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Release and activity of histone in diseases

R Chen1,2, R Kang2, X-G Fan*,1 and D Tang*,2

Histones and their post-translational modifications have key roles in chromatin remodeling and gene transcription. Besides
intranuclear functions, histones act as damage-associated molecular pattern molecules when they are released into the
extracellular space. Administration of exogenous histones to animals leads to systemic inflammatory and toxic responses
through activating Toll-like receptors and inflammasome pathways. Anti-histone treatment (e.g., neutralizing antibodies,
activated protein C, recombinant thrombomodulin, and heparin) protect mice against lethal endotoxemia, sepsis, ischemia/
reperfusion injury, trauma, pancreatitis, peritonitis, stroke, coagulation, and thrombosis. In addition, elevated serum histone and
nucleosome levels have been implicated in multiple pathophysiological processes and progression of diseases including
autoimmune diseases, inflammatory diseases, and cancer. Therefore, extracellular histones could serve as biomarkers and
novel therapeutic targets in human diseases.
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Facts

� Histones and their post-translational modifications have
key roles in chromatin remodeling and gene transcription.

� In addition to nuclear function, histones function as DAMPs
when they translocate from the nucleus to the extranuclear
space.

� Extracellular histones bind to receptors and trigger activa-
tion of multiple signaling pathways in a single or combined
manner.

� High concentrations of serum histones are detected in
several human diseases.

Open Questions

� What are the distinct roles of individual histones in cell
death, inflammation, and immunity?

� What controls the secretion and release of histones?
� What is the structural basis of the regulatory activity of

extracellular histones?
� How do histones qualitatively and quantitatively sense

different forms of stressors in different cells?

Histones, first discovered by Albrecht Kossel in 1884, are
highly conserved, alkaline, positively charged proteins.1

Histones have long been considered unique to eukaryotic
cells throughout history, yet studies have demonstrated that
histone homologs exist in select archaea. They are basic unit

structure components of chromatin, namely nucleosomes
(Figure 1). It is clear that lack of histones leads to disorganized
and ineffectively structured human genomic DNA.1 Moreover,
histone post-translational modifications (PTMs) have a critical
role in the regulation of nucleosome dynamics and multiple
DNA-associated processes such as transcription, replication,
and repair.2,3 Various histone PTMs and their combinations
lead to the generation of the histone code hypothesis and
epigenetic theory, which were first proposed by Brian D Strahl
and C David Allisin in 2000.4 Emerging studies indicate that
besides having nuclear function, histones can also be
released into the extracellular space by both damaged and
activated cells, exhibiting significant toxic or pro-inflammatory
activity in vivo and in vitro.5,6 These special properties make
histones a new member of the damage-associated molecular
pattern molecules (DAMPs).7–9 Studies in both animal models
and patients have suggested that dynamic changes in
circulating levels of histones as well as nucleosomes serve
as potential biomarkers and novel therapeutic targets in
several diseases. In this review, we will summarize the basics
of histones and focus on the biological functions and clinical
relevance of extracellular histones in diseases.

Histone Structure and Nucleosome Assembly

Over the past few decades, structural biology techniques
have identified the high-resolution structures of histones.
There are five members of histones, categorized into two
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groups: core histones (H2A, H2B, H3, and H4) and linker
histones (H1 and H5). The four core histones have similar
structures with a conserved central motif domain (termed as
histone fold) and an unstructured amino-terminal tail.
Histone fold is composed of a long central a-helix with a
loop or a short helix flanked on either side. In addition, the
N-terminal of core histones has a basic region that extends
through the DNA gyres and into the space surrounding the
nucleosomes, which provides sites for multiple PTMs. The
four core histones form an octane, the basic core particle of
nucleosomes (Figure 1), and exist as an intact entity at high
ionic strengths. Meanwhile, the linker histone H1 associates
with nucleosome and facilitates the construction of numer-
ous nucleosomes into higher-order chromatin structures.
Moreover, H5, a variant of H1, is the predominant linker
histone in avian erythrocytes. Many lysines in H1 are
replaced by arginines in H5.

