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ABSTRACT
Hepatocellular carcinoma (HCC) is one of the most heterogeneous malignant cancers
with no effective targets and treatments. However, the molecular pathogenesis of
HCC remains largely uncertain. The aims of our study were to find crucial genes
involved in HCC through multidimensional methods and revealed potential molecular
mechanisms.Here,we reported the gene expressionprofileGSE121248 findings from70
HCC and 37 adjacent normal tissues, all of which had chronic hepatitis B virus (HBV)
infection, we were seeking to identify the dysregulated pathways, crucial genes and
therapeutic targets implicated in HBV-associated HCC. We found 164 differentially
expressed genes (DEGs) (92 downregulated genes and 72 upregulated genes). Gene
ontology (GO) analysis of DEGs revealed significant functional enrichment of mitotic
nuclear division, cell division, and the epoxygenase P450 pathway. Kyoto Encyclopedia
of Genes and Genomes (KEGG) analysis showed that the DEGs were mainly enriched
in metabolism, cell cycle regulation and the p53 signaling pathway. The Mcode plugin
was calculated to construct a module complex of DEGs, and the module was mainly
enriched in cell cycle checkpoints, RHO GTPase effectors and cytochrome P450.
Considering a weak contribution of each gene, gene set enrichment analysis (GSEA)was
performed, revealing results consistent with those described above. Six crucial proteins
were selected based on the degree of centrality, including NDC80, ESR1, ZWINT,
NCAPG, ENO3 and CENPF. Real-time quantitative PCR analysis validated the six
crucial genes had the same expression trend as predicted. Furthermore, themethylation
data of The Cancer Genome Atlas (TCGA) with HCC showed that mRNA expression
of crucial genes was negatively correlated with methylation levels of their promoter
region. The overall survival reflected that high expression of NDC80, CENPF, ZWINT,
and NCAPG significantly predicted poor prognosis, whereas ESR1 high expression
exhibited a favorable prognosis. The identification of the crucial genes and pathways
would contribute to the development of novel molecular targets and biomarker-driven
treatments for HCC.
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INTRODUCTION
Hepatocellular carcinoma (HCC) is the sixth most frequent malignant cancer and the
fourth-leading cause of cancer-related death worldwide (Bray et al., 2018). Patients with
hepatitis B virus (HBV), hepatitis C virus (HCV), alcohol consumption and aflatoxin
exposure exhibit an increased risk of liver cancer (El-Serag, 2002). Tumorigenesis is
largely ascribed to genetic changes, including structure variations, genetic copy number
variants, single nucleotide variants and small insertions and deletions (Lengauer, Kinzler
& Vogelstein, 1998). Although surgical resection, liver transplantation and sorafenib have
prolonged the survival of HCC patients, high postoperative recurrence and drug resistance
remain risk factors that confer a worse prognosis (Wang et al., 2015). Traditional treatment
strategies for HCC are not optimal. Thus, an increased understanding of the molecular
mechanism of HCC initiation and occurrence is of great importance and can be helpful to
explore novel therapeutic targets for HCC.

Integration of molecular phenotypes at different levels of HCC subtypes can provide
a genetic map for surgically resected tumors and provide information on genomic,
transcriptomic,and epigenetic regulation (Hoshida et al., 2009). These different molecular
subtypes represent diverse biologic backgrounds of HCC patients and have potential effects
on drug treatment options and prognosis. The Gene Expression Omnibus (GEO) and The
Cancer Genome Atlas (TCGA) public databases, with a relatively comprehensive gene
expression data of HCC, provide the opportunity for the bioinformatics mining (Jiang
& Liu, 2015). For example, a comprehensive analysis of the genomic and epigenomic
landscape of HCC identified significant genes altered in tumors, such as APOB, MDM4,
MET, TERT and so on (Cancer Genome Atlas Research Network, 2017). Lee et al. used
GEO and TCGA databases to find COL1A1 was upregulated in HCC and may as a
potential therapeutic target of HCC initiation and progression (Ma et al., 2019). CD5L,
SLC22A10, UROC1, and SPP2, were identified in alcohol-related HCC datasets (Zhang et
al., 2019). To date, numerous dysregulated and somatic mutations of genes and signaling
pathways have been identified that play critical roles in HCC initiation and progression
(Kan et al., 2013), including TP53 (Kan et al., 2013), UBE3C (Jiang et al., 2014), EGFR
(Jang et al., 2017), SHP-1 (Wen et al., 2018) and JAK/STAT (Kan et al., 2013). The study
indicated that chromosomal instability might be a driving force of TP53 inactivation and
CCND1 and FGF19 amplifications (Wang et al., 2013). In addition, posttranscriptional
modification of genes also has a cumulative effect on promoting HCC. The study found
that hypomethylation of the CD147 promoter region accelerated HCC progression and
was associated with worse prognosis (Kong et al., 2011). Unfortunately, most of the driver
genes (CTNNB1, TP53, AXIN1, TERT and ARID2) previously identified do not have
clinical applications (Schulze et al., 2015). Despite these findings, tumor heterogeneity and
the small samples used in studies on HCC limit our understanding of HCC, and we are
currently unable to genotype patients based on individual genome variations for drugs and
early diagnosis.

