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N6-Methyladenine (m6dA) has been discovered as a novel form of DNA methylation prevalent in eukaryotes; however,

methods for high-resolution mapping of m6dA events are still lacking. Single-molecule real-time (SMRT) sequencing has

enabled the detection of m6dA events at single-nucleotide resolution in prokaryotic genomes, but its application to detect-

ing m6dA in eukaryotic genomes has not been rigorously examined. Herein, we identified unique characteristics of eukary-

otic m6dA methylomes that fundamentally differ from those of prokaryotes. Based on these differences, we describe the

first approach for mapping m6dA events using SMRT sequencing specifically designed for the study of eukaryotic genomes

and provide appropriate strategies for designing experiments and carrying out sequencing in future studies. We apply the

novel approach to study two eukaryotic genomes. For green algae, we construct the first complete genome-wide map of

m6dA at single-nucleotide and single-molecule resolution. For human lymphoblastoid cells (hLCLs), it was necessary to in-

tegrate SMRT sequencing data with independent sequencing data. The joint analyses suggest putative m6dA events are en-

riched in the promoters of young full-length LINE-1 elements (L1s), but call for validation by additional methods. These

analyses demonstrate a general method for rigorous mapping and characterization of m6dA events in eukaryotic genomes.

[Supplemental material is available for this article.]

N6-Methyladenine (m6dA) is the most prevalent form of DNA
methylation in prokaryotes, most commonly associated with re-
striction-modification (RM) systems that defend hosts against in-
vading foreign genomes (Casadesús and Low 2006; Wion and
Casadesús 2006). In addition, increasing evidence suggests m6dA
also plays important roles in the regulation of bacterial gene
expression (Fang et al. 2012), cell cycle (Kozdon et al. 2013), viru-
lence (Heithoff et al. 1999), and antibiotic susceptibility (Jen et al.
2014). The prevalence of m6dA in eukaryotes was unclear until re-
cent studies demonstrated its existence in algae (Fu et al. 2015),
fungi (Mondo et al. 2017), worm (Greer et al. 2015), and insect
(Zhang et al. 2015), as well as recently in vertebrates (Koziol
et al. 2016), including mammals (Wu et al. 2016). These recent
studies have revealed diverse functions impacted by m6dA events
in eukaryotes, including the regulation of gene expression (Fu
et al. 2015; Wu et al. 2016; Zhou et al. 2016; Mondo et al. 2017),
transposons (Zhang et al. 2015; Wu et al. 2016), and cross-talk
with histonemodifications (Fu et al. 2015;Wu et al. 2016). The ex-
istence of m6dAmodifications across a diverse set of eukaryotic ge-
nomes opens up an exciting paradigm (Luo et al. 2015) in
epigenetics and epigenomics regarding the regulation of biological

processes in eukaryotic systems, in addition to the widely studied
cytosine methylation.

Severalmethodshavebeendeveloped tomapm6dA ineukary-
otic genomes. DNA immunoprecipitation (DIP) with anti-N6-
methyladenine antibodies followed by next-generation sequenc-
ing (m6dA-DIP-seq) has identified genomic regions enriched for
m6dA events in several species (Fu et al. 2015; Greer et al. 2015;
Zhang et al. 2015). The combination of m6dA-DIP-seq and exonu-
clease digestion (m6dA-CLIP-exo-seq) provides increased resolu-
tion (Fu et al. 2015). However, due to the nature of antibody-
based methods, both m6dA-DIP-seq and m6dA-CLIP-exo-seq lack
the ability to identify m6dA events at single-nucleotide resolution
and might be confounded by certain biases (Lentini et al. 2017).
Furthermore, the immunoprecipitation process loses information
necessary to study cell-to-cell epigenetic heterogeneity (i.e., partial
methylation) in the cell populationof interest (Fu et al. 2015;Greer
et al. 2015; Zhang et al. 2015). Thus, these antibody-based ap-
proaches are limited with respect to their ability to elucidate the
characteristics of m6dA events at high resolution. A complementa-
ry approach was developed using m6dA-sensitive or m6dA-depen-
dent restriction enzymes (REs) (Fu et al. 2015; Luo et al. 2016),
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both of which provide single-nucleotide
resolution and enable estimates of partial
methylation at each nucleotide position.
However, these RE-basedmethods have a
fundamental limitation in that they can
only examine a limited set of motif sites
(specific to the REs used) and therefore
provide a largely incomplete view of
m6dAmethylome in anygivenorganism.

Single-molecule real-time (SMRT)
sequencing (Eid et al. 2009) by Pacific
Biosciences enabled the genome-wide
mapping of m6dA in prokaryotes at
single-nucleotide resolution (Fang et al.
2012) and at single-molecule level (Beau-
laurier et al. 2015). SMRT sequencing
monitors not only the pulse fluorescence
associated with each incorporated nucle-
otide but also the timebetween the incor-
poration events, termed the inter-pulse
duration (IPD).Deviationof an IPDdistri-
bution from the expected level, as reflect-
ed by the IPD ratio, is highly correlated
with the presence of modifications of
the nucleotide corresponding to the IPD
deviation or its neighboring nucleotides
(Flusberg et al. 2010; Schadt et al. 2013).
Given this feature of SMRT sequencing,
m6dA methylomes have been mapped
for hundreds of bacterial and archaeal ge-
nomes, revealing many novel insights
into m6dA biology in prokaryotes (Sán-
chez-Romero et al. 2015; Blow et al.
2016). SMRT sequencing has also been
used to detect m6dA in some eukaryotic
species (Greer et al. 2015; Wu et al.
2016; Mondo et al. 2017). Although
promising, the effective use of SMRT se-
quencing for studying m6dA in eukaryotic genomes has not been
rigorously examined.

In fact, there are fundamental differences (Fig. 1A) between
the prokaryotic and eukaryotic m6dAmethylomes that raise a cau-
tion in the use of SMRT sequencing, andmore generally third-gen-
eration sequencing (Manrao et al. 2012; Laszlo et al. 2013;
Schreiber et al. 2013), for the detection of m6dA events in eukary-
otic genomes. First, m6dA abundance (m6dA/A) is orders ofmagni-
tudes lower in eukaryotes than in prokaryotes (Fig. 1A; Casadesús
and Low 2006; Fang et al. 2012; Fu et al. 2015; Greer et al. 2015;
Luo et al. 2015; Zhang et al. 2015). Given a certain false-positive
rate (FPR) associated with IPD-based detection of DNA modifica-
tions, m6dA calls from eukaryotes with low m6dA abundance are
expected to have high false-discovery rates (FDRs). If the FDR be-
comes too high, then true m6dA events would be overwhelmed
by the large number of false-positive ones. Second, m6dA events
in prokaryotes are highly sequence specific due to their involve-
ment in and the nature of RM systems (Casadesús and Low
2006; Fang et al. 2012). Typically, an active methyltransferase
methylates nearly all occurrences (often >95%) of its target se-
quence motif in a prokaryotic genome (Fig. 1A; Fang et al. 2012;
Blow et al. 2016). In contrast, m6dA events are much less motif
driven in eukaryotes (Fu et al. 2015; Luo et al. 2016; Wu et al.
2016), likely due to their involvement in functional regulation

