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Abstract: Plasma membrane sodium–hydrogen exchangers (NHE) transport Na+ into cells 
in exchange for H+. While there are nine isoforms of NHE in humans, this review focuses on 
the NHE3 isoform, which is abundantly expressed in the gastrointestinal tract, where it plays 
a key role in acid–base balance and water homeostasis. NHE3 inhibition in the small 
intestine results in luminal sodium and water retention, leading to a general decrease in 
paracellular water flux and diffusional driving force, reduced intestinal sodium absorption, 
and increased stool sodium excretion. The resulting softer and more frequent stools are the 
rationale for the development of tenapanor as a novel, first-in-class NHE3 inhibitor to treat 
irritable bowel syndrome with constipation. NHE3 also has additional therapeutic implica-
tions in nephrology. Inhibition of intestinal NHE3 also lowers blood pressure by reducing 
intestinal sodium absorption. Perhaps, the most novel effect is its ability to decrease intestinal 
phosphate absorption by inhibiting the paracellular phosphate absorption pathway. Therefore, 
selective pharmacological inhibition of NHE3 could be a potential therapeutic strategy to 
treat not only heart failure and hypertension but also hyperphosphatemia. This review 
presents an overview of the molecular and physiological functions of NHE3 and discusses 
how these functions translate to potential clinical applications in nephrology. 
Keywords: sodium–hydrogen exchanger 3, sodium–hydrogen exchanger 3 inhibitors, 
paracellular phosphate absorption pathway, hyperphosphatemia, chronic kidney disease, 
heart failure

Introduction: The Role of NHE3
Sodium–hydrogen antiporters or sodium–proton exchangers (NHE), of which there 
are nine total isoforms in humans, are a class of both plasma and organellar 
membrane proteins that transport Na+ into the cell and H+ out of the cell, as well 
as regulate luminal pH and cation composition of the intracellular compartments.1 

Isoforms of NHE have different tissue and subcellular distributions: some NHEs 
function primarily on the plasma membrane, and others are present on intracellular 
organelles.1 NHE1 is expressed in the plasma membrane of virtually all tissues2 and 
plays an important role in cardiac health.3 NHE2 is expressed in the gastrointestinal 
(GI) tract and contributes to the maintenance of stomach pH and homeostasis, 
whereas NHE3 predominates in the GI tract and kidneys.4,5 NHE4 and NHE5 are 
abundant in the stomach and brain, respectively.6,7 NHE6-9 are expressed in the 
intracellular compartments of many organ system membranes, but of these NHE8 is 
the exception and expressed apically.1,8–10

NHE3 differs from other isoforms as it continuously recycles between the apical 
membrane of the epithelial and endosomal compartment, playing a key role in 
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water and sodium homeostasis.11 The physiological roles 
of NHE3 make it an attractive target for developing phar-
macological inhibitors, which may be effective novel treat-
ments for hypertension, constipation, diabetes mellitus, 
electrolyte disturbances (hyperphosphatemia), and conges-
tive heart failure.

This review aims to present the molecular and physiologi-
cal functions of NHE3 and how this information translates to 
clinical practice. The discussion will focus on the significance 
of NHE3 as a target for disease modification and recent 
advancements in the understanding of hyperphosphatemia 
and phosphate management in chronic kidney disease 
(CKD) patients. 

Structure of the NHE3 Protein
All human NHE isoforms have similar structures, consist-
ing of two functionally distinct domains.12 However, the 
amino acid make-up of both domains varies among the 
NHE isoforms. An N-terminal of NHE3 is made up of 454 
amino acids.13,14 It is a 12 pass transmembrane domain 
that mediates ion exchange and the cytosolic C-terminus 
of 376 amino acids, regulates the transport rate, and inter-
acts with the cytoskeleton and other ancillary 
molecules.13,14 Separate regions of the C-terminal have 
been described as the “switch domain” for their role in 
setting NHE3 activity.15,16 The C-terminal domain of 
NHE3 also binds to multiple proteins involved in NHE3 
regulation.16 Studies suggest that these regulatory proteins 
may form organized complexes that interact with NHE3 
and with each other, thus stimulating or inhibiting the 
NHE3 activity.17,18