The most important function of histone in the nucleus is to
construct nucleosomes, which are the basic subunits of
chromatin. The nucleosome consists of B147 bp of DNA
wrapped in about one and half turns around an octameric
protein core containing two H2A-H2B dimers and one (H3-H4)
tetramer (Figure 1).10 Every two of the core histones bind
together to form dimers, which are further assembled in a
characteristic protein structure, termed as the ‘handshake’
motif. The dimer stabilization mainly depends on hydrophobic
interactions that spread over the entire region of the histone
fold in each monomer. Moreover, two (H3-H4) heterodimers
further associate to form a tetramer, which has an important
role in nucleosome assembly initiation. In contrast, the (H2A-
H2B) homodimer is not inclined to further association into a
tetramer. Thermodynamic study on H2A-H2B shows that the
histones are stable, structured entities only when they are
complexed as part of a dimer. Finally, H1 associates with the
core particle to form the nucleosome containing B200 bp
of DNA.

Histone Modification and Epigenetic Code

Precise regulation of gene expression is critical for various
developmental, physiological, and pathological processes.

Changes in chromatin’s structure and function affect gene
transcription and expression through fine-tuned mechanisms.

Chromatin presents in two forms: euchromatin with higher

transcriptional activity and heterochromatin with lower tran-
scriptional activity.11 Euchromatin is a loosely packed form

that usually localizes transcriptional initiation regions such as
promoter and enhancer elements of the gene. In contrast,

heterochromatin is a tightly packed form usually close to the
transcriptionally inactive region. These two different structural

forms of chromatin can be switched through epigenetic

modifications, which result in gene repression or activation.11

Covalent PTMs of the N-terminal tail of core histones are one

of the prominent means to regulate chromatin status,
structure, and gene expression.3 These PTMs, including

acetylation, methylation, phosphorylation, ubiquitination,
citrullination, sumoylation, biotinylation, or ADP ribosylation,

often act in combination with one another (Figure 2).12,13

Histones can be modified multiple times by different PTMs or
by the same PTM at different residues. For example, lysine

residues can be either methylated or acetylated in a separate
or sequential manner. In particular, lysine can be mono-, di-,

or tri-methylated.14 All possible combination patterns of PTMs
on histones establish a so-called ‘histone code’ in a transient

or quite stable manner.4 Moreover, the epigenetic codes,

including histone code and other epigenic modifications such
as DNA methylation, regulate chromatin organization and

DNA utilization processes (Figure 2).
Of all the histone modifications, methylation and acetylation

of cores H3 and H4 are well- studied and have central
epigenetic roles in the regulation of gene transcription. In
general, acetylation of lysine by histone acetyltransferases in
the promoter regions of histones results in a switch from

H3 H4 H2A H2B

H3-H4
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H3-H4
Tetramer

H2A-H2B
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DNA

Nucleosome

Figure 1 Histone structure and nucleosome assembly. A nucleosome contains an octamer of histone molecules. An octamer contains an H3-H4 tetramer and two
H2A-H2B dimers.
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repressive heterochromatin to permissive euchromatin. This
modification increases transcription factor binding to DNA and
subsequent gene transcription and expression. Contrastingly,
deacetylation of histones by histone deacetylases contributes
to transcriptional silencing and gene suppression. However,
methylation of histone lysine by histone methyltransferases
has a dual role in regulating gene transcription, depending on
the target residue. Moreover, histone methylation can cause
DNA methylation and histone phosphorylation through reg-
ulating the binding between histone modification enzymes
and chromatin. Increasing evidence indicates that histone
aberrant modifications contribute to human diseases such as
cancer, neurodevelopment disorders, neurodegenerative
diseases, and pathogen infection.2,15

