properties of cannabinoids have been well demonstrated but are 
overshadowed by such adverse effects as cognitive and motor dysfunction, as well as 
their potential for addiction. Recent research on the natural lipid ligands of cannabinoid 
receptors, also known as endocannabinoids, has shed light on the mechanisms of 
intracellular transport of the endocannabinoid anandamide by fatty acid-binding proteins 
(FABPs) and subsequent catabolism by fatty acid amide hydrolase. These findings facil-
itated the recent development of SBFI26, a pharmacological inhibitor of epidermal- and 
brain-specific FABP5 and FABP7, which effectively increases anandamide signaling. The 
goal of this study was to examine this compound for any possible rewarding and addic-
tive properties as well as effects on locomotor activity, working/recognition memory, 
and propensity for sociability and preference for social novelty (SN) given its recently 
reported anti-inflammatory and analgesic properties. Male C57BL mice were split into 
four treatment groups and conditioned with 5.0, 20.0, 40.0 mg/kg SBFI26, or vehicle 
during a conditioned place preference (CPP) paradigm. Following CPP, mice underwent 
a battery of behavioral tests [open field, novel object recognition (NOR), social interaction 
(SI), and SN] paired with acute SBFI26 administration. Results showed that SBFI26 did 
not produce CPP or conditioned place aversion regardless of dose and did not induce 
any differences in locomotor and exploratory activity during CPP- or SBFI26-paired open 
field activity. We also observed no differences between treatment groups in NOR, SI, 
and SN. In conclusion, as SBFI26 was shown previously by our group to have significant 
analgesic and anti-inflammatory properties, here we show that it does not pose a risk of 
dependence or motor and cognitive impairment under the conditions tested.

Keywords: endocannabinoid, FaBP, anandamide, addiction, conditioned place preference, reward, memory, 
social behavior

inTrODUcTiOn

The endocannabinoid system (ECS), which includes the lipid-derived neurotransmitters arachi-
donoylethanolamide (anandamide/AEA) and 2-arachidonoyl glycerol (2-AG) (1), has been widely 
studied (2) and implicated in numerous functions and diseases, including schizophrenia and 
Parkinson’s (3), pain sensation (4), anxiety (5), learning and memory (6), emotion (7), obesity (8), 
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and drug addiction (9). In the central nervous system, 2-AG and 
AEA primarily bind to the CB1 receptor (10). This discovery has 
led to the development of several synthetic compounds that can 
modify both the anabolism and catabolism of these endogenous 
signaling molecules.

Arachidonoylethanolamide is hydrolyzed by fatty acid amide 
hydrolase (FAAH), which is found in abundance throughout the 
CNS along with CB1 receptors and is the main enzyme respon-
sible for AEA breakdown (11, 12). FAAH inhibitors, such as 
URB597, significantly elevate AEA levels and have been deemed 
effective in alleviating depression and anxiety symptoms (13) as 
well as pain and inflammation (14) in rodents, and at therapeutic 
doses, they lack the psychomotor deficits associated with direct 
CB1 receptor agonists (15). However, these compounds lack 
specificity (16). For example, FAAH is highly expressed in the 
liver (17), and systemic inhibition is linked with hyperglycemia 
and insulin resistance (18).

Due to the fact that AEA is a lipid ligand and that its catabo-
lizing enzyme FAAH is localized on the endoplasmic reticulum 
and mitochondria, it has been deemed likely that a specific 
mechanism is responsible for the transport of AEA through the 
cellular cytosol for hydrolysis (19). Fatty acid-binding proteins 
(FABPs) have been proposed by Kaczocha et al. (20) as the means 
of transport for AEA. A particular focus has been on FABP3, 5, 
and 7 that are highly expressed within the brain and may provide 
a tissue-specific approach to elevating AEA. More recent findings 
have emerged supporting this claim and the possibility for this 
transport mechanism as a target for therapeutic modification 
(21–25). A recently developed compound, SBFI26, inhibits two 
of the most prevalent FABPs in the brain (FABP5 and FABP7) 
(21). Kaczocha et al. (26) have shown that SBFI26 inhibits vis-
ceral, inflammatory, and neuropathic pain by increasing AEA 
levels in rodent brain. FABP3 (heart-FABP) was not targeted 
(although it is also abundant in the CNS), because its deletion has 
been shown to induce age-related cardiac hypertrophy (27) and 
apoptosis and mitochondrial dysfunction in mouse embryonic 
cells (28).