Evolution of NHE3 Across Species
NHE originated as intracellular exchangers first seen in 
yeast, slime mold, and plant species.19 Of the two NHE 
subgroups, plasma membrane and intracellular, NHE3 
genes belong to the plasma membrane subgroup.19 

Human NHE3 genes have their origins in the worm 
NHX2 gene, known to be the first evolved plasma mem-
brane NHE.19 Studies in the C. elegans have shown that 
the ortholog of mammalian NHE3, CeNHX2, is recycled 
on and off the apical membrane of the gut epithelial 
cells.20 This suggests that the emergence of CeNHX2 
was necessary to maintain the proton gradient required 
for nutrient absorption.20

Genetics and Gain/Loss of Functions
NHE3, which is encoded by the SLC9A3 gene, plays 
a critical role in the absorption of sodium and fluids and 
regulates acid–base homeostasis.21 Studies of NHE3 
knockout mice showed that lack of NHE3 results in 
reduced intestinal structural integrity, causing the animals 
to develop alkaline diarrhea, hyponatremia, and metabolic 
acidosis.21 A study of individuals with congenital sodium 
diarrhea found that nine participants from unrelated 
families had an absent or mutated NHE3 protein, as 
demonstrated by SLC9A3 mutations.22 Congenital sodium 
diarrhea is characterized by watery diarrhea after birth, 
high fecal loss of sodium, and metabolic acidosis.23 

Thus, loss or marked reduction of NHE3 function in 
humans was observed to have similar effects as those 
observed in NHE3 knockout mice.21,22 To our knowledge, 
there are no models for a gain of function.

Mechanisms of NHE3 Regulation
NHE3 regulation falls into two forms: acute and 
chronic.24–27 Acute regulation is a rapid, reversible process 
that occurs within minutes or hours.28,29 NHE3 contains 
multiple phosphorylation sites,27,30 and activity is modu-
lated by protein kinases, including protein kinase 
A (PKA)27 and serum- and glucocorticoid-inducible 
kinase 1 (SGK1).30 Trafficking is another method of 
acute regulation. NHE3 differs from other NHE isoforms 
in that it can travel between the plasma membrane and 
intracellular compartments, and trafficking is the tempor-
ary compartmentalization of transport activity.11 NHE3 is 
also capable of dynamic interaction with numerous pro-
teins, and its activity can be modulated by protein-to- 
protein association.17,31 Chronic NHE3 regulation, 
accounted for by transcriptional regulation, is an ongoing 
process that often involves multiple overlapping 
pathways.32,33 Glucocorticoids, aldosterone, metabolic 
acidosis, serotonin, and proinflammatory cytokines have 
been shown to modify NHE3 expression.32,34–36 There 
may also be a metabolic role in NHE3 activity. One 
example is the stimulation of renal NHE3 by fructose, 
which increases sodium reabsorption in proximal 
tubules.37 Fructose can also sensitize the proximal tubule 
to angiotensin II.38 These data may partially explain the 
mechanism by which a fructose diet induces renal injury 
and hypertension.37,38 Additionally, chronic metabolic 
acidosis has been shown to increase NHE3 protein abun-
dance in an animal model.39
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Physiological Properties of NHE3
In addition to the kidney, which plays a major role in 
maintaining water and sodium balances, the importance 
of the GI tract in the regulation of sodium balance is 
increasingly recognized.40,41 Expressed in the intestinal 
tract, kidney, and gallbladder, NHE3 is key to intestinal 
sodium and water absorption.4,5,42 Present most abun-
dantly in the GI tract and the kidneys, NHE3 helps the 
kidneys in their primary function of maintaining water and 
sodium homeostasis in the body through regulation of 
sodium absorption.5 Key physiological functions of the 
NHE3 pathway include absorption of sodium, HCO3, 
NH4+, and water, and modulating the absorption of other 
nutrients (eg, dipeptides and amino acids) through the H+ 

gradient.24,43–46 The contribution of NHE3 to maintaining 
sodium homeostasis and acid–base balance is supported by 
recent results from an NHE3 knockout mouse model.21