Histone Release, NETs, and Cell Death

In addition to nuclear function, histones have recently been
demonstrated to function as endogenous danger signals or
DAMPs when they translocate from the nucleus to the
extranuclear space (Figure 3). H2A, H2B, H3, H4, and H1
are frequently detected at the cell surface or cytoplasm of
immune cells,16–19 cerebellar neurons,20 Schwann cells,21

and microglia22 in response to stress. Levels of circulating
histones as well as nucleosomes are increased in animals or
patients with cancer, inflammation, and infection, suggesting
an extracellular role of histones in human disease.5

Histone is released from activated immune cells (e.g.,
neutrophils23 and mast cells24) by extracellular traps. Extra-
cellular traps are first observed in activated neutrophil in
response to microbial infection.23 They are networks of
extracellular fibers composed of neutrophil chromatin

components (e.g., genomic DNA and core histones) and
other antimicrobial factors, which capture and degrade
invading microorganisms. Moreover, increased release of
neutrophil extracellular traps (NETs) can lead to a unique form
of immune cell death termed as ‘NETosis’. In addition to
NETosis-mediated histone release, apoptotic or necrotic cells
can release histones that are usually associated with impaired
phagocytosis25 (Figure 4). Extracellular histones have been
considered as potential mediators of lethal systemic inflam-
matory diseases including infection (e.g., sepsis6 and
peritonitis26) and sterile inflammation (e.g., ischemia-reperfu-
sion injury,27 pancreatitis,28 drug-induced tissue toxicity,29,30

and stroke31) (Figure 5). These findings suggest that histones
are therapeutic targets for infectious and inflammatory
disorders.

Histone-Partner Molecule Complex

Histones are positively charged, which allow them to bind
negatively charged molecules. Histones directly bind DNA
and form histone–DNA complexes to enhance the inflamma-
tory response, thrombin generation, coagulation, and throm-
bogenesis in vivo and in vitro.30,32 In addition, extracellular
histones are able to bind and induce aggregation of low-
density lipoprotein in vitro, suggesting a possible role of
histone in the regulation of the development of atherosclerosis.33

Polysialic acid (PSA) is a large and highly negatively charged
glycan that has a crucial role in the regulation of the adult
nervous system. H1 is present and colocalized with PSA at the
cell surface of cerebellar neurons and Schwann cells.21

Membrane H1 stimulates neurogenesis, proliferation of
Schwann cells, and migration of neural precursor cells in a
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Figure 2 Histone modifications. The major modifications shown here include acetylation (A), methylation (M), phosphorylation (P), ubiquitination (U), citrullination (C),
sumoylation (S), and biotinylation (B). Asterisk indicates that the modification is from S. cerevisiae
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In the nucleus

• Sustains nuclesome and chromosomal stability  

Histone

In the cytosol
• Unknown function
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• Promotes cell-mediated apoptosis
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• Acts as DAMP signaling

• Interacts with TLRs (e.g.,TLR2, TLR4 and TLR9)

• Histone codes for epigenetic regulation of multiple cellular processes  
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Figure 3 Histone location and function
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Figure 4 Release and activity of histones in response to stress
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Figure 5 Histone-mediated tissue injury and disease
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PSA-dependent manner.21 H1 also presents in the cell
surface of macrophages, which mediates the binding and
endocytosis of thyroglobulin.19 In addition, histones have the
ability to bind heparin sulfate proteoglycans,34 lipopolysac-
charide,20,35 amyloid precursor protein,36 b-amyloid,37 and
high mobility group box 1 (HMGB1).38 Of them, heparin and
heparan sulfate act as negatively charged binding partners of
histones. These findings suggest that histones work in a
single or complex manner to regulate various cell processes.