The effect of increased AEA levels induced by SBFI26 has 
revealed a gateway for therapeutic potential beyond analgesia. 
The abuse of prescription and non-prescription opioids, such 
as heroin, has transitioned from a form of self-medication to a 
worldwide epidemic (29, 30). Given recent evidence of endocan-
nabinoid modulation of pain and the abuse liability of many 
opioids, we hypothesize that manipulation of endogenous AEA 
signaling by SBFI26 might have important clinical potential. It is 
important first though to establish whether this compound may 
have abuse liability or exhibit some of the characteristic negative 
side effects of cannabinoid compounds.

In addition to the well-known “tetrad” of cannabinoid 
effects [analgesia, hypothermia, catalepsy, and sedation (31)], 
increased activation of CB1 can lead to aversive reactions and 
deficits in humans and animals, sometimes in a biphasic manner 
that contrasts the therapeutic effects of moderate increases in 
CB1 activation (32). For example, elevation of AEA via FAAH 
administration has produced anxiolytic effects (33), but high 
doses of CB1 agonists can produce anxiogenic responses (5). 

Accordingly center time in the open field, which is characterized 
as a measure of anxiolytic response, is significantly reduced in 
WT C57 mice administered THC, as is total open field locomotor 
activity at high doses (34). However, low doses of the synthetic 
CB1 agonist WIN55,212-2, URB597, and the “AEA transport 
inhibitor” AM404, which also raises AEA levels, did not decrease 
open field center time (35).

Learning and memory are also impaired by administration of 
THC in clinical studies (6, 36, 37) along with a variety of other 
CB1 agonists in rodents (38, 39). Both URB597 and the stable 
synthetic AEA analog R-(+)-methanandamide cause deficits in 
object recognition and performance in a variety of other short-
term memory tests in a CB1-dependent manner (40, 41), and 
it was also recently demonstrated that URB597 impairs LTP in 
hippocampal brain slices from wild-type, but not CB1−/− mice 
(40). CB1 receptors are abundant in hippocampus (31), and 
AEA, but not 2-AG, has been deemed the ligand responsible for 
CB1-dependent memory deficits when in excess in this brain area 
(42). Given these findings, it is entirely possible that SBFI26 could 
potentially cause cognitive and learning deficits.

Similarly, recognition memory for social stimuli is also medi-
ated at least in part by CB1 activity. Selective deletion of CB1 
in specific neuronal populations has elicited similar effects on 
exploration in both the object recognition and social interaction 
(SI)/social novelty (SN) procedures, and the hippocampus has 
been primarily implicated in both (43). However, preference for 
SI and SN is mediated by a range of additional variables, such as 
olfactory, auditory, and ectocrine cues, as well as unshared neural 
correlates such as the involvement of the hormones oxytocin and 
vasopressin (44). In turn, although the tests for SI and SN can be 
used to operationalize aspects of learning and memory as well 
as anxiogenic responses (34), these paradigms are reflective of 
combinations of multiple behaviors, are considered a model for 
characterizing many different psychiatric disorders, and may 
reveal treatment effects not observed by testing recognition 
memory and exploratory drive alone (45).