rather than RM systems (Fig. 1A). For example, m6dA motifs
have been identified in Chlamydomonas reinhardtii (Fu et al.
2015), Plasmodium falciparum (Luo et al. 2016), andmouse embry-
onic stem cells (mESCs) (Wu et al. 2016), where very few occur-
rences (often <3%) of the motif across the genome sites are
methylated, i.e.,weakly motif driven. Complicatingmatters further,
other types of DNA modifications (DNA damages, m5C and its
derivatives in the process of demethylation, etc.) occurring at
neighboring bases can disturb the IPD ratios at an adenine site
in question (Flusberg et al. 2010; Schadt et al. 2013), leading
to false-positive m6dA calls. As a result, the weakly motif-driven
nature of m6dA events in eukaryotic genomes poses a critical
challenge in differentiating m6dA events from other types of
DNAmodifications. Finally, cell-to-cell epigenetic heterogeneityof
m6dA has been increasingly recognized in prokaryotes (Casadesús
and Low 2013; Manso et al. 2014; Beaulaurier et al. 2015), and
m6dA in eukaryotes is expected to be similarly heterogeneous, if
not more so, considering the large number of cell types and sub-
populations of a given cell type (Fig. 1A; Huang et al. 2000;
Heintzman et al. 2009; Miller et al. 2012; Shulha et al. 2013).
Thus, the ability to study eukaryotic m6dA methylation at single-
molecule resolution and to characterize cell-to-cell heterogeneity
is desired to achieve a better understanding of m6dA biology in
eukaryotes.

A

B

Figure 1. Differences between bacterial and eukaryotic m6dA methylomes and a novel approach for
mapping m6dA events in eukaryotic organisms. (A) Comparison between bacterial and eukaryotic
m6dAmethylomes over three aspects. (B) A novel approach formapping and characterizingm6dA events
in eukaryotic genomes. The novel approach, including a set of methods as summarized on the left,
is comprehensively evaluated using subsampled bacterial m6dA methylome data and applied to
Chlamydomonas reinhardtii (green algae) and human lymphoblastoid cells (LCLs).
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Motivated by the above challenges, here we propose the
first approach (Fig. 1B) for mapping of m6dA events using SMRT
sequencing specifically designed for the study of eukaryotic
genomes. By using well-characterized m6dA methylomes, we sys-
tematically investigate the factors affecting the sensitivity and spe-
cificity of m6dA detection at the levels of single nucleotides, single
molecules, and individual motifs. This comprehensive evaluation
provides a strategic framework that can help the study design,
m6dA detection, and interpretation in future studies of eukaryotic
m6dA methylomes using SMRT sequencing, as well as its critical
integration with independent and complementary sequencing
methods. We applied the approach to examine m6dA in green
algae and human genomes. These applications demonstrate a
generalmethod and guideline formapping and rigorous character-
ization of m6dA events in eukaryotic genomes.

Results

A novel approach and comprehensive evaluations for detecting

and characterizing m6dA in eukaryotic genomes

We developed a novel approach with three core components to
address challenges posed by the three fundamental differences
between the prokaryotic and eukaryotic m6dA methylomes. We
will first present each of the core components and associated eval-
uations, followed by the application of the novel approach to
green algae and human genomes (Fig. 1B).

Design of SMRT sequencing and rigorous detection of m6dA events

The genome-wide mapping of 5-methylcytosine (m5C) via bisul-
fite sequencing builds on the accurate base calling of Illumina se-
quencing (Schuster 2008). In contrast, SMRT sequencing–based
detection of DNA modifications is facilitated through statistical
tests (Fang et al. 2012; Schadt et al. 2013; Beaulaurier et al. 2015)
comparing the observed distribution of IPD values at each nucleo-
tide locuswith the expected IPD value of the same base in the same
sequence context, but withoutmethylation. The latter IPD value is
estimated fromwhole-genome amplified (WGA;methylation free)
samples (Flusberg et al. 2010). For a given genome, millions or bil-
lions of nucleotides are tested, making false-positive calls due to
multiple hypothesis testing a serious concern (Supplemental
Text; Supplemental Fig. S1). To account for the multiple hypothe-
sis testing, we use a FDR (Reiner et al. 2003; Fang et al. 2012) calcu-
lated by comparing the global distribution of IPD ratios (or P-
values from Student’s t-test) (https://www.pacb.com/wp-content/
uploads/2015/09/WP_Detecting_DNA_Base_Modifications_Using_
SMRT_Sequencing.pdf) in native versus WGA samples (Methods).
For a given genome, the FDR of m6dA detection conceptually re-
flects the fraction of false positives among total m6dA calls and de-
pends on two major factors: (1) the fraction of methylated
adenines across the genome, f (m6dA/A), and (2) per-strand se-
quencing depth, coverage (i.e., average number of IPD values for
each strand of the genome reference). f (m6dA/A) can be estimated
from high-performance liquid chromatography (HPLC) coupled
with m6dA mass spectrometry (MS) (Supplemental Text; Fu et al.
2015; Greer et al. 2015; Zhang et al. 2015), while coverage depends
on SMRT sequencing read depth. By using bacteria with well-char-
acterized m6dA methylomes (Supplemental Table S1), we system-
atically evaluated the variation in FDR over different levels of
f (m6dA/A) and coverage (Methods). As expected, for each level of
detection sensitivity, lower FDRs can be achieved with higher lev-
els of f(m6dA/A) and coverage (Fig. 2A,B).We further estimated the

expected levels of FDRs for genomes with different levels of m6dA
f(m6dA/A) at different levels of coverage (Methods; Fig. 2C).
Notably, while moderate coverage (e.g., ∼20×) is sufficient to
achieve a fairly low FDR (e.g., approximately 0.03) for species
with higher f (m6dA/A) levels (e.g., ∼1%), deep coverage (e.g.,
∼150×) is necessary for species with low f(m6dA/A) levels (e.g.,
∼0.001%) in order to achieve even modest FDRs (e.g., approxi-
mately 0.2). This systematic evaluation provides a rational strategy
that can help determine the depth of SMRT sequencing in future
studies of eukaryotic genomes based on the f (m6dA/A) values esti-
mated fromHPLC/MS data. It is worth noting that the coverage re-
quired to achieve a certain level of FDR estimated in Figure 2C is
specifically for calling fully (∼100%) methylated m6dA events at
single-nucleotide resolution. For other types of epigenomic analy-
ses such as motif discovery and consensus analysis across multiple
genomic sites (e.g., transcription start sites) (Fu et al. 2015), the re-
quirement on sequencing depth can be lower, depending on spe-
cific m6dA patterns in different organisms.