Pathologic Roles of Extracellular Histones

Histones in apoptosis. Apoptotic cells are defined by two
major morphological characteristics: chromatin condensation
and DNA fragmentation. Thus, nuclear components are
generally not released during apoptosis. However, increasing
evidence indicates that cells undergoing apoptosis have the
ability to release nuclear substances to the extracellular
space. These nuclear substances include histone, HMGB1,
DNA, and possibly other nuclear proteins.7 In response to
apoptotic signals, core histones (H2A, H2B, H3, and H4) as
well as link histone (H1) separate from genomic DNA, which
results in histone cytoplasmic translocation and subsequent
release into the extracellular space.39 Histone release is
highly associated with DNA fragmentation during apoptosis.
This process is primarily completed by caspase-activated
DNase/DNA fragmentation factor.39 Histones are also
involved in a self-sustaining cascade of apoptosis, which
facilitates progression of chronic obstructive pulmonary
disease (COPD).40 In particular, hyperacetylated H3.3 is
resistant to proteasomal degradation, which causes H3.3
accumulation in the extracellular space.40 Extracellular H3.3
binds to lung structural cells and induces apoptosis through
several mechanisms, including induction of calcium influx,
enhancement of the endoplasmic reticulum unfolded protein
response, and elevation of mitochondrial toxicity (Figure 4).
In contrast, the use of H3-neutralizing antibodies can protect
against H3.3-meditaed lung injury.40 These findings suggest
that H3.3 released by apoptotic cells induces further
apoptosis in lung cells, which establishes a vicious cycle.
Interestingly, H1, but not the core histones, is released from
damaged brain.41 Extracellular H1 is neurotoxic and induces
significant neuronal death through activation of the mito-
chondrial apoptosis pathway.41 Exogenous histones also
induce death in hair follicle progenitor cells.42 Thus, extra-
cellular histone release and activity occurs in a cell- and
tissue-specific manner. The exact intracellular mechanism
underlying crosstalk between apoptosis-mediated histone
release and subsequent extracellular histone-induced apop-
tosis is unknown and needs further investigation.

Histones in sepsis. Sepsis is a systemic inflammatory
response syndrome primarily caused by bacterial infections.
In 1958, Hirsch et al.43 observed that histone has a stronger
ability to kill bacteria than many canonical antimicrobials.
However, a recent study from Xu et al.6 indicates that
extracellular histones are toxic in vitro and in vivo, which
facilitates microvascular dysfunction during sepsis. Mice
show increased levels of histones in serum after endotoxin
administration. H3 and H4 are the major components

responsible for this toxicity.6 In vitro, exogenous histones
transient increase intracellular calcium concentration in
endothelial cells; in vivo, histone administration causes
neutrophil migration, endothelial injury and dysfunction,
hemorrhage, and thrombosis, which finally result in animal
death.6 In contrast, treatment with H4-neutralizing antibodies
significantly decreases histone-mediated cell injury and
protects against tissue injury and animal death in several
sepsis models (e.g., endotoxemia, cecal ligation and
puncture, and tumor necrosis factor-a (TNF-a) treatment).6

Moreover, recombinant human activated protein C (APC)
significantly reduces histone-mediated cytotoxicity by
cleavage of histones in vitro and in vivo.6 However, there is
no evidence to show that APC reduces the risk of death in
patients with severe sepsis or septic shock.44 In addition,
citrullinated H3 could be a potential serum biomarker for the
early diagnosis of septic shock.45,46 Inhibition of production
or activity of citrullinated H3 significantly improves survival in
septic mice.45,46 Collectively, extracellular histones and their
PTMs are critical mediators of sepsis and therefore may be
potential therapeutic targets in infectious diseases.

Histones in trauma. Histones are released following
trauma or severe cellular stress. A cohort study of 52
patients shows that serum histone levels are significantly
elevated after severe non-thoracic blunt trauma.47 High
serum histone levels positively correlate with severe compli-
cations, incidence, and dismal prognosis. In vitro, exogenous
histones lead to production and secretion of a variety of
cytokines (e.g., TNF-a, IL-6, and IL-10), stimulate NET
formation and myeloperoxidase release, and increase
calcium influx in immune and endothelial cells, which partly
mediates histone-induced cytotoxicity.47 In vivo, histone
administration also accelerates cytokine release, endothelial
damage, coagulation activation, and lung injury in animal
trauma models.47 Histone-neutralizing antibody administra-
tion protects mice from histone-mediated lethality.47 These
findings suggest that histone release has a key pathological
role in trauma-associated injuries.