In the study, we downloaded raw data for the gene expression profile GSE121248
from the GEO database, which included 70 HBV-induced HCCs and 37 adjacent normal
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tissues. A Robust Multichip Averaging (RMA) normalization algorithm was used to screen
differentially expressed genes (DEGs). We further utilized the centrality method of degree
to identify crucial proteins and build the significant modules of molecular complex clusters
in the protein-protein interaction (PPI) network. We also validated mRNA expression
of six significantly crucial genes by real-time PCR, revealing results consistent with the
public database analysis. Methylation of crucial genes in HCC was also assessed. Survival
probability analysis of the six crucial genes was assessed using TCGA data.

MATERIALS & METHODS
Microarray data
The raw microarray data of GSE121248, including 70 HCC tissues and 37 adjacent normal
tissues, were downloaded from the GEO database (http://www.ncbi.nlm.nih.gov/geo/),
which was an openly available database. Another two datasets of GSE25097 and GSE22058
were used as the testing sets to verify our results.

Data processing and identification of DEGs
The bioconductor package (version3.7, http://www.bioconductor.org/), affy package
(version1.58.0, http://bioconductor.org/packages/affy/) and the RMA algorithm (Irizarry
et al., 2003) were used for data preprocessing and normalization in R (version 3.5.1,
R Core Team, 2018). The t test methods of the limma package (version 3.38.2,
http://bioconductor.org/packages/limma/) (Ritchie et al., 2015) were used to identify
DEGs in HCC tissues compared to adjacent normal tissues. Values of log Fold Change >2.0
or log Fold Change <−2.0 and P–value <0.05 served as the cut-off criteria.

Functional annotation of DEGs
Gene Ontology (GO) analysis was applied using the Database for Annotation,
Visualization and Integrated Discovery (DAVID, version 6.8, https://david.ncifcrf.gov/)
to explore the biological processes, cellular components and molecular function in
which the DEGs were involved (Ashburner et al., 2000). GeneAnswers (version 2.24.0,
http://bioconductor.org/packages/GeneAnswers/) was a Kyoto Encyclopedia of Genes and
Genomes (KEGG)-based R package that not only provided the annotation of biochemistry
pathways associated with diseases and drugs but also facilitated visualization of the signaling
pathways enriched by DEGs (Feng et al., 2010).

Gene set enrichment analysis of HCC
Gene Set Enrichment Analysis (GSEA) (version 3.0, the broad institute ofMIT andHarvard,
http://software.broadinstitute.org/gsea/downloads.jsp) was performed between HCC and
adjacent normal tissues to investigate the biological characteristic of HCC (Subramanian et
al., 2005). In detail, the ‘collapse data set to gene symbols’ was set to true, the ‘permutation
type’ was set to phenotype, the ‘enrichment statistic’ was set to weighted, and the
Signal2Noise metric was used for ranking genes. GSEA calculated a gene set Enrichment
Score (ES) that analyzed genes were enriched in the biological signal conduction on the
MsigDB (Molecular Signatures Database, http://software.broadinstitute.org/gsea/msigdb).
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And the meandiv normalization method was used for enrichment scores in the gene sets.
In this study, 1,000 gene of permutations were set to generate a null distribution for
enrichment score in the hallmark gene sets and functional annotation gene sets. The gene
sets database used for enrichment analysis were mainly including ‘h.all.v6.2.symbols.gmt’,
‘c2.cp.kegg.v6.2.symbols.gmt’, ‘c2.cp.reactome.v6.2.symbols’ and ‘c5.bp.v6.2.symbols’.
Nominal P–value <0.05, FDR <0.25 and gene set size >100 were defined as the cut-off
criteria.