However, NHE3 may be more than a sodium transpor-
ter – some studies have suggested an ability to modify 
other genes. In humans, NHE3 expression is decreased in 
patients with inflammatory bowel disease.47 NHE3 knock-
out mice overexpress genes that induce the proinflamma-
tory cytokines that target NHE3 as part of a homeostatic 
response to impaired sodium absorption.48 In animal mod-
els, NHE3 deficiency compromises immune response and 
may be linked to changes to genes related to stress and 
inflammation.48,49 Microarray analysis of NHE3 knockout 
mice showed that genes involved in response to stress, 
inflammation, and chemotaxis were altered, in addition to 
genes of ion transporters and ion channels.49 NHE3 knock-
out mice have also been shown to have a compromised 
innate immune response.48 This ability is consistent with 
studies showing changes in the expression level of genes 
in various brain regions in NHE1 knockout mice.50

Physiology of NHE3 Inhibition
NHE3 inhibition results in luminal sodium and water 
retention, leading to a general decrease in paracellular 
water flux and diffusional driving force.51 Reduced intest-
inal sodium absorption and increased stool sodium excre-
tion lead to modest intracellular proton retention that is 
proposed to induce a pH-sensitive conformational change 
in claudin proteins, directly reducing paracellular perme-
ability specific to phosphate through the tight junction.51 

These physiological effects have been shown to translate 
to softer and more frequent stools, decreased blood pres-
sure, and reduced phosphate concentrations.52

The role of NHE3 in maintaining sodium and water 
homeostasis is confirmed by pharmacological data from 
NHE3 inhibitor trials. The importance of NHE3 for intest-
inal sodium absorption is supported by reduced intestinal 
sodium absorption and increased renal sodium reabsorp-
tion in animal studies of a systemic NHE3 inhibitor for the 
treatment of hypertension.53 These effects were consistent 
with reductions in urinary sodium and increases in fecal 
sodium seen in both animal and human trials of another 
NHE3 inhibitor.54 Studies of intestinal epithelial cellular 
models demonstrated that an NHE3 inhibitor blocks 
NHE3-mediated proton efflux, resulting in a rapid 
(<1 minute) reduction in intracellular pH and 
a correspondingly rapid increase in transepithelial electri-
cal resistance, which inhibits proton secretion coupled to 
sodium absorption by NHE3.51 There are, to the best of 
our knowledge, no disputes on the differing roles of NHE3 
in intestinal sodium absorption in animals and humans.

In contrast to sodium, the impact of genetic deletion of 
NHE3 on phosphate absorption in mice have been vari-
able. Pan and coworkers reported that NHE knockout in 
mice results in a large and significant decrease in urinary 
phosphate excretion,55 which would be consistent with 
reduced intestinal absorption. In contrast, Xue and cow-
orkers did not report changes in phosphate absorption or 
excretion in their NHE3 knockout mouse model,21 but this 
does not necessarily have serious implications for the 
understanding of NHE3 in humans; results from animal 
models of NaPi2b did not correspond to those seen in 
human trials,56,57 and it is possible that NHE3 inhibitors 
are interacting with other pathways not present in animals.

Disease Targets for NHE3 Inhibition
The importance of sodium and water homeostasis for the 
proper functioning of multiple biological systems58 makes 
NHE3 a potential therapeutic target for numerous disease 
states important to nephrologists,53,59,60 such as hyperten-
sion, heart failure, diabetes mellitus, constipation, and 
hyperphosphatemia (Table 1).

Hypertension: Excess sodium increases the risk of hyper-
tension and accelerates the progression of renal and cardio-
vascular dysfunction.61–63 Reduction of GI sodium 
absorption through NHE3 inhibition may be an effective 
method of combating hypertension and associated negative 
clinical outcomes.53,60 The natriuretic effects of the proximal 
tubule SGLT2 inhibitor empagliflozin, which lowers blood 
pressure, may be determined by NHE3.64 A study of the 
NHE3 inhibitor SAR218034 found that the investigational 
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drug decreased sodium absorption in the gut and substan-
tially reduced systolic blood pressure in rats.60 Tenapanor, 
a novel targeted NHE3 inhibitor, has been shown to reduce 
blood pressure, fluid volume, and left ventricular hypertro-
phy in salt-fed nephrectomized rats.54 Although human stu-
dies have been conducted,54 the impact on hypertension has 
not been published yet as of the time of this paper.