Unbiased discovery of m6dA motifs

In contrast to bacteria, m6dA motifs in eukaryotic species are typ-
ically only weakly motif driven; i.e., the motif-specific fraction of
methylated motif sites across the genome, fm(m

6dA/A), is often
very low (<3%) (Fig. 1A). When a motif is only methylated at a
low fraction across the genome, it becomes difficult to differentiate
between the enrichment of the motif due to m6dA events and
methylation-independent enrichment of the motif reflecting the
intrinsic sequence composition of a eukaryotic genome or certain
regions of interests (Bailey 2011). To address this challenge in
SMRT sequencing–based m6dA motif enrichment analysis, we
develop a motif enrichment score that is calculated as the odds ratio
between the frequency of a motif among putative m6dA sites (IPD
ratio > r) and the frequency of the motif among all adenine sites in
the genome (Supplemental Fig. S2). The reciprocal of this enrich-
ment score approximates the FDR of the motif sites with m6dA
events (Methods). To illustrate the use of the motif enrichment
score, we first examine a m6dA motif (CAAAAA; fm(m

6dA/A) >
95%) in a strain of the bacterium Clostridium difficile, where the
motif has an enrichment score of 1.08 × 105 (r = 4) (Fig. 2D), mean-
ing that CAAAAA is 108,000-fold enriched among A’s with an IPD
ratio > 4 compared with all the A’s sites in the genome (Supple-
mental Text). Next, we collected 11 bacterial species/strains that
contain a total of 55 confidentm6dAmotifs (Fig. 2E; Supplemental
Table S1) to systematically evaluate the use of motif enrichment
score for detecting m6dA motifs with low fm(m

6dA/A) levels as ex-
pected in eukaryotic genomes. With the 55 m6dA motifs as back-
ground truth, we calibrated motif enrichment scores over
different fm(m

6dA/A) levels of abundance (Methods; Fig. 2F).

Single-molecule analysis to estimate partial m6dA methylation

In the above methods and analyses, m6dA calling relies on IPDs
pooled from separatemolecules for each genomic locus. This aggre-
gated analysis works well when eachm6dA locus has ∼100%meth-
ylation across all molecules. However, epigenetic heterogeneity is
often observed in both bacteria (Casadesús and Low 2013; Manso
et al. 2014; Beaulaurier et al. 2015) and eukaryotic species (Heng
et al. 2009; Smallwood et al. 2014), where only a fraction of cells
are methylated at each genomic locus, i.e., partial methylation
(Fig. 1A). Partial methylation is characterized by a locus-specific
fraction of methylation fl(m

6dA/A). By using an E. coli strain with
a well-characterized methylome (Methods; Fang et al. 2012), we
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found that partial methylation significantly reduces the reliability
ofm6dA event calling by aggregate analysis (Supplemental Fig. S3).
To better estimate partial methylation and study cell-to-cell m6dA
heterogeneity in eukaryotic genomes, we developed a method for
single-molecule-resolution analysis of SMRT sequencing data. In
brief, IPDs are grouped by molecules for each genomic site and
compared with the expected IPD values (Methods; Fig. 2G). The
IPD ratios of methylated (m6dA) and nonmethylated sites (at sin-
gle-molecule level) follow two normal distributions with means

of one and approximately four and variances that decrease as per-
molecule, per-strand sequencing coverage increases (Methods;
Fig. 2G; Supplemental Text). By using 4359m6dA sites with differ-
ent levels of methylation fraction, ranging from 22% to 97%, sub-
sampled from a well-characterized E. coli m6dA methylome
(Methods), we found the single-molecule-level analysis provides
amore accurate estimation of partialmethylation than existing ag-
gregate methods without single-molecule-level analysis (Fig. 2H).
In addition, while aggregate analysis can hardly detect the GATC

C
BA

E
F

D

G H

I J

Figure 2. Comprehensive evaluation of m6dA detection based on SMRT-seq data. (A,B) Sensitivity-FDR curves at different levels of per strand SMRT-seq
coverage (A) and fraction ofmethylated A sites in the genome (B). Curves are estimated based on either P-value or IPD ratio; both are shown. FDR estimation
is based on the coverage-matched native (Escherichia coli with m6dA at GATC sites; Methods) and WGA samples. (C) FDRs estimated for different
combinations of per strand SMRT-seq coverage and fraction of m6dA sites, f(m6dA/A), in the genome. FDR estimation is based on the coverage-matched
native and WGA samples (Methods) at an IPD ratio of four. (D) Motif specific methylation detection leads to more reliable m6dA calls with lower FDRs.
(E) Distribution of P-values (−log10) and IPD ratios of m6dA events (red) and nonmethylated A’s (black) from 11 well-characterized bacterial m6dA meth-
ylomes. (F ) Enrichment score for motifs with different fractions of motif sites methylated across the genome fm(m

6dA/A), estimated based on P-value
(−log10; left) and IPD ratio (right). SMRT-seq data from 11 bacterial species/strains with well-characterized m6dA methylomes are used for this simulation
analysis. (G) Schematic illustrating single-molecule-level analysis for the estimation of partial methylation. A single molecule (two DNA strands and two
adapters) and the subreads that are produced from the top strand of this molecule in SMRT-seq (top). For a given genomic position, when non-single-mol-
ecule analysis is performed, IPD ratios for the methylated and nonmethylated subreads follow two exponential distributions (red and black curves in the
second panel). In contrast, when single-molecule analysis was performed, IPD ratios across all molecules follow two normal distributions with smaller var-
iance over increasing coverage per molecule strand (third and fourth panels). (H) Estimation of partial methylation fl(m

6dA/A) by aggregate analysis (left)
and single-molecule-level analysis (right). x-axis indicates background truth fl based on simulation; y-axis, estimated fl; and dots, 4359 A’s with known frac-
tion of m6dA methylation based on subsampling from a well-characterized E. colim6dA methylome. (I,J) Distribution of IPD ratios for partially methylated
m6dA sites and nonmethylated A’s based on aggregate analysis (I) and single-molecule level analysis (J). The inset provides an enlarged view. The motif
enrichment score for the same, known methylation motif GATC significantly differs between the two types of analyses (1.3 in aggregated analysis vs.
25 in single-molecule analysis).
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motif inE. colimethylomewith simulatedpartialmethylation (mo-
tif enrichment score = 1.3; FDR > 0.75) (Fig. 2I), single-molecule
analysis clearly recognizes the GATC motif with a motif enrich-
ment score of 25 (FDR < 0.05) (Fig. 2J).

A comprehensive characterization of m6dA in C. reinhardtii

The first genome-wide detection of m6dA in green algae C. rein-
hardtii was achieved recently, revealing that m6dA has a periodic
pattern of deposition around transcriptional start sites (TSSs)
that is inversely correlated with nucleosome positioning (Fu
et al. 2015). In this previous study, Fu et al. (2015) developed three
complementary sequencing-based methods and found that cer-
tain motifs were enriched for m6dA events, of which GATC and
CATG were confirmed by m6dA-RE-seq, where the underlined
base is the base that may or may not be methylated. In a more re-
cent study, Luo et al. (2016) developed a more sensitive version of
m6dA-RE-seq by using amethylation-dependent RE, leading to the
discoveryof two additionalm6dAmotifs (CATCandGATG).While
these two studies fundamentally enhanced our understanding of
the m6dA methylome of C. reinhardtii, the single-nucleotide-reso-
lutionm6dAmap that they provide remains incomplete, and there
are possibly additional m6dA motifs yet to be discovered.