PPI network and module analysis
The PPI network was analyzed using the STRING database for Homo sapiens (Szklarczyk
et al., 2017). STRING was used to calculate PPI networks of DEGs with a combined
score >0.4 as the cut-off criteria. Cytoscape (version3.7.0, https://cytoscape.org/) was
used to visualize the network (Shannon et al., 2003). Mcode (version1.5.1, Bader Lab,
University of Toronto, http://www.baderlab.org/Software/MCODE/) was a Cytoscape
plugin for constructing the protein modulecomplex with a degree cut-off = 2, node
score cut-off = 0.2, max.depth = 100, and k-core = 2. CytoNCA (version 2.1.6,
http://apps.cytoscape.org/download/stats/cytonca/) was used to analyze centrality of
protein interaction networks that were representative of potentially crucial proteins in the
network (Tang et al., 2015). The crucial proteins were identified based on four different
centrality parameters (degree centrality (DC), betweenness centrality (BC), eigenvector
centrality (EC) and closeness centrality (CC)). The values of centrality parameters were
sorted to select the top 10 ranked proteins, and the proteins were input as the crucial
candidates. ClueGO (version 2.5.3, http://apps.cytoscape.org/apps/cluego) and CluePedia
(version 1.5.3, http://apps.cytoscape.org/apps/cluepedia) were employed to analyze the
KEGG and Reactome pathways.

Transcriptional expression level and survival analysis of crucial
genes on HCC
The mRNA expression of crucial genes of HCC and adjacent normal tissues were evaluated
based on the shinyGEO database, which included two HCC datasets GSE25097 (containing
of 268 HCC and 243 adjacent normal tissues) and GSE22058 (containing of 96 HCC and
96 adjacent normal tissues) (Dumas, Gargano & Dancik, 2016). The Human Protein Atlas
(http://www.proteinatlas.org) was used for protein detection by immunohistochemistry.
We performed TCGA methylation data of MEXPRESS database (https://mexpress.be/)
to explain why oncogene mRNAs were highly expressed in HCC. The patients overall
survival was investigated using TCGA_LIHC data and the clinicopathological features was
download by TCGA database (https://www.cbioportal.org/). Statistical significance was
considered at P < 0.05.

HCC sample collection and revalidation of mRNA expression of
crucial genes
Thirty pairs of HCC and paired adjacent tissues were obtained from Xijing Hospital,
Fourth Military Medical University of China. Our study was approved by the Ethical
Committee and Institutional Review Board of Fourth Military Medical University (Ethical

Liu et al. (2019), PeerJ, DOI 10.7717/peerj.7436 4/20

https://peerj.com
https://cytoscape.org/
http://www.baderlab.org/Software/MCODE/
http://apps.cytoscape.org/download/stats/cytonca/
http://apps.cytoscape.org/apps/cluego
http://apps.cytoscape.org/apps/cluepedia
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE25097
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE22058
http://www.proteinatlas.org
https://mexpress.be/
https://www.cbioportal.org/
http://dx.doi.org/10.7717/peerj.7436


Application Ref: KY20183288-1). The RNA was extracted using RNA extraction kit II
(Omega Bio-tek, GA, USA) and cDNA was synthesized using PrimeScriptTM RT reagent
Kit (TaKaRaBio, Otsu, Japan). The mRNA expression was assessed in 384-well plates using
the CFX connectTM Real-Time System (BIO-RAD, Hercules, CA, USA) with the SYBR
Premix Ex Taq II (TaKaRaBio, Otsu, Japan) and primers, and qPCR data were analyzed
using 44Ct method with β-actin as the reference gene. Primer sequences were listed in
Table S1.