Perhaps most importantly, pharmacological ECS manipula-
tion has brought up the concern of addictive properties associ-
ated with the variety of compounds used to achieve this. Squirrel 
monkeys, for example, have been shown to self-administer 
AEA, an effect blocked by CB1 antagonism (46). Conversely, 
Scherma et al. (47) showed that while mice receiving intrave-
nous injection of anandamide did not induce a conditioned 
place preference (CPP), the introduction of URB597 along with 
AEA resulted in conditioned place aversion. More recently, 
squirrel monkeys were also shown to self-administer AM404, 
and this compound also reinstated drug seeking for THC and 
cocaine (48). Similar to THC, it appears AEA might exhibit 
varying qualities under particular conditions that warrant fur-
ther explanation. The present study examined the effects of the 
specific FABP5/7 inhibitor SBFI26 on CPP, a well-established 
model used to measure the rewarding properties of stimuli. 
Additionally, we studied a range of other behaviors previously 
shown to be affected by endocannabinoids in attempt to char-
acterize any cannabimimetic side effects and potential clinical 
utility.
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MaTerials anD MeThODs

animals
Male C57BL/6 mice (22–30 g, 9–10 weeks old, Taconic Farms) 
were used for all experiments (n = 66). The animals were single 
housed at room temperature (22°C) and in controlled humidity 
conditions and kept on a 12-h inverted light cycle beginning at 
0900 hours with ad libitum access to water and food. Food intake 
and body weights were monitored daily. The animals were habitu-
ated to the experimental room for 1  week before testing. The 
experiments conducted herein conform to the National Institutes 
of Health Guidelines for the Care and Use of Laboratory Animals 
and were approved by the University Institutional Animal Care 
and Use Committee. Mice were divided into four treatment 
groups (vehicle, 5.0, 20.0, or 40.0 mg/kg SBFI26).

Drugs
The FABP inhibitor SBFI26 was synthesized as in Berger et  al. 
(21). The drug was dissolved in DMSO:cremophor-EL:saline 
(4%  DMSO:10% Cremophor-EL) and administered intraperi-
toneally at a volume of 10  μl/g body weight. Doses used were 
determined by our previous report with SBFI26 (26).

equipment
The CPP apparatus used was a Habitest three-chamber model 
(Coulbourn Instruments; Allentown, PA, USA), as previously 
described (49). The present study used 1″ black and white stripes 
on two opposite walls in the left compartment, which contained 
crisscrossed half-inch metal flooring, whereas the right compart-
ment consisted of perforated stainless-steel flooring with round 
holes on staggered centers, and 1″ black and white checkering on 
two opposite walls.

Locomotor and exploratory behavior were examined using an 
open field arena and the Tru Scan software photo beam tracking 
system (Coulbourn Instruments, Whitehall, PA, USA). The open 
field arena was a 16″ × 16″, and the perimeter was designated as 
the area within 2.5″ of the walls. The center consisted of the area 
within the perimeter.

Novel object recognition (NOR) testing also took place in the 
open field arena, and objects used were similar 5″ pink buckets 
and white vases. SI and SN testing took place in a plexiglass three-
chamber apparatus, as described in Ref. (50), and used 5″ black 
wire cups to hold stimulus mice. Tests were recorded by digital 
video camera.

Procedures
Conditioned Place Preference
The CPP paradigm was performed, as described in Ref. (49, 51), 
with some modifications (60  min conditioning sessions and 
15 min pretest/test). SBFI26 or vehicle was administered 50 min 
prior to each conditioning session, and animals were returned to 
their home cage between injection and testing. The present study 
determined preference by calculating the percentage of time 
spent in one compartment compared to the other. This percent-
age is regarded as percent preference. Compartment preference 
for CPP was evaluated by comparing the percent time (time in 

one chamber divided by total time spent in both chambers) spent 
in the drug-paired chamber on preconditioning day to test day. 
Locomotor activity during CPP was also measured each condi-
tioning day and binned for a time period of 1 h.

Open Field Activity
Locomotor activity and exploratory behavior were measured 
in an open field arena for 1  h, as previously described (52). 
Measurements included total distance traveled (FP Distance), 
time spent in center (Center Time), and time spent in a rearing 
position (VP Time). SBFI26 injections took place 50 min before 
the animal entered the open field.