A complete map of m6dA and cross-validation with five

independent methods

In order to construct a complete m6dAmethylome of C. reinhardtii
at single-nucleotide resolution,weperformedhigh-coverage SMRT
sequencing of both native and WGA samples of the same C. rein-
hardtii strain used in these recent studies (Supplemental Table
S1; Fu et al. 2015; Luo et al. 2016). We used an IPD ratio threshold
of >4.5 (FDR < 0.05) (Methods; Fig. 3A; Supplemental Fig. S4a;
Supplemental Text) to calculate motif enrichment scores. Among
the 16 4-mer motifs centered at AT, nine (VATB, V = A, C, or G
and B = C, G, or T) are significantly enriched for the m6dA events
in native DNA but not in WGA DNA (Fig. 3B; Supplemental Fig.
S4b). In Figure 3B, each 4 × 4 heatmap corresponds to all 16 4-
mer motifs, for which second and third bases are fixed at the cen-
ter/title (e.g., AA). The rows and columns in the heatmaps repre-
sent the first and last bases of 4-mer motifs. Each cell in the
following 4 × 4 heatmaps shows the motif enrichment score based
on native DNA sample. Take the 4 × 4 heatmap with AT on top for
example, the upper left corner corresponds to the motif CATG. A
red color indicates that CATG has a very high motif enrichment
score of approximately 200. For motifs centered at AA, CA, and
GA, high motif enrichment scores are also observed when the
last base is T (Fig. 3B); this is essentially a trivial consequence of
the VATBmotifs. It is also worth noting that a small number of ad-
ditional 4-mer motifs have moderate methylation scores (Fig. 3B,
yellow entries) in the native data, to some extent similar to that
seen in the WGA data (Supplemental Fig. S4b). This observation
suggests that some background noise (Supplemental Text), which
may contribute to spurious motif enrichment, should be removed
using WGA data as a negative control. Therefore, to further filter
the background, we calculated the ratio of the motif scores be-
tween the native DNA and the WGA control, demonstrating an
even cleaner motif enrichment (Supplemental Fig. S4c). At sin-
gle-nucleotide level, the 117,735 methylated VATB sites (FDR <
0.05) represent 98.3% of total genomic m6dA calls (Supplemental
Table S2) and ∼0.3% of total A sites in the genome. A cross-check
among five independent m6dA detectionmethods shows that sin-
gle-nucleotide m6dA events called by SMRT sequencing are highly

consistent with detections made by m6dA-RE-seq and m6dA-DIP-
seq (Fig. 3C; Supplemental Fig. S4d). It is worth nothing that a
m6dA event called from SMRT-seq data will be missed by m6dA-
RE-seq if the event resides in a motif context not recognized by
the RE. m6dA-DIP-seq can miss a m6dA event due to certain bias
or lack of sensitivity commonly associated with antibody-based
approaches (Supplemental Fig. S4d). Thus, in addition to the
four motifs confirmed by RE-based methods (Fu et al. 2015; Luo
et al. 2016), SMRT sequencing–based motif analysis revealed five
additionalm6dA 4-mermotifs and provides a completemotif char-
acterization of the C. reinhardtii m6dA methylome.

High-resolution characterization of m6dA deposition

Wenextperformedacomprehensive characterizationof theC. rein-
hardtii m6dA methylome. We first checked whether the five addi-
tional motifs discovered from SMRT sequencing follow a periodic
deposition pattern similar to the four previously known motifs
(Fu et al. 2015; Luo et al. 2016). The methylated sites of all the
nine 4-mers (VATB), but not the other seven 4-mers (non-VATB),
are enriched at TSSswith a similar periodic pattern (Fig. 3D) that in-
versely correlates with nucleosome positioning (Fig. 3E). Next, the
completeness and single-nucleotide resolution of this m6dA map
allow us to examine the frequency of m6dA events in linker
DNAs: An average of onem6dA locus occurs in the linker DNAs be-
tween the adjacent nucleosomes near TSSs, with some linkers hav-
ing approximately 10m6dA events and some having none (Fig. 3F;
Supplemental Fig. S4e). The depletion of m6dA events in the close
proximity of TSSs (Fig. 3E) motivated us to check the frequency of
VATB motif sites in this region. We found VATB and non-VATB
sites have a similar periodic frequency that reaches its peak
density near TSSs (Fig. 3E), yet the VATB sites close to TSSs are
nonmethylated. Beyond TSSs, regions with high nucleosome oc-
cupancy also have high density of VATB sites, yet low levels of
m6dA (Fig. 3E). These discrepancies between VATB density and
m6dA methylation density suggest the existence of additional
factors in the deposition of m6dA events in C. reinhardtii beyond
the proximity to TSS and the clearly definedm6dAmotif. A further
integrative analysis of SMRT sequencing data and the RNA-seq
gene expression data from Fu et al. (2015) shows that m6dA
events at VATB sites are associated with active gene expression
(Fig. 3G,H; Supplemental Fig. S4f), while there is no such correla-
tion between gene expression and the frequency of VATB motif
sites (Supplemental Fig. S4g).

Single-molecule strand-specific characterization

A unique advantage of SMRT sequencing is the ability to examine
methylation states of the two reverse-complementary VATB sites
at the two strands of each molecule. This allows us to further char-
acterize m6dA events at VATB sites in terms of full-, non-, or hemi-
methylation states at single-molecule resolution with strand spe-
cificity.We examinedm6dA calls in GATC (Fig. 3I) and CATG sites
(Fig. 3J) detected by m6dA-RE-seq (Fu et al. 2015) and the methyl-
ated VATB sites detected by SMRT sequencing (FDR < 0.05) (Fig.
3K; Supplemental Fig. S4h). Consistently, most examined mole-
cules were fully methylated on both strands (Fig. 3I–K, top right
corners).We also found that someVATB sites were hemi-methylat-
ed (Fig. 3I–K, top left and bottom right corners), which could be
right after DNA replication forks and have not been fully methyl-
ated yet. Some VATB sites were nonmethylated on both strands of
single molecules (Fig. 3I–K; bottom left corners), despite these loci
having high-consensusm6dAmethylation levels. Collectively, the
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above comprehensive characterizations reveal the first complete
m6dA map of C. reinhardtii and motivate future research toward
mechanistic understanding of m6dA deposition.