Statistical analysis
Statistical analysis was performed with SPSS 19.0 software (IBM, Armonk, NY, USA).
All the data were presented as mean ± SEM. Overall survival time was calculated by the
Kaplan–Meier method and analyzed with the log-rank test. The univariate andmultivariate
analyses were calculated based on the Cox regression model. The statistical analysis was
performed as appropriate by Student’s t test andχ2 test. TheP-value < 0.05were considered
statistically significant.

RESULTS
Identification of DEGs
A total of 164 DEGs that met the cut-off criteria were identified, including 72 upregulated
and 92 downregulated genes (Fig. 1A). The mRNA expression profiles of 30 representative
DEGs in 70 HCC and 37 adjacent normal tissues were presented in Fig. 1B.

Functional annotation analysis of DEGs
GO analysis of DEGs revealed that the following GO terms were significantly enriched in
condensed chromosome kinetochore (P = 1.33E-10), mitotic nuclear division (P = 7.45E-
10), sister chromatid cohesion (P = 1.97E-09), and cell division (P = 2.34E-09) (Table S2).
KEGG annotation analysis of DEGs in HCC revealed that the pathway mainly including
retinol metabolism (P = 4.21E-05), drug metabolism-cytochrome P450 (P = 5.95E-05),
cell cycle (P = 2.44E-04), and the p53 signaling pathway (P = 5.59E-04) (Fig. 2A).

Protein–protein interaction network of DEGs
The PPI network of DEGs with 113 nodes (genes) and 933 edges (interactions) was built
by STRING. The CytoNCA plugin was used to analyze the centrality of nodes. The top
10 proteins, which were also defined as crucial proteins based on four different centrality
parameters, were presented in Table 1, and they included TOP2A, NDC80, ESR1, ZWINT,
CENPF, NCAPG, ENO3 and CCNB1. The majority of these crucial proteins participated
in mitotic prometaphase (P = 1.5E-14) and resolution of sister chromatid cohesion
(P = 6E-13) (Fig. 2B).

The MCODE plugin was employed to identify the modules in the PPI network. The
top 2 significant modules were displayed in Fig. 2C, and the seed of two separate modules
are RAD51AP1 and ESR1. KEGG and Reactome pathway analyses revealed that the two
modules were mainly related to cell cycle checkpoints (P = 7.94E-15), RHO GTPase
effectors (P = 6.87E-13), and Cytochrome P450 (P = 1.37E-12) (Table S3).
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Figure 1 Identification of DEGs in HCC. (A) Volcano plot of gene expression profile. The upper-right
red dots represented upregulated genes, and the upper-left blue dots represented downregulated genes.
(B) Hierarchical clustering heatmap of the 30 representative DEGs screened on the basis of |fold change|>
2.0 and P-value< 0.05. The columns represented the samples, including 37 adjacent normal and 70 HCC
tissues. The rows showed that the 30 representative DEGs, including top 15 upregulated expressed genes,
and the last 15 downregulated expressed genes in HCC. Red indicated that the expression of genes was rel-
atively upregulated, and the green indicated the expression of genes was relatively downregulated.

Full-size DOI: 10.7717/peerj.7436/fig-1

Gene Set Enrichment Analysis of HCC
To provide further insight into the whole gene enrichment annotation of HCC and consider
the potential role of undifferentiated genes or genes with smaller differences in expression
in HCC and adjacent normal tissues, GSEA was performed to explore the gene expression
profile based on the GO terms and pathway databases of KEGG, Reactome and Hallmark
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Figure 2 Functional categories of DEGs in HCC. (A) KEGG pathway analysis of DEGs. Red circles rep-
resented upregulated genes, and blue represented downregulated genes. (B) KEGG and Reactome path-
ways analysis of 10 top ranked crucial proteins. The crucial proteins were identified by ClueGO. The col-
ors represented three types of enrichment. (C) The top two modules in the PPI network. The red indicated
module 1, and blue indicated module 2.

Full-size DOI: 10.7717/peerj.7436/fig-2

Table 1 The top 10 proteins ranked based on the node centrality of the PPI network.