Novel Object Recognition
Novel object recognition was carried out, as previously described 
(53). During the “familiar” phase, mice were placed in the center 
of the arena and allowed to explore two identical objects in either 
corner for 5  min. They were then returned to their homecage 
for 30 min, during which time one of the “familiar” objects was 
switched with a “novel” object. Subjects were then returned to 
the arena for the “novel” phase, and the proportion of time spent 
exploring the novel object over total exploration was scored for 
analysis. Buckets and vases were counterbalanced, as being con-
sidered the “familiar” and “novel” objects to avoid bias. SBFI26 
injections occurred 50 min prior to the middle of the “familiar” 
run. Exploration of an object was considered to be occurring if 
the test mouse was within 1″ of the circumference of the object 
and oriented toward it. Recorded videos were scored by two 
research assistants, and scored were compared with an inter-rater 
reliability score.

Social Interaction and Novelty
Social interaction and SN were performed in a three-chambered 
arena with open doors, as described in Ref. (50), with minor 
modifications. Briefly, the test began with a 5-min habituation 
period in which the entire arena with both empty cups could 
freely be explored. Water bottles were placed atop cups to prevent 
climbing. The experimentor then introduced a conspecific male 
stimulus mouse to one of the cups for a 10-min “familiar” run (SI), 
followed immediately by the introduction of another conspecific 
male in the other cup in the “novel” run (SN). After 10 more 
minutes of exploration, all mice were returned to their home 
cages. SBFI26 injections occurred 50 min prior to the middle of 
the “familiar” run. Exploration of a conspecific was considered to 
be occurring if the test mouse was within 1″ of the circumference 
of the cup and oriented toward it. Recorded videos were rated 
with Top Scan software (Clever Sys Inc., VA, USA).

statistical analysis
Paired-samples t-tests were used to calculate differences in 
preference between CPP preconditioning and test day for each 
treatment group, followed by a one-way ANOVA to detect dif-
ferences in preference on test day between treatment groups. A 
two-way repeated measures (RM) ANOVA with SBFI26 dose 
and treatment (SBFI26 or vehicle) as factors was used to analyze 
locomotor activity throughout CPP conditioning. Open field 
parameters, NOR, SI, and SN were compared between treatment 
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FigUre 2 | Floor plane distance traveled, vertical plane time, and center time were measured for all mice treated with either vehicle sBFi26 in the 
open field test. No significant difference was found between groups in all three parameters.

FigUre 1 | a paired-samples t-test found no significant difference 
within any treatment group between percent preference for the 
drug-paired chamber on preconditioning day versus test day.
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groups using one-way ANOVAs. All statistics and graphing were 
performed using SigmaPlot 11.0 software (Systat Software Inc., 
San Jose, CA, USA).

resUlTs

conditioned Place Preference
Paired-samples t-tests found no significant preference for the 
SBFI26-paired chamber with any of the treatment doses admin-
istered (see Figure 1); vehicle [t(12) = −1.18, p = 0.26], 5.0 mg/kg 
[t(15) = −1.87, p = 0.081], 20.0 mg/kg [t(15) = −1.79, p = 0.094], 
and 40.0 mg/kg [t(14) = −1.87, p =  0.082]. There was also no 
difference between treatment groups in mean preference on test 
day [F(3,56) = 0.060, p = 0.98].

cPP – locomotor activity
A two-way RM ANOVA on average total activity between 
treatment groups and treatment days revealed no significant  
differences between groups [F(3,58) = 1.81, p = 0.16] or treat-
ment day [F(1,58) = 1.11, p = 0.30; figure not shown].

Open Field
No differences were revealed between treatment groups with 
respect to FP distance, a secondary measure of locomotor activity 
[F(3,53) = 0.36, p = 0.78]. There were also no differences in time 
spent in the vertical plane [F(3,53) = 1.63, p = 0.19] and time 
spent in the center [F(3,53) = 0.25, p = 0.86], and no significant 
interaction detected (Figure 2).

novel Object recognition
The proportion of time spent exploring the novel object did not 
differ with respect to SBFI26 dose [F(3,53) = 0.31, p = 0.82]. A 
one-way ANOVA also did not fine any significant differences 
in total object exploration time between treatment groups 
[F(3,53) = 0.78, p = 0.51; figure not shown].

social interaction and novelty
Separate one-way ANOVAs were conducted to analyze the acute 
effects of SBFI26 on social behavior – defined as SI and SN. No 
significant main effect was found for the treatment of SBFI26 
doses given [F(3,38) = 2.07, p = 0.12; figure not shown] on SI 
(interaction time with cup versus mouse). Similarly, no effect was 
found on SN (interaction time with familiar mouse versus novel 
mouse) for the SBFI26 doses given [F(3,38) = 1.579, p = 0.210].