Diabetes: Diabetic patients may also benefit from 
NHE3 inhibitors. In vitro study of both human and 
mouse jejunums found that NHE3 knockdown suppressed 
glucose uptake via sodium-glucose co-transporter 1 
(SGLT1), implying an essential role of NHE3 in small 
intestinal glucose absorption.65 Therefore, a potential clin-
ical application of NHE3 inhibition is the treatment of type 
2 diabetes by reducing intestinal glucose uptake.65 Given 
that type 2 diabetes is almost 2.5 times as likely to develop 
in patients with hypertension compared to those with nor-
mal blood pressure,66 diabetic patients may also benefit 
from the ability of NHE3 inhibitors to combat high blood 
pressure.

Heart failure and diabetes mellitus: Heart failure and dia-
betes mellitus are common, intertwined comorbidities.67,68 

Diabetes is an independent risk factor for heart failure,69 and 
insulin resistance is associated with risk of heart failure.70 The 
insulin insensitivity and adipokine abnormalities that 

characterize diabetes contribute to heart failure,70,71 and neu-
rohormonal systems activated in heart failure (eg, norepi-
nephrine, angiotensin II) negatively impact insulin sensitivity 
and microvascular disease in diabetes.72,73 It is thought that 
a mechanism connecting these physiological activities is 
increased activities of NHE3 and NHE1.74 Inoue et al found 
that NHE3 is upregulated in the proximal tubule of rats with 
heart failure by transcriptional, translational, and posttransla-
tional mechanisms.75 The study also suggested that enhanced 
NHE3-mediated sodium reabsorption in the proximal tubule 
may contribute to extracellular volume expansion and edema 
(hallmarks of heart failure).75 Compared with patients without 
heart failure, atrial NHE1 expression was significantly 
increased in patients with heart failure with preserved ejection 
fraction and atrial fibrillation.76 Impaired insulin sensitivity 
(linked to the progression of diabetes)77 is associated with 
increased NHE3 activity.78 Therapies that disrupt both 
NHE1 and NHE3 had a substantially greater impact on heart 
failure in diabetes patients in comparison to other factors like 
myocardial infarction or stroke.76,79,80 A potential logical 
explanation for this effect is that such therapies are particularly 
effective when both NHE isoforms are upregulated. 
Empagliflozin, an SGLT2 inhibitor, inhibits NHE in human 
cardiomyocytes.76 In patients with type 2 diabetes and high 
cardiovascular risk, empagliflozin reduced heart failure 

Table 1 Disease Targets for Sodium–Hydrogen Exchanger 3 (NHE3)

Disease Target Pathophysiology Relevant to NHE3 Potential Mechanism of Action for NHE3 Inhibitors

Hypertension ● Excess sodium increases the risk of hypertension and 
accelerates the progression of renal and cardiovascular 

dysfunction61–63

● NHE3 inhibitors reduce intestinal sodium absorption53

Heart failure and 

diabetes mellitus

● NHE3 is upregulated in the proximal tubule of rats with 

heart failure, and enhanced NHE3-mediated sodium 

reabsorption in the proximal tubule may contribute to 
extracellular volume expansion and edema75 

● Atrial NHE1 expression was significantly increased in 

patients with heart failure76 

● Increased NHE3 activity is associated with impaired insulin 

sensitivity78

● NHE1 and NHE3 inhibitors may decrease the risk of 

heart failure by inhibiting atrial NHE1 activity and renal 

NHE3 activity, respectively 
● Targeted NHE3 inhibitors may improve insulin sensitivity 

● These may provide optimal management for both 

disorders

Constipation ● Low sodium concentrations cause a lack of water in the 

colonic lumen83 

● This leads to dry, hard stools that are difficult to pass84

● NHE3 inhibitors reduce sodium absorption and increase 

water secretion into the intestinal lumen52 

● This appears to result in softer stool consistency and 

increased intestinal transit time52

Hyperphosphatemia ● NHE3 plays a role in regulating paracellular intestinal 

phosphate absorption51

● NHE3 inhibitors create modest proton retention in cells, 

which is proposed to cause a conformational change in tight 

junction proteins. This conformational change reduces the 
permeability specific to phosphate through the paracellular 

pathway51
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hospitalization and cardiovascular death, with a consistent 
benefit in patients with and without baseline heart failure.81 