Rank Degree centrality Betweenness centrality Closeness centrality Eigenvector centrality

Gene
symbol

Expression in
HCC

Gene
symbol

Expression in
HCC

Gene
symbol

Expression in
HCC

Gene
symbol

Expression in
HCC

1 TOP2A up-regulated TOP2A up-regulated TOP2A up-regulated CCNB1 up-regulated
2 NDC80 up-regulated ESR1 down-regulated NDC80 up-regulated CDK1 up-regulated
3 CCNB1 up-regulated CYP3A4 down-regulated ESR1 down-regulated NDC80 up-regulated
4 CDK1 up-regulated CYP2E1 down-regulated CDKN3 up-regulated ZWINT up-regulated
5 CDKN3 up-regulated NDC80 up-regulated BIRC5 up-regulated BUB1 up-regulated
6 ZWINT up-regulated IGF1 down-regulated CENPF up-regulated TTK up-regulated
7 TTK up-regulated CYP2B6 down-regulated CCNB1 up-regulated NCAPG up-regulated
8 BUB1 up-regulated COL1A2 up-regulated CDK1 up-regulated RACGAP1 up-regulated
9 CENPF up-regulated CENPF up-regulated EZH2 up-regulated BUB1B up-regulated
10 NCAPG up-regulated ENO3 down-regulated NEK2 up-regulated MAD2L1 up-regulated
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Figure 3 GSEA of gene expression data in HCC. The gene expression profiling identified cell cycle dys-
regulation of HCC. The enrichment of whole expressed genes were analyzed using GSEA of Hallmark col-
lection database, mainly including ‘E2F_TARGETS’ term (A), ‘G2M_CHECKPOINT’ term (B) and ‘MI-
TOTIC_SPINDLE’ term (C). GO terms (D) and pathway databases of KEGG (E), Reactome (F) analysis
demonstrated that the whole expressed genes were enriched in cell cycle progression-related gene sets. The
false discovery rates (FDR), the nominal P-value and the normalized enrichment score were calculated
for each gene set. Each black bar at the bottom of each panel represented a member gene of the respective
gene set.

Full-size DOI: 10.7717/peerj.7436/fig-3

gene sets. The result revealed that enrichment for three of six gene sets were significant at
FDR <0.25, including genes involved in cell cycle and chromosome segregation (Fig. 3).

Validation of mRNA expression of crucial genes
Six significantly crucial genes, NDC80, ESR1, ZWINT, NCAPG, ENO3 and CENPF, were
validated in two other HCC datasets (GSE25097 and GSE22058). The results also revealed
that NDC80, ZWINT, NCAPG and CENPF were significantly upregulated in HCC, and
ESR1 and ENO3 were downregulated in HCC (Fig. 4). Then, immunohistochemistry
staining validated from the Human Protein Atlas database showed that ZWINT, NCAPG
and CENPF protein expression were strongly upregulated in liver cancer tissues compared
with normal tissues (Figs. 5A–5C). ENO3 and ESR1 protein were downregulated in liver
cancer tissues compared with normal tissues (Figs. 5D & 5E). The protein expression
of NDC80 was absent in the Human Protein Atlas database. Consistent with database
analyses, the six crucial gene were successfully validated by qPCR in 30 paired human HCC
and adjacent normal tissues, and the results revealed no difference with the analysis results
of microarray profiling with the exception of ENO3 (Fig. 6).

Liu et al. (2019), PeerJ, DOI 10.7717/peerj.7436 8/20

https://peerj.com
https://doi.org/10.7717/peerj.7436/fig-3
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE25097
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE22058
http://dx.doi.org/10.7717/peerj.7436


Figure 4 Validation of differential expression of six crucial genes in GEO public datasets. Increased
expression of (A) NDC80, (C) ZWINT, (D) NCAPG and (F) CENPF in HCC. Reduced expression of (B)
ESR1 and (E) ENO3 in HCC, *** P < 0.001.

Full-size DOI: 10.7717/peerj.7436/fig-4

Figure 5 Protein expression of the crucial genes in liver cancer and normal tissues based on The Hu-
man Protein Atlas database. (A) ZWINT, (B) NCAPG and (C) CENPF proteins were strongly upregu-
lated in liver cancer tissues compared with normal tissues. (D) ENO3 and (E) ESR1 proteins were down-
regulated in liver cancer tissues compared with normal tissues.