Integrative analysis of SMRT sequencing data of hLCLs

After interrogating the m6dA distribution in a unicellular eukary-
ote, we next apply the newmethod to investigate a more complex
genome. The recent discovery of m6dA in mammalian genomes

and the enrichment of m6dA in young full-length L1s in mESCs
opened new research opportunities (Wu et al. 2016). To date, the
deposition patterns of m6dA in human genomes remain unclear.
Human lymphoblastoid cells (hLCLs) are transformed from B cells
by Epstein-Barr viruses for immortalization and have been widely
used in large-scale studies of human genetics and genomics
(Reedman and Klein 1973; Young and Rickinson 2004). Recently,
whole-genome-wide SMRT sequencing data of hLCLs have been
generated to improve human genome assembly (Zook et al.
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Figure 3. Characterization of a complete m6dA methylome of C. reinhardtii reveals novel biological insights. (A) FDR estimation by comparing the IPD
ratio distribution of C. reinhardtii native (red) with WGA (black) samples. The inset provides an enlarged view. (B) A rigorous motif enrichment analysis re-
veals that VATB (V = A, C, or G and B = C, G, or T) is the m6dAmotif of in C. reinhardtii. Each 4 × 4 heatmap corresponds to all 16 4-mer motifs, for which the
second and third bases are fixed at the center/title (e.g., AA). The rows and columns in the heatmaps represent the first and last bases of 4-mer motifs. Each
cell in the following 4 × 4 heatmaps shows the motif enrichment score based on the native DNA sample. (C) Putative m6dA sites called by SMRT-seq are
highly consistent with those detected by independent techniques: m6dA-DIP-seq (DIP), m6dA-CLIP-exo-seq (CLIP), and m6dA-RE-seq (RE). (D) VATB, but
not non-VATB (i.e., TATN/NATA), motifs have a periodic pattern of IPD ratio distribution around TSSs. Average IPD ratio (normalized bymotif frequency) for
each of the nine VATB motifs (top) and each of the seven non-VATB motifs (bottom) are plotted around TSSs. (E) Relationship across four different distri-
butions (top to bottom panels): average IPD ratio of VATB sites, nucleosome positioning, and frequency of VATB and non-VATBmotif sites. Peaks and valleys
of the periodic patterns are indicated by red and blue dots, aligned across the four panels. (F) Illustrative examples showingm6dA sites near theTSSsof three
genes. This figure is adapted fromFu et al. (2015), whereweprojectm6dA sites detected by SMRT-seq (red dots; FDR < 0.05; randomly generated heights to
ease visualization) on top of GATC and CATG sites detected by m6dA-RE-seq (blue bars; middle) and nucleosome occupancy (bottom). (G) m6dA events
at VATB sites are associated with active gene expression. Average IPD ratios are compared between two groups of genes with high (FPKM > 1) and low
(FPKM < 1) expression levels. (H) The correlation between the gene expression level inC. reinhardtii andmethylated VATB ongene promoters. The x-axis rep-
resents the number of methylated VATB sites (IPD ratio > 4.5; FDR = 0.05) within [0, +2000 bp] of TSSs. The y-axis represents themean log2 FPKM of genes.
Error bars, SEs. (I–K) Single-molecule, strand-specific analysis of SMRT-seq data to examine full-, non-, or hemi-methylation status atm6dA sites. Three sets of
m6dA sites are analyzed:m6dA inGATCsites (I) andCATGsites (J) basedonm6dA-RE-seq (Fuet al. 2015) and (K) VATB siteswith highaggregate IPD ratio (IPD
ratio > 4.5;Methods)basedonSMRT-seq.Thex- and y-axesdenote the single-molecule, strand-specific IPD ratioof eachpairof reverse-complementaryVATB
sites at the two strands of each single molecule.
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2016), which also provide a good opportunity to detect putative
m6dA events.

We first used dot blotting to compare hLCLs with negative
oligos and mESCs (Wu et al. 2016). The results suggest the exis-
tence ofm6dA in hLCLs at am6dA/A level lower thanwhat was ob-
served in mESCs (Supplemental Fig. S5). It is worth noting that,
because EBV genome coexists with human genome in hLCLs,
the m6dA dot blots reflect m6dA in both EBV genome and human
genome. In such cases, sequencing-based study is necessary for a
specific genome of interest. We collected the genome-wide
SMRT sequencing data (specifically, the subset with P6-C4 chem-
istry) publicly available for three hLCL samples (HG002, HG003,
and HG004) (Zook et al. 2016). Considering the low level of
f (m6dA/A) and the sequencing coverage (about 18× per reference
strand for aggregate analysis), a genome-wide analysis of m6dA
events with current data would probably be associated with a
high FDR (Fig. 2C). Therefore, in the current study, we focused
on full-length L1s with different ages (Methods) (Castro-Diaz
et al. 2014) to test whether putative m6dA is enriched on young
full-length L1s in human genome as in mESCs (Wu et al. 2016).
A consensus analysis of IPD ratios on adenine (A) sites in the ±
6000 bp beyond the 5′ UTRs of L1s across all the 7108 full-length
L1s showed that, consistent among the three hLCLs, there is an en-
richment of high IPD ratios at young (age < 10Myr) full-length L1s
(Methods; Fig. 4A; Supplemental Fig. S6), but much less enrich-
ment in old L1s (Fig. 4A,B; Supplemental Fig. S6). In addition,
this consensus analysis shows that the mean IPD ratio on A sites
is relatively higher in the promoter and proximal region of young
L1s than in the flanking regions (Fig. 4A). In the mammalian ge-
nome, the majority of CG dinucleotides are methylated (m5C),
which can confound the m6dA analysis based on SMRT sequenc-
ing data because m5C events can affect IPDs at multiple flanking
nucleotides (Schadt et al. 2013). To scrutinize this consensus pat-
tern, we next examine multiple factors that may confound SMRT
sequencing–based detection of putative m6dA events (Methods;
Supplemental Text): effects of m5C events (Hata and Sakaki
1997) on neighboring IPDs (Supplemental Fig. S7; Flusberg et al.
2010; Schadt et al. 2013), outlier IPDs (Fang et al. 2012; Beaulaurier
et al. 2015), SNP effects (both homozygous and heterozygous
genotypes), and the use of in silico IPD estimation. We found
that the consensus IPD ratio pattern in young full-length L1 re-
mains after rigorous filtering of these possible confounding factors
(Methods; Supplemental Figs. S8, S9). However, we found that
when the same analysis was applied to the other three types of nu-
cleotides (C, G, and T), similar consensus patterns are observed
even after the effect of all these confounding factors are filtered
out (Supplemental Fig. S10). This unexpected observation suggests
the possible coenrichment of other DNA modifications (beyond
m5C) in the young L1s together with m6dA, or the possible exis-
tence of DNA secondary structure in addition to DNA modifica-
tions, which are also expected to affect DNA polymerase kinetics
in SMRT sequencing. Without orthogonal validation methods,
SMRT sequencing data alone are unable to differentiate among
these possibilities.

We therefore used m6dA-DIP-seq as an independent method
to examine the hLCLs derived from the same cell lines (Supple-
mental Table S3). A consensus analysis of m6dA/A density across
all the 7108 full-length L1s shows that m6dA events are enriched
in young, but not old, full-length L1s of hLCLs (Methods; Fig.
4C; Supplemental Fig. S11). In addition, we performed a further
analysis to examine the possibility that the consensus m6dA
pattern across young L1s by m6dA-DIP-seq could be the result of