Histones in tissue injury. Ischemia/reperfusion (I/R) and
drug-mediated tissue injury result in sterile inflammation, a
process occurring in the absence of microorganisms. Serum
histone levels are significantly elevated in animal models with
liver,27,29,30 kidney,48 lung,49 and brain31 injury, suggesting
an important role of histones in the regulation of sterile
inflammation (Figure 5). Indeed, circulating histones are
major mediators of animal death in several liver injury models
including concanavalin A-triggered liver injury, acetamino-
phen-induced hepatotoxicity, liver I/R, and acute liver failure.
Once released, histones selectively bind to Toll-like recep-
tors (TLRs) including TLR2,30 TLR4,30 and TLR927 to
produce pro-inflammatory cytokines (e.g., TNF-a and IL-6),
which in turn accelerates inflammatory responses and tissue
injury (Figure 4). Histone and DNA have synergistic effects
on activation of TLR signals.30 Treatment with histone-
neutralizing antibody or knockout of TLR2, TLR4, and TLR9
in mice protects against histone-mediated liver injury.
The myeloid differentiation factor 88 (MyD88) and
NLRP3 inflammasome signaling pathway is required for
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histone-mediated liver I/R injury.27,50 Extracellular histones
mediate not only liver, but also acute kidney injury or
ischemic stroke through direct toxicity or pro-inflammatory
effects. Similarly, TLR2 and TLR4-mediated signaling path-
ways (e.g., MyD88, NF-kB, and mitogen activated protein
kinase (MAPK)) are responsible for extracellular histone-
mediated acute kidney injury.48 Histone infusion increases
brain infarct size and exacerbates stroke outcome, whereas
histone neutralization antibodies reduce infarct size.31 Serum
H3 and H4 levels are remarkably increased in bronchoalveo-
lar lavage fluid from acute lung injury (ALI) animal models or
patients.49 Release of histones by NETs contributes to C5a
receptor (C5aR and C5L2) pathway-mediated lung damage
and inflammation because airway administration of histones
causes ALI, whereas neutralizing antibody protects against
ALI in animals.49 Collectively, extracellular histones function
as DAMPs and mediate sterile inflammation and organ
damage. Inhibition of histone release and activity could be a
feasible therapeutic strategy for tissue injury.

Histones in peritonitis. Peritonitis is an inflammation of
the peritoneum caused by bacterial or fungal infection.
The inflammasome is a multiprotein complex that regulates
the release of caspase (e.g., caspase-1 and caspase-11) -
dependent cytokine (e.g., IL-1b and IL-18) release, which
contributes to multiple inflammatory diseases, including
peritonitis. Histones released from necrotic cells have been
identified as NLRP3 inflammasome agonists by activation of
oxidative stress in vivo and in vitro (Figure 4).26 Administra-
tion of exogenous histones triggers neutrophil recruitment
and IL-1b release in an NLRP3-caspase-1-dependent
manner. In contrast, treatment with H4-neutralizing antibody
and APC significantly limits histone-induced peritonitis.26

Histones in pancreatitis. Acute pancreatitis is character-
ized by sterile inflammation and acinar cell death, including
necrosis and apoptosis. Our recent study indicated that
extracellular histone-mediated HMGB1 release in activated
immune cells is responsible for L-arginine-induced acute
pancreatitis in HMGB1 pancreatic conditional knockout
mice.28 Loss of HMGB1 in the pancreas increases histone
(H3 and H4) release into the circulation after extensive
nuclear injury and cell death. Circulating histones have the
ability to recruit macrophages, resulting in macrophage
activation and HMGB1 release. Importantly, H3- and
HMGB1-neutralizing antibody remarkably protect against
experimental acute pancreatitis in HMGB1 pancreatic condi-
tional knockout mice. Similarly, knockout of HMGB1 in the
liver also increases histone release in response to I/R
injury.51 These findings suggest that intracellular HMGB1
functions generally as an anti-inflammatory protein through
sustaining nuclear homeostasis and histone release.