Full-size DOI: 10.7717/peerj.7436/fig-5
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Figure 6 Revalidation of six crucial genes in 30 pairs of HCC and paired non-tumor tissues.Quantita-
tive real-time PCR results for the six crucial genes. (A) NDC80; (B) ESR1; (C) ZWINT; (D) NCAPG; (E)
ENO3; (F) CENPF. Expression of these crucial genes was standardized against β-actin expression. The sta-
tistical analysis was calculated by the Student’s t test. *P < 0.05, ***P < 0.001.

Full-size DOI: 10.7717/peerj.7436/fig-6

The relationship between the methylation and mRNA expression of crucial genes
were respectively validated by TCGA data to identify oncogenes with highly expressed
mRNA in HCC. The results showed that mRNA expression of crucial genes was negatively
correlated with methylation levels. The genes highly expressed or hypomethylated were
mostly involved in HCC. Hypermethylated/poorly expressed crucial genes in HCC tended
to exhibit high expression in adjacent normal tissues (Table 2).

Kaplan–Meier survival analysis of crucial genes in HCC patients
TCGA data were used to explore the relationship between the crucial genes and the survival
of HCC patients, and high expression of NDC80 (P = 1.10E-3), NCAPG (P = 2.80E-4),
CENPF (P = 5.72E-4) and ZWINT (P = 2.47E-4) significantly correlated with worse
survival probability for HCC patients. ESR1 (P = 2.02E-4) exhibited the opposite trend,
and ENO3 was not a significant marker of survival prognosis (P = 0.186) (Fig. 7). There
we focused a crucial tumor suppressor gene, ESR1. The RNA expression data from
the TCGA_LIHC cohorts revealed that increased ESR1 mRNA expression correlated
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Table 2 Validation of the relationship betweenmethylation andmRNA expression of crucial genes in TCGA.

Crucial gene mRNA expression in HCC Methylation status in HCC

mRNA expression P-value Methylation Position Pearson correlation P-value

chr18:2571606 −0.150 1.64E-03
NDC80

High
expression

<2.2E-
16

Hypomethylation
chr18:2571747 −0.282 <2.2E-16

ZWINT High expression <2.2E-16 Hypomethylation chr10:58121299 −0.142 0.03
chr4:17812759 −0.236 2.26E-11

NCAPG
High
expression

<2.2E-
16

Hypomethylation
chr4:17813558 −0.544 <2.2E-16
chr1:214776904 −0.243 1.48E-12
chr1:214777596 −0.304 1.60E-14
chr1:214780880 −0.174 6.27E-11
chr1:214781456 −0.154 1.38E-04
chr1:214781663 −0.217 1.21E-05

CENPF
High
expression

<2.2E-
16

Hypomethylation

chr1:214788192 −0.150 7.40E-07
chr6:152002969 −0.139 2.58E-02

ESR1
Low
expression

<2.2E-
16

Hypermethylation
chr6:152003038 −0.142 5.60E-05
chr17:4850943 −0.160 1.39E-03
chr17:4851808 −0.146 5.41E-12
chr17:4852013 −0.139 8.45E-04
chr17:4852349 −0.118 9.08E-12
chr17:4854754 −0.705 8.20E-05

ENO3
Low
expression

7.46E-
14

Hypermethylation

chr17:4855149 −0.604 2.24E-06

significantly with gender, age, serum AFP, TNM stage, tumor recurrence and tumor
differentiation (Table S4). Univariate analysis also revealed that the crucial genes ESR1
expression was significantly correlated with overall survival and recurrence (Table S5).
Multivariate analysis was performed using all of the variables that were identified as
significant by univariate analysis. The result showed that ESR1 mRNA expression was an
independent prognostic indicator for overall survival and recurrence, and other features of
patients with HCC were also analyzed (Table S5).