certain biases (Lentini et al. 2017). Specifically, the exact same
m6dA-DIP-seq protocol was also performed for hLCL WGA DNA,
where essentially no m6dA events are expected, and used as an al-
ternative control to input DNA (Supplemental Table S3). We ob-
served a consistent pattern when two controls are used to
compare with m6dA-DIP-seq of native hLCL DNA (Methods; Fig.
4D). These analyses of m6dA-DIP-seq data suggest that m6dA
events are enriched in the young full-length L1 of hLCLs and
that the m6dA/A level is relatively higher in the promoter and
proximal region of young L1s than the downstream region, similar
to the observations made from IPD analysis of SMRT sequencing
data (Fig. 4A,B). A 2-mermotif analysis of the hLCL SMRT sequenc-
ing data (across young L1s) showed that AG is the most enriched
for putativem6dA events among all eight 2-mermotifs (Fig. 4E), al-
though it is worth noting the WGA sample also showed modest,
weaker enrichment for AG (Methods; Supplemental Fig. S12a; Sup-
plemental Text). In a further analysis of 4-mer motifs, AAGG and
CAAG showed the highestmotif enrichment scores that are specif-
ic to native DNA (Fig. 4F) but not WGA DNA (Supplemental Fig.
S12b). We also estimated single-nucleotide sequence conservation
in L1s throughmultiple alignment of young full-length L1s (L1HS
and L1PA2; Methods) (Castro-Diaz et al. 2014) and found that the
loci with highest frequency of putativem6dA sites (adjusted by the
frequency of A’s) across young L1s generally occur at the loci that
are highly conserved across full-length L1s (Fig. 4G; Darling et al.
2004) and the loci with highest relative frequency of AG (AG/A)
(Fig. 4G). These observations suggest the deposition and function
ofm6dAmay be related to sequence conservations in the promoter
and proximal regions of young L1s (Goodier and Kazazian 2008);
this, however, needs to be validated by future independent meth-
ods that have better resolution than m6dA-DIP-seq and less con-
strained sequence specificity than m6dA-RE-seq.

Discussion

The recent discovery of m6dA in eukaryotic genomes opens up a
new and promising dimension of epigenetic research; however,
methods for high-resolution, complete mapping of m6dA events
are still lacking. Here we presented a novel set of methods and
an analytical framework for m6dA characterization in eukaryotic
genomes using SMRT sequencing. The key motivation of this
study was the characteristics of eukaryotic m6dA methylomes
that fundamentally differ from those of prokaryotes, yet all previ-
ous computational methods for SMRT sequencing–based detec-
tion of m6dA events were designed specifically for the study of
prokaryotic methylomes. In addition, we highlighted the impor-
tance of tailoring sequencing design and analytical strategy for
an organism considering the m6dA/A abundance in its genome
as determined by MS and dot blots. For organisms with high
m6dA/A abundance, confident (low FDR) m6dA events can be
called at both single-nucleotide and single-molecule resolution, al-
lowing a variety of in-depth characterization, as demonstrated in
our analysis of the C. reinhardtii m6dA methylome. For organisms
with low m6dA/A abundance, however, m6dA events called by
SMRT sequencing data are essentially putative events and must
be treated with caution, because they are expected to have high
FDR as estimated in Figure 2C. In applications that belong to the
latter case, consensus analyses, which are more resistant to false-
positive calls, should be adopted when applicable, as illustrated
in the study of young L1s in hLCLs.

Importantly, instead of specifically detecting m6dA events,
SMRT sequencing can detect any form of DNA modifications
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Figure 4. m6dA deposition on full-length L1s in hLCLs. (A) Mean IPD ratio of A sites (adjusted by the frequency of A’s) across 1274 young (evolutionary
age<10 Myr), full-length (>6000 bp) L1s for three hLCL lines, respectively. Consistent across the trio, the IPD ratio is relatively higher in the promoter and
proximal region than the flanking regions. (B) The mean IPD ratio of A sites at full-length L1s is inversely correlated with the L1s’ evolutionary ages in hLCLs.
The heatmap shows the mean IPD ratio of A’s on each L1, [0, +500] from the 5′ UTR start site, for each of the trio. As indicated in the sidebar, L1s (rows) are
ordered by their evolutionary ages. Consistently across the trio, the IPD ratio of A sites is higher in younger full-length L1s than in older L1s. (C) Average
m6dA-DIP-seq read count (adjusted for the read count in the input DNA sample and the A/T content) on hLCL young (1274), middle-aged (4164), and old
L1 elements (1670), respectively. Consistent with SMRT-seq data, m6dA is enriched at the promoter and proximal region of young full-length L1s.
(D) Average m6dA-DIP-seq read count adjusted for the A/T content and the read count in two control samples on hLCL young L1 elements, respectively:
input DNA as control (black curve in top panel) and m6dA-DIP-seq on WGA as control (blue curve in bottom panel). (E) Motif AG is enriched for putative
m6dA events. The barplot represents the motif enrichment score of all dinucleotide motifs in each of the trio. The putative methylated position is under-
scored. It suggests thatmotif AG is enriched for high IPD ratios in clear contrast to all the other dinucleotides. (F )Motif enrichment analysis of human young
full-length L1s. Each 4 × 4 heatmap corresponds to all 16 4-mer motifs, for which the second and third bases are fixed at the center/title. The rows and
columns in the heatmaps represent the first and last bases of 4-mer motifs. Each cell in the following 4 × 4 heatmaps shows the motif enrichment score
based on the native DNA sample. (G) Peaks of putative m6dA events across human young full-length L1s occur at loci with certain sequence features.
(Top) Level of sequence conservation across young full-length L1 elements based onmultiple alignment byMauve (Darling et al. 2004); (twomiddle panels)
frequency of AG dinucleotides (relative to A’s) and A’s on young full-length L1s; and (bottom) frequency of putative m6dA events at each locus across all
young full-length L1s (averaged among the trio). The peaks of sequence conservation, AG/A frequency, and m6dA frequency across young full-length L1s
are colocalized as indicated by the red, blue, and green dots.
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that significantly affect DNA polymerase kinetics as measured by
IPD. Different types of DNA modifications at a site of interest or
its neighboring sites can lead to similar IPD ratios at the site
(Flusberg et al. 2010; Schadt et al. 2013). In a bacterial genome,
the forms of DNA methylation are relatively limited (m6dA,
m5C, m4C) and highly motif driven, which fundamentally ease
the detection and differentiation of m6dA events from other
DNA modifications. In contrast, m6dA events in eukaryotic ge-
nomes are much less abundant, weakly motif driven, and possibly
coexist with other forms of DNA modifications. These differences
between bacterial and eukaryotic methylomes call for critical at-
tention in the interpretation of putative m6dA calls based on
SMRT sequencing to avoid misinterpretation of false-positive
events. The methods and the overall framework we presented in
this study highlight the importance of rational design of experi-
ments and SMRT sequencing, as well as rigorous analysis and
interpretation of SMRT sequencing data in combination with in-
dependent and complementary techniques.

Finally, it is worth noting that the strengths and challenges
associated with SMRT sequencing discussed above also largely
apply to other third-generation real-time sequencing techniques
that also hold promise for the detection of DNA methylation,
e.g., Oxford Nanopore (Manrao et al. 2012; Laszlo et al. 2013;
Schreiber et al. 2013). Essentially, similar to SMRT sequencing,
these other third-generation sequencingmethods indirectly detect
DNA modifications based on features captured during real-time
single-molecule sequencing. Therefore, similar cautions are likely
needed in the use of these third-generation sequencing technolo-
gies in themapping and characterizationof different forms of DNA
modifications in eukaryotic genomes.