Sodium glucose cotransporter 2 may functionally interact with 
NHE3 in the proximal tubule, suggesting that SGLT2 inhibi-
tion could be an effective treatment for blood glucose effect- 
dependent and independent nephroprotective actions and 
reduction and cardiovascular mortality.82 Therefore, it is logi-
cal to further explore the potential for systemic NHE inhibitors 
to decrease the risk of heart failure and improve glucose 
tolerance.74

Constipation: The mechanisms that lead to constipation 
make this complication another target for treatment with 
NHE3 inhibitors. Lack of water in the colonic lumen as 
a result of low sodium concentrations leads to dry, hard 
stools that are difficult to pass.83–85 NHE3 inhibitors reduce 
sodium absorption in the gut, leading to increased water 
secretion into the intestinal lumen.52,86 This may accelerate 
intestinal transit time and result in softer stool consistency.52 

An NHE3 inhibitor has been shown to increase stool 
sodium excretion and soften stool consistency in human 
trials; the effects of irritable bowel syndrome with constipa-
tion (IBS-C), a common GI condition characterized by 
abdominal pain and prolonged GI transit, were alleviated 
in trial participants.87,88 The NHE3 inhibitor was well- 
tolerated, and diarrhea of mild-to-moderate severity was 
the most common adverse event (13.3%).88 This therapy 
was approved by the FDA in September of 2019.89

Hyperphosphatemia: Over 80% of the patients with CKD 
on dialysis require treatment for hyperphosphatemia,90 

a condition associated with negative clinical outcomes.91 

Kestenbaum et al found that serum phosphate concentrations 
>3.5 mg/dL were associated with a significantly increased 
risk of death in CKD patients, and mortality risk increased 
linearly with each subsequent 0.5 mg/dL increase in serum 
phosphate concentrations.92 Phosphate retention also drives 
increases in FGF23,93 which is independently associated 
with all-cause mortality and heart failure,94 and increases in 
PTH,93 which is predictive of cardiovascular mortality.95 

Tenapanor is a first-in-class, minimally absorbed, small- 
molecule NHE3 inhibitor with a unique mechanism of action 
that effectively reduces phosphate levels.51 Inhibition of 
NHE3 by this therapy reduced proton secretion coupled 
with sodium absorption, resulting in reduced sodium absorp-
tion and modest proton retention in the cells.51 This modest 
intracellular proton retention generated is proposed to mod-
ulate tight junction proteins (claudins) resulting in increased 
transepithelial electrical resistance (TEER) and reducing 
permeability specific to phosphate, thereby decreasing 

phosphate absorption through the paracellular pathway.51 

Models of NHE3 knockout cells demonstrated that the effect 
of tenapanor on transepithelial electrical resistance and the 
paracellular pathway is due exclusively to on-target inhibi-
tion of NHE3 and is likely due to decreased intracellular 
pH.51 Onset of increased TEER and reduced paracellular 
phosphate permeability is near-immediate.51 (Figure 1) 
When administered orally to rats, tenapanor acted exclu-
sively in the GI tract. The systemic availability of tenapanor 
was well below its in vitro potency of 5 nM when tested 
through plasma pharmacokinetic studies, as well as autora-
diography and mass balance studies performed with (14) 
C-tenapanor.54 The plasma tenapanor levels were below the 
limit of quantification in >99% of the patients on dialysis 
receiving tenapanor.96 Thus, tenapanor likely does not inhibit 
NHE3 in the kidney. Tenapanor acts specifically on sodium 
and phosphate and does not affect the overall balance of other 
ions such as potassium, calcium, and magnesium.54 The 
in vivo specificity of tenapanor is highlighted by its lack of 
impact on chloride, an anion that likely has similar paracel-
lular permeability characteristic to phosphate.51