The mRNA expression of ER related receptor and regulatory genes
in HCC
Since estrogen plays a protective role in liver cancer by binding to estrogen receptors, we
also further investigated the expression of ER (estrogen receptor) regulon genes in HCC
tissues compared with adjacent tissues and the correlation between ER regulon genes and
ESR1 using the public GEO database (GSE22058). The mRNA expression levels of sex
hormone- related genes (ESR2, ESRRB, ESRRG, PGRMC1, PGRMC2, GPER, SHBG) and
ER regulatory gene, TFF1 in HCC tissues were significantly lower than those of adjacent
tissues, whereas the expression of estrogen-related receptor gene, ESRRA and ER regulatory
genes (MTA1 and FOXA1) were higher in tumor tissues (Fig. 8). In HCC tissues, ESR1
mRNA level was positively correlated with ESRRB (r = 0.3441, P = 0.0006), PGRMC1
(r = 0.5124, P < 0.0001) and GPER (r = 0.2274, P = 0.0259) (Fig. 9). Moreover, ESR1
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Figure 7 Kaplan–Meier survival analysis of 118 liver cancer samples using the TCGA database.
The prognostic survival analysis of the six crucial genes in HCC patients. (A) NCAPG; (B) CENPF; (C)
ZWINT; (D) ESR1; (E) NDC80; (F) ENO3. The green lines represent patients with high gene expression,
and blue lines represent patients with low gene expression.

Full-size DOI: 10.7717/peerj.7436/fig-7

mRNA level was negatively correlated with ER regulatory genes MTA1 (r =−0.2714,
P = 0.0079) and TFF1 (r =−0.3557, P = 0.0004) (Fig. 9).

DISCUSSION
In this study, we systematically analyzed gene expression profiles of HCC, including
70 HCC and 37 adjacent normal tissues, using bioinformatics methods. A total of 167
DEGs were identified, including 72 upregulated and 92 downregulated genes. The GO
terms indicated that DEGs were enriched in mitotic nuclear division, sister chromatid
cohesion, cell division, oxidoreductase activity and condensed chromosome kinetochore.
KEGG pathway analysis revealed that the DEGs were enriched in the cell cycle, and the
p53 signaling pathway and in metabolism. To eliminate individual genetic biases, the
enrichment of entire genes was performed through GSEA analysis. Whole genes were
mainly enriched in cell cycle and chromosome segregation, which was consistent with the
above enrichment results.

One of the distinguishing characteristics in cell division progression is the segregation
of sister chromatids. Incorrect segregation of chromosomes could be caused by abnormal
regulation or damage of the spindle assembly checkpoint, which subsequently increased
chromosome instability and aneuploidy and accelerated tumor progress (Carter et al.,
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Figure 8 Comparison of mRNA expression of ER-related regulon genes in humanHCC tumor tissues
and adjacent tissues using GEO database GSE22058 (n = 96). The mRNA expression of sex hormone-
related genes in HCC tissues relative to the adjacent non-tumor tissues. (A) ESR2; (B) ESRRA; (C) ESRRB;
(D) ESRRG; (E) PGRMC1; (F) PGRMC2; (G) GPER; (H) SHBG. The mRNA expression of ER regulatory
genes in HCC tissues relative to the adjacent non-tumor tissues. (I) TFF1; (J) MTA1; (K) FOXA1. *P <
0.05, **P < 0.01, ***P < 0.001.

Full-size DOI: 10.7717/peerj.7436/fig-8

2006). RB deficiency induced chromosomal instability to promote liver tumorigenesis
(Mayhew et al., 2007). In addition, the cytochrome P450 family of proteins were
downregulated in HCC based on microarray analysis. Jiang et al. confirmed that CYP3A5
was a suppressor by regulating mTORC2/AKT to antagonize the malignant phenotype of
HCC (Jiang et al., 2015). RYO et al. found that CYP3A4 downregulation was related to a
poor prognosis for 92 HCC patients (Ashida et al., 2017). Therefore, abnormal regulation
of the cell cycle together with chromosome segregation or inactivation of some cytochrome
P450 proteins could contribute to hepatogenesis.

In recent years, bioinformatics mining has been widely used for identifying tumor
features and novel diagnosis markers (Jiang & Liu, 2015). For example, Agarwal et al.
found that 59 kinases related genes were overexpressedin HCC, and furthermore predicted
overall four distinct HCC subtypes and each subtype represented unique gene expression
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Figure 9 Correlation of ESR1 and ER regulon genes in HCC tissues based on database GSE22058 (n =

96). The correlations between ESR1 mRNA expression and sex hormone-related genes expression were
analyzed (A–H), and the correlations between ESR1 mRNA expression and ER regulatory genes were ana-
lyzed (I–K).