Methods

Preprocessing of SMRT sequencing data for IPD analysis

We followed the preprocessing steps as implemented in SMRT
portal (https://www.pacb.com/products-and-services/analytical-
software/smrt-analysis/). In brief, an initial filtering step removes
all subreadswith ambiguous alignments (MapQV< 240), lowaccu-
racy (<75%), or short-aligned length (fewer than 50 bases). Next,
an additional filtering step removes the subread IPD values from
the mismatched positions with respect to the reference sequence.
Subread IPD normalization corrects for any potential slowing of
polymerase kinetics over the course of an entire read (which con-
sists of many subreads) and is done by dividing subread IPD values
by their mean.

Estimation of FDR for single-nucleotide-level m6dA calls

The FDR corresponding to a specific threshold on a given statis-
tical measure (e.g., IPD ratio, t-test P-value or identificationQv)
is estimated by comparing global distribution of the measure ob-
tained from the native DNA sample with that from a WGA
(methylation-free) sample. Specifically, the FDR is calculated as
follows:

FDR = fWGA As(m . thres)
fnative As(m . thres) ,

where m denotes a given statistical measure; fWGA As(m . thres)
denotes the fraction of A’s with m > thres out of all A’s in WGA,
and fnative As(m . thres) denotes the fraction of A’s with m > thres
out of all A’s in native DNA sample. There are cases where a
WGA sample is not available or some true m6dA motifs are
known a priori or discovered based on motif enrichment analysis.

In such cases, for each motif, FDRs can be estimated for single-
nucleotide-level m6dA calls only among the A sites correspond-
ing to the motif across the genome. Specifically, we describe mo-
tif-specific FDR estimation for a specific motif using data from
native DNA alone:

FDRmotif = fnative As(m . thres)
fnative motif (m . thres) ,

where fnative motif (m . thres) denotes the frequency of motif sites
with m > thres among all sites of that putative m6dA motif in na-
tive DNA.

Expected FDRs for single-nucleotide-level m6dA calls over

different levels of f (m6dA/A) and coverage

We used an E. coli C227 methylome that has been well character-
ized in the previous study (Supplemental Table S1; Fang et al.
2012). By subsampling both m6dA motif sites and non-m6dA-mo-
tif sites, we generated test data sets with different levels of f (m6dA/
A) and coverage. For each data set, we estimated the FDR corre-
sponding to the same cutoff on IPD ratio (greater than four).

Methylation enrichment score of a putative m6dA motif

For a real m6dA methylation motif, it is expected that the fraction
of A’s with high IPD ratios in that motif, i.e., fnative motif (m . thres),
should be higher than the background in the same native DNA
sample, i.e., fnative As(m . thres). So, we define the motif enrichment
score as the odds between the two fractions:

Smotif {native} =
fnative motif (m . thres)
fnative As(m . thres) .

The denominator can also be defined as the A sites in native DNA
excluding a certain motif. Because m6dA/A level is mostly <5% in
both bacteria and eukaryotes, the two alternative definitions are
practically the same, and the currently defined one is easier to cal-
culate. It is worth noting that the motif enrichment score is mathe-
matically the reciprocal of motif-specific FDR:

Smotif {native} = 1
FDRmotif

.

Certain intrinsic biases in SMRT sequencing (e.g., possible biases
associated with the in silico control model as described above)
can contribute to the small but statistically significant enrichment
of certain motifs independent of DNAmodifications. These biases
can be estimated by calculatingmethylation enrichment scores for
a specific motif using a WGA sample without DNA methylation,
i.e., Smotif{WGA}. A motif is enriched for m6dA events if it has a
high enrichment score that is specific to the native data but not
the WGA data.

Methylation enrichment scores for motifs with different fraction

of m6dA methylation

Wecollected 11 bacterialm6dAmethylomes (55m6dAmotifs) that
have been well characterized in previous studies (Fang et al. 2012;
Beaulaurier et al. 2015; Pak et al. 2015). All the m6dA motif sites
are pooled together as true m6dA events. By subsampling from
these m6dA sites, we generated test motifs with different fraction
of methylation: 100%, 50%, 10%, 1%, and 0.1%. For each of these
fractions, we estimated the methylation motif score, Smotif {native},
corresponding to different thresholds of IPD ratios and t-test
P-values.
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Single-molecule, single-nucleotide-level calculation of IPD ratios

Considering each molecule separately, the IPD values (post-filter-
ing) are grouped by their strand and mapped genomic position,
and the mean value is calculated. At each genomic position of a
single strand, the mean IPD values for each molecule follow the
Gaussian distribution based on the central limit theory.

Methylation fraction calling for each site at single-molecule level

The central limit theorem (CLT) states that, given a sufficiently
large sample size, the average of all samples from the same popula-
tion tends toward a normal distribution, even if the original vari-
ables themselves are not normally distributed. Meanwhile, the
mean of a sample approximates the mean of the population. In
the context of IPD-basedDNAmodification detection, the IPD val-
ues follow an exponential distribution; however, the mean of the
IPD values that come from the same molecule and at the same ge-
nomic location (referred to as IPD at a single-molecule level) follows
normal distributions: either a single normal distribution (fully-
methylated or nonmethylated sites) or a mixture of normal distri-
butions (partially methylated sites). Accordingly, given a single
site, we can use a Gaussian mixture model (GMM) to estimate
the extent of partial methylation. The GMM comprises two nor-
mal distributions frommethylated and nonmethylatedmolecules;
the mean of IPD for nonmethylated molecules is estimated from
either the in silico control model or WGA; the mean of IPD for
methylated molecules is learned from the data, and the estimated
proportion of two normal distributions reflects the fraction of
methylated and nonmethylated molecules. Furthermore, the
CLT states that the variance of the sample approximates the vari-
ance of the population divided by the sample size. Accordingly,
as read coverage increases for each molecule, the variance of nor-
mal distributions of IPDs at the single-molecule level decreases, pro-
viding a better power for the separation between the methylated
and nonmethylated molecules. Therefore, the CLT provides a the-
oretical foundation to use GMM to call methylation fraction at a
single-molecule level.

Simulation of partial m6dA methylation from well-characterized

bacterial m6dA methylomes

We use the SMRT sequencing data for E. coli C227 strain (both na-
tive andWGA), generated in a recent study (Fang et al. 2012). In E.
coli, most GATC sites are ∼100% m6dA methylation (Fang et al.
2012). To simulate partially methylated GATC sites, we randomly
select single molecules from both native and WGA data and mix
them in different proportions to generate GATC sites with differ-
ent levels of partial methylation. For each GATC site, the true frac-
tion of m6dA methylation is calculated based on the number of
unique molecules from the native and WGA data.

C. reinhardtii DNA extraction

The frozen cell pellet is grounded in liquid nitrogen using a plastic
pestle and 1.5-mL LoBind Eppendorf microcentrifuge tubes. We
used the NucleoSpin Plant II (Macherey Nagel, catalog no.
740770.50) kit and followed the standard protocol for lysis buffer
PL1, using ∼100 mg of tissue/extraction column to extract the
DNA. The concentration and quality of the resulting DNA are
checked using the Qubit dsDNA high sense kit and 12k DNA
BioAnalyzer chip.

hLCLs

Genome-wide SMRT-seq data were from a recent study (Zook et al.
2016). The full human SMRT-seq data contain a mixture of two

SMRT-seq chemistries: P5_C3 and P6_C4. Different chemistries
are associated with different DNA polymerase kinetics that can sig-
nificantly impact IPD values, which may lead to false-positive
calls. To achieve the most rigorous data analysis, we chose to use
P6_C4 SMRT runs only. gDNA is available from Coriell Bioreposi-
tory: NA24143, NA24149, and NA24385.