Tenapanor effectively reduced phosphate levels in mul-
tiple clinical trials.97–100 At 12 weeks, tenapanor adminis-
tration lowered serum phosphorus from baseline 
concentrations of 8.1 mg/dL to 5.5 mg/dL in the efficacy 
analysis set.97 In a long-term Phase 3 study, tenapanor 
administration lowered serum phosphorus in subjects 
from baseline concentrations of 7.7 mg/dL to 5.1 mg/dL 
at 26 weeks in the efficacy analysis set.98 A recent trial 
that compared the effectiveness of a combination of tena-
panor and binder vs placebo and binder showed that tena-
panor plus binder resulted in a 0.65 mg/dL larger mean 
serum phosphate reduction from baseline compared to 
placebo plus binder.100 The study included 236 patients 
undergoing maintenance dialysis with hyperphosphatemia 
(defined in this trial as serum phosphorus 5.5–10 mg/dL 
inclusive) despite receiving phosphate binder therapy 
(sevelamer, nonsevelamer, sevelamer plus nonsevelamer, 
or multiple nonsevelamer binders).100 Almost twice as 
many patients treated with tenapanor and binder achieved 
phosphate <5.5 mg/dL compared to patients treated with 
placebo and binder (37–50% vs 18–24%, p<0.05).100 This 
dual-mechanism approach may be particularly relevant for 
patients with persistent hyperphosphatemia.100 Adverse 
events were largely limited to softened stool and 
a modest increase in bowel movement frequency, consis-
tent with tenapanor’s mechanism of action that increases 
stool sodium and water content.97
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Phosphate homeostasis is intricately connected to the reg-
ulation of hormones and minerals affected in CKD mineral 
and bone disorder, such as vitamin D, calcium, fibroblast 
growth factor-23, and parathyroid hormone.101,102 Thus, phos-
phate control via NHE3 inhibition may also have the potential 
to improve morbidity and mortality related to CKD-mineral 
and bone disorder.103 Reduction of phosphate levels via NHE3 
inhibition in the GI tract could also protect against vascular 
calcification,104 a common complication of CKD associated 
with significant morbidity and mortality.105,106 The effects of 
NHE3 inhibition and of phosphate lowering therapies in gen-
eral on clinical outcomes will need to be examined in rando-
mized controlled trials.

Summary and Future Directions
There is a gap between the latest biological understanding of 
the effects of NHE3 and clinical practice/therapy 
development.51,54,107,108 Leveraging the latest understanding 
of the importance of NHE3 for multiple disease states may help 
researchers and clinicians achieve better patient outcomes. 
Inhibition of GI NHE3 results in increased sodium and water 

excretion as well as reduced paracellular permeability to phos-
phate. The effects of NHE3 inhibition translate to a range of 
systemic changes, including softer and more frequent stools, 
decreased blood pressure, and reduced phosphate concentra-
tions. Reduced sodium absorption via NHE3 inhibition may be 
an effective treatment for hypertension, constipation, diabetes 
mellitus, and congestive heart failure. The clinical utility of 
NHE3 inhibition in these disease states will need to be tested in 
clinical trials. Targeted NHE3 inhibition has the potential to be 
particularly impactful for the treatment of hypertension, con-
stipation, and achieving and maintaining normal phosphate 
homeostasis.

More broadly, the role of the GI tract in maintaining 
systemic homeostasis, alongside the kidney, should be 
considered in clinical practice and research as it is estab-
lished that the GI tract is a site of absorption for solutes 
such as phosphate and sodium as well as water and acid– 
base balance. The connection between the GI tract and 
kidney and consideration of the GI tract as a site of focus 
to offload some of the kidneys’ efforts certainly warrant 
further exploration.

Figure 1 An NHE3 blocker reduces intestinal phosphate absorption through the paracellular pathway. (A) The intestinal paracellular phosphate absorption pathway: The sodium– 
hydrogen exchanger isoform 3 (NHE3) promotes the exchange of one sodium ion for one proton across the cell membrane.5 The paracellular pathway, which is favored by electrical and 
chemical gradients, mediates the majority of intestinal phosphate absorption in humans.51,109 Phosphate ions move down their electrical and chemical concentration gradients and are 
absorbed through the tight junction (TJ) complexes.51,109. (B) Effect of an NHE3 blocker on the intestinal paracellular phosphate absorption pathway: Treatment with an NHE3 blocker 
inhibits sodium–proton exchange (1), leading to a modest intracellular proton accumulation.51 This is proposed to cause conformational changes in tight junction proteins (2) and 
a consequent increase in transepithelial electrical resistance (TEER) that reduces paracellular permeability specific to phosphate (3)51.
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