Histones in retinal detachment. Retinal detachment is a
disorder of the eye in which the neural layer of the retina
peels away from the retinal pigment epithelium, usually
caused by a retinal break or tear. A recent study shows that
intravitreal concentration of histones is higher in the eyes of
patients with retinal detachment than in normal eyes.52

Extracellular histones are toxic and induce IL-8 production

in vivo and in vitro through a TLR4/MAPK (ERK1/2 and p38)-
dependent pathway52 (Figure 4). Vitreous body hyaluronic
acid decreases histone-mediated toxicity by inhibiting
diffusion of histones. These findings indicate that histones
released from dying retinas can act as DAMPs to induce
pro-inflammatory cytokine release and mediate cell toxicity.

Histones in coagulation and thrombosis. Coagulation is
the biological process by which blood forms clots. A precise
regulation mechanism prevents aberrant coagulation that
results in an increased risk of bleeding (hemorrhage) or
obstructive clotting (thrombosis). Histone administration in
mice increases microvascular thrombosis with loss of the
vascular barrier, which contributes to multiple organ dysfunc-
tion and failure.6 As major component of NETs, histones
including H1, H2A, H2B, H3, and H4 induce mouse platelet
aggregation and subsequent platelet-dependent thrombin
formation in vivo and in vitro.53 Of them, H4 has the strongest
impact on platelet activity.53 Histones also induce a
procoagulant phenotype in human platelets, which enhance
thrombin generation and accelerate the blood clotting
process.32 TLR2 and TLR4 are responsible for histone-
mediated platelet activation through activation of signaling
pathways (e.g., ERK, Akt, p38, and NF-kB), induction of
calcium influx, and fibrinogen recruitment (Figure 4).53

Histone–DNA complexes augment thrombin generation,
whereas the administration of APC abolishes this process.32

Heparin and albumin neutralizes histone toxicity as well as
histone-related platelet activation in vitro and in vivo.32,54–58

In addition, histone infusion increases plasma levels of von
Willebrand factor in mice, which contributes to platelet
activation and subsequent development of deep venous
thrombosis.59 Besides platelets, histones impair the protein
C-thrombomodulin system. Exogenous histones dose
dependently increase plasma thrombin generation in the
presence of thrombomodulin.56 Interestingly, recombinant
thrombomodulin (rTM), which has been approved for the
treatment of disseminated intravascular coagulation patients
in Japan, directly binds histone and protects mice against
lethal thrombosis in mice.60 The protective effects of rTM
against histone toxicity are mediated through both APC-
dependent and -independent ways. The structural basis for
rTM-histone binding remains unknown; more studies are
needed to confirm the therapeutic values of rTM.

Histones in autoimmune and autoinflammatory disorders.
Histone release from NETosis has been implicated in a
number of autoimmune and autoinflammatory diseases such
as rheumatoid arthritis,61 systemic lupus,62 small-vessel
vasculitis,63 and blood transfusion-related diseases.64

Besides acting as direct autoantigens in autoimmune
disorders, extracellular histones can prevent DNA
degradation through formation of histone–DNA complex,
which enhances the autoimmune response.62 In addition,
protein arginine deaminases (e.g, PDA4) mediate deimina-
tion and citrullination of histones, which in turn increase
the immunogenicity of histones released from NETosis.65

Antibody binding to nucleosomes on glomerular cell
surfaces has a role in lupus-related immune complex
glomerulonephritis.66
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Histones in central nervous system disease. Huntington’s
disease is an autosomal dominant neurodegenerative disorder
caused by a polyglutamine repeat expansion, resulting in an
expanded polyglutamine track in the huntingtin protein. Recent
evidence indicates that histone modification-mediated tran-
scriptional dysregulation is an important pathogenic
mechanism in Huntington’s disease.67 The pharmacological
manipulations of histone deacetylase activity have been
beneficial in various experimental models of central nervous
system disease such as Huntington’s disease, epilepsy,
and Alzheimer’s disease.68 Neuronal death, inflammatory
responses, and reactive gliosis are the markers of the major
neurological diseases. More recent evidence indicates that
extracellular histone H1 is a neurotoxic proinflammatory factor
and causes reactive gliosis in central nervous system.41 These
findings suggest that both histone modifications and extra-
cellular histones contribute to central nervous system disease.