Genome references

SMRT-seq data were mapped to the appropriate genomes using
BLASR via SMRTportal (https://www.pacb.com/products-and-
services/analytical-software/smrt-analysis/). Reads from Illumina
sequencing data are mapped using BWA 0.7.8 (Li and Durbin
2009). The C. reinhardtii data were mapped to Chlamydomonas
genome (JGI) version 9.1. For hLCL data, we built a customized ref-
erence by extracting the [−10,000 nt, +10,000 nt] regions sur-
rounding the 5′ UTR of full-length L1s from the UCSC hg19 and
mapped the human data to the faux reference. For the human
SMRT sequencing data, we made consistent observations between
hg19 and de novo genome assemblies of individual hLCL samples.
So, we expect an analysis with GRCh38would not significantly af-
fect the conclusions.

Overlap analysis between m6dA calls by different methods

For m6dA-RE-seq, its overlap with SMRT-seq is defined as the ratio
between the CATG/GATC sites detected by both SMRT-seq and
m6dA-RE-seq, and the CATC/GATG sites detected by SMRT-seq.
For m6dA-DIP-seq and m6dA CLIP-seq, their overlap with SMRT-
seq is defined as the ratio between putative m6dA sites that are de-
tected by SMRT-seq and covered by at least one peak called from
m6dA-DIP-seq/m6dA CLIP-seq, and all the m6dA sites detected
by SMRT-seq. The above overlap in a region of interest mainly de-
pends on the ratio between true-positive and false-positive SMRT-
seq m6dA detections in that region.

m6dA dot blots

We followed the same protocol as used in the recent study (Wu
et al. 2016). Briefly, first, DNA samples were denatured at 95°C
for 5 min, cooled down on ice, and neutralized with 10% vol
of6.6 M ammonium acetate. Samples were spotted on the mem-
brane (Amersham Hybond-N+, GE), air dried for 5 min, and
then UV-crosslinked (2× auto-crosslink, 1800 UV Stratalinker,
STRATAGENE). Membranes were blocked in blocking buffer (5%
milk, 1% BSA, PBST) for 2 h at room temperature and incubated
with m6dA antibodies (202-003, Synaptic Systems, 1:1000) over-
night at 4°C. After five washes, membranes were incubated with
HRP linked secondary anti-rabbit IgG antibody (1:5,000, Cell
Signaling 7074S) for 30 min at room temperature. Signals were
detected with ECL Plus Western blotting reagent pack (GE
Healthcare).

Full-length L1 elements and their evolutionary ages

We collected the human LINE-1 (L1) transposon annotations from
RepeatMasker (Tarailo-Graovac and Chen 2009). Those ∼6-kb-
long L1s were treated as full-length L1s (Babushok and Kazazian
2007). The evolutionary age for each L1 subfamily is based on
the method of Castro-Diaz et al. (2014).

Consensus analysis of IPD ratios across different L1s

The full-length L1s identified as described above were aligned
based on their 5′ UTR sites. At each aligned position, the IPD ratios
of a specific base (A/G/C/T) across different L1s were aggregated
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and normalized to the frequency of that corresponding base (A/G/
C/T).

Estimating FPR of m6dA calls for adenines close to m5C sites

E. coli K-12 has m5C at the second cytosine at CC(A/T)GG sites
(Kahramanoglou et al. 2012). We used SMRT sequencing data for
E. coli from a recent study (Fang et al. 2012) and examined the
IPD ratios for A sites within ±10 bp from CC(A/T)GG sites to esti-
mate the false positive, excluding known m6dA events at GATC
and AACNNNNNNGTGC/GCACNNNNNNGAA. Based on these
selected A sites, we estimate the FPR ofm6dA calls due to neighbor-
ing m5C sites (Supplemental Fig. S7a)

m6dA DIP sequencing

We followed the same protocol as used in the recent study (Wu
et al. 2016). Briefly, genomic DNA fromhLCLs derived from a fam-
ily trio were purified with a DNeasy kit (QIAGEN, 69504). For each
sample, 5 µg DNA was sonicated to 200–500 bp with Bioruptor.
Then, adapters were ligated to genomic DNA fragments following
the Illumina protocol. The ligated DNA fragments were denatured
at 95°C for 5 min. Then, the single-stranded DNA fragments were
immunoprecipitated with 6 mA antibodies (5 µg for each reac-
tion, 202-003, Synaptic Systems) overnight at 4°C. m6dA-enriched
DNA fragments were purified according to the active motif
hMeDIP protocol. IP DNA and input DNA were PCR amplified
with Illumina indexing primers and were then subjected to multi-
plexed library construction and sequencing with Illumina HiSeq
sequencing.

Analysis of m6dA DIP sequencing data

BWA 0.7.8 (Li and Durbin 2009) was used to align the human
m6dA-DIP-seq reads to theUCSChg19. Peaks called from the green
algae genome were obtained from the investigators of the original
study.

Consensus analysis of m6dA-DIP-seq reads across different L1s

The putative full-length L1s were aligned based on their 5′ UTR. At
each aligned position, the m6dA-DIP-seq read coverage for differ-
ent L1s were aggregated and normalized to the A/T frequency
across all of the full-length L1s. To further rule out the possibility
of biased background distribution, we also normalized the average
read coverage to the aggregated read coverage fromm6dA-DIP-seq
of WGA DNA or input DNA.

Software availability

The novel methods presented in the manuscript are implemented
in R (R Core Team 2013), and the source codes are available
in Supplemental Material and at https://github.com/fanglab/
SMRTER.

Data access

The sequencing data from this study have been submitted to
the NCBI Sequence Read Archive (SRA; https://www.ncbi.nlm.
nih.gov/sra) under the following the accession numbers:
SRP102471 (SMRT-seq of Clostridium innocuum native DNA with
1 SMRTcell), SRP102628 (SMRT-seq of C. difficile native DNA
with two SMRTcells and WGA with two SMRTcells), SRP105216
(SMRT-seq of Helicobacter pylori native DNA with two
SMRTcells), SRP102373 (SMRT-seq of Staphylococcus aureus na-
tive DNA with one SMRTcell), SRP105217 (SMRT-seq of C. rein-
hardtii native DNA with 20 SMRTcells and WGA with 18

SMRTcells), and SRP128153 (SRX3538573: m6dA-DIP-seq of
HG002 native DNA; SRX3538574: input DNA of HG002; SRX35
38575: m6dA-DIP-seq of HG003 native DNA; SRX3538576: input
DNA of HG003n SRX3538577: m6dA-DIP-seq of HG004; SRX35
38578: input DNA of HG004; SRX3538579: m6dA-DIP-seq of
GM12878 native DNA; SRX3538580: m6dA-DIP-seq of GM12878
WGA; and SRX3538581: input DNA of GM12878).
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