DiscUssiOn

By targeting the intracellular anandamide transporters FABP5 
and FABP7, this study examined the effects of SBFI26 on CPP 
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reward behavior, locomotor and exploratory activity in the open 
field, NOR, SI, and SN. Results showed that SBFI26 did not induce 
CPP nor aversion. In addition, SBFI26 did not have any effects on 
locomotor activity measured during CPP conditioning or in the 
open field. We also found that SBFI26 did not have effects on 
other behaviors measured.

THC and other CB1 agonists have been shown to exhibit a 
biphasic effect on reward and locomotion (54) as well as anxiety 
(55), and elevate dopamine (DA) in the nucleus accumbens such 
as all known drugs of abuse (56). FAAH inhibitors vary in their 
ability to produce rewarding effects and increases in DA con-
centrations in the nucleus accumbens; these effects are specific 
to which compound is being administered (57), as well as route 
of administration (58). Therefore, it was unknown if SBFI26 
would have rewarding effects. The present study demonstrates 
that SBFI26 does not elicit the acquisition of reward or CPP 
behavior or CPA (aversion). Given that we recently reported 
the analgesic and anti-inflammatory properties of SBFI26 (26), 
the use of SBFI26 for pain management may provide future 
promise.

In addition, SBFI26 was shown not to have any effects on 
multiple test parameters of locomotor and exploratory activity, 
working memory as measured by NOR, and propensity for 
SI and SN. Specifically, SBFI26 did not produce differences in 
activity during the CPP procedure or the open field parameters 
of distance traveled, time in the center, or exploratory or rear-
ing behavior (as measured by time spent in the vertical plane). 
Proportion of time exploring the novel object in NOR, and time 
spent exploring the stimulus mouse in SI and SN also revealed no 
differences between SBFI26 treatment groups. Due to the previ-
ously mentioned biphasic action of cannabinoids, we chose to 
utilize an effective dose of SBFI26 (20.0 mg/kg) for these experi-
ments, as well as a low and high dose to tease out potential side 
effects across different degrees of FABP5/7 inhibition. SBFI26 
did not cause any behavioral changes in the tests conducted at 
any dose.

These findings are in contrast to previous studies showing 
deficits in NOR induced by acute doses of CB1 agonists and 
R-(+)-methanandamide (41), as well as URB597 (40, 42), and 
decreased SI time in control mice (34). The latter finding is par-
ticularly intreaguing, given recent evidence that oxytocin elevates 
AEA in the nucleus accumbens to facilitate social reward (59). 
One possible explanation for the lack of significant differences 
in behavior in the present study is the degree to which SBFI26 
raises AEA levels – URB597 has been shown to cause a fourfold 
increase of this endocannabinoid in mouse brain (5), whereas 
our group detected significant but smaller increases from SBFI26 
(26). Therefore, SBFI26 may raise AEA concentrations to a 
degree that can still have therapeutic effects without detriments. 
Although we did not detect any anxiolytic effects of acute SBFI26 
administration as measured by center time in the open field, this 
realm of research warrants further investigation given previous 
data of AEA elevation on anxiety (60).

These results are encouraging given the potential analgesic 
and anti-inflammatory properties of SBFI26, but more research 
is needed on the effects of SBFI26 testing on other drug abuse 
paradigms (i.e., self-administration, locomotor sensitization). 
Future research should also be directed at interactions with com-
monly abused drugs, such as cocaine, heroin, and marijuana.
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