Clinical Significance of Serum Histones and
Nucleosomes

Commercial enzyme-linked immunosorbent assay for nucleo-
somes is usually developed through using histone antibody.
Serum levels of nucleosomes and histones are significantly
elevated and possibly correlate with the severity or poor
prognosis of several disorders such as acute bacterial
infection,69 sepsis,70 autoimmune diseases (e.g., systemic
lupus erythematosus),71,72 cerebral stroke,73 trauma,74 and
cancer.69,75–77 Either increased apoptosis or impaired pha-
gocytosis results in increased exposure of apoptotic nucleo-
somes to the immune system in patients. These nucleosomes
lead to breaking of immune tolerance and development of
autoimmunity through the activation of T cells and B cells and
subsequent production of large amounts of anti-nucleosome,
anti-histone, and anti-DNA autoantibodies. The presence of
anti-nucleosome antibody deposits closely correlates with
lupus nephritis.72

High concentrations of serum nucleosomes are detected in
patients with cerebral stroke, especially in patients with large
infarction volumes.78 Serum nucleosome levels rise quickly
after post-ischemia, peak at days 3–5, and then fall slowly.
Moreover, circulating nucleosome levels in combination with
clinical Barthel scores provide independent and valuable
prognostic information in stroke patients with initially func-
tional deficits.73

In a prognostic study of 132 critically injured trauma
patients, circulating histones increased quickly after trauma.74

Increased serum histones were positively and negatively
related to injury severity score and Glasgow Coma Score,
respectively. High serum histones contribute to acute lung
injury, multiorgan failure, and even mortality in trauma
patients because histones can cause coagulopathy, fibrino-
lysis, and activation of systemic anticoagulation.47 Trauma
also leads to the increase in serum histone-complexed DNA
fragment (hcDNA) levels in patients, which positively correlate
with biomarkers of coagulopathy, inflammation, and endothe-
lial damage.74

In patients with different types of tumors, especially in
advanced cancer, serum nucleosome levels are significantly
higher compared with those in healthy populations.69,75–77,79

Serum nucleosome levels are also elevated in benign tumors
as well as precancerous lesions, which may increase the
difficulties in differential diagnosis of cancer and inflammation-
associated disease.80 The clinical value of serum nucleo-
some/histone tests for diagnosis and prognosis may change
depending on tumor type and analysis method.81 For
example, serum nucleosomes correlate with tumor stage
and distant metastases only in patients with gastrointestinal
cancer, but not those with other tumor types.69,82 Circulating
nucleosomes have had a significant prognostic impact on
cancer patients in univariate analyses, but not in multivariate
analyses.81,82 In addition, monitoring of extracellular nucleo-
some levels contributes a lot to the assessment of the
response to cytotoxic therapy including chemotherapy and
radiotherapy in patients with colorectal,79 pancreatic,83 and
lung cancer77 as well as hematologic malignancies.84 Taken
together, serum histones and nucleosomes can indicate a
variety of health or disease characteristics and may be useful
biomarkers for diseases, especially cancer.

Conclusions and perspectives. Histones, as chromatin
structure proteins, have recently been discovered to function
as DAMPs involved in multiple cellular processes. In the past
5 years, a significant progress has been made toward
understanding the release and activity of histones in
response to stress. Activated immune cells and injured cells
release histones into the extracellular space, where they bind
to receptors (e.g., TLRs) and trigger activation of multiple
signaling pathways (e.g., MAPK, NF-kB, AKT, and inflam-
masome) in a single or combined manner. Extracellular
histones may be useful biomarkers that will improve the
diagnosis, prognosis, and management of human diseases.
Anti-histone-based therapeutic strategies may also be useful
in treating several diseases. However, understanding the
structure, modification, and function of histones inside and
outside cells remains challenging.
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