Full-size DOI: 10.7717/peerj.7436/fig-9

profiling, pathway enrichment and prognosis using TCGA dataset (Agarwal et al., 2017).
Wang et al. analyzed the potential biomarks forHCCby integratedGEO andTCGAdatasets
and identified AKR1B10 as a novel biomarker (Wang et al., 2018). Yin et al. showed that
the genes involved in the G2/M checkpoint may act as biomarkers at the early HCC (Yin,
Chang & Xu, 2017). In addition, another study found that hub genes TOP2A, PCNA and
AURKA with low mutation frequency involved in HCC by bioinformatics analysis (Xing,
Yan & Zhou, 2018). However, their study only analyzed a profile, and only identified the
gene with a high node degree using the module analysis. In addition, their selected genes
were validated in terms of genetic alteration method or the Kaplan–Meier plotter database.
Our study combined the results of MCODE, CytoNCA and methylation modification for
the identification of crucial genes. Moreover, we validated the results by the other three
databases GSE25097, GSE22058, TCGA_LIHC and RT-PCR, and used clinical features and
prognosis of the patients to evaluate the importance of crucial gene, thus promoting the
reliability of our results.

According to degree centrality and molecular module analysis of differentially expressed
proteins in the PPI network, the crucial proteins including TOP2A, NDC80, ESR1, CCNB1,
ZWINT, CENPF, ENO3 and NCAPG were identified. Subsequently, the molecular module
of DEGs was constructed to understand the closely related subgroups, and the seed of two
separate modules was displayed as RAD51AP1 and ESR1. Furthermore, NDC80, ZWINT,
NCAPG, and CENPF were upregulated in HCC as demonstrated by qPCR and associated
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with poor prognosis. ESR1 was a favorable prognostic factor. ZWINT, NCAPG and CENPF
were frequently identified in the related enrichment sets by GSEA analysis.

Interestingly, we found that ESR1 mRNA expression was downregulated in HCC, and
ESR1 mRNA expression was negatively correlated with methylation levels of its promoter
region. ESR1was associatedwith a favorable prognostic factor, andmay as a potential tumor
suppressor in HCC. Epidemiological studies showed that the prevalence rate of HCC was
lower in female than in male patients (El-Serag & Rudolph, 2007). Chronic hepatic disease
progressed more slowly to cirrhosis and HCC in female than in male patients (Shimizu,
2003). Therefore, the estrogens may play a protective role in the progression of HCC. To
our knowledge, ESR1 (estrogen receptor α), which encodes the estrogen receptor, has a role
in hormone binding and activation of transcription. Hishida et al. previously reported that
the expression level of ESR1 was downregulated in 24 (50%) patients with HCC (Hishida
et al., 2013). Estrogen inhibited the transcription of HBV by upregulating ER α, which
changed the interaction with HNF4 α to alter binding to HBV enhancer I (Wang et al.,
2012). Studies have reported that estrogen exerted protective effects against HCC through
inhibiting IL-6 production (Naugler et al., 2007). Moreover, we identified ESR1 mRNA
level was negatively correlated with estrogen-related regulatory genes TFF1 and MTA1
using HCC dataset GSE22058.

In addition, NDC80 is a kinetochore complex componentthat can organize and stabilize
microtubule-kinetochore interactions and is required for proper chromosome segregation.
NDC80 was overexpressed in many solid cancers, and silencing of NDC80 inhibited
cell cycle and cell proliferation (Meng et al., 2015). The small molecule SM15 bound to
microtubules and NDC/Hec1 to control tumor growth through microtubule stabilization
(Ferrara et al., 2018). Ying et al. confirmed that ZWINT interacted with cell cycle-related
proteins to promote HCC proliferation (Ying et al., 2018). Liu et al. (2018) demonstrated
that NCAPG played an oncogenic role in the development of HCC. Shahid et al. (2018)
found that CENPF expression was increased in higher risk prostate cancer patients. ENO3
encoded beta-enolase, which was involved in glycolysis and gluconeogenesis, and little
information had been reported about the function of ENO3 (Kong et al., 2016). Our study
utilized multidimensional bioinformatics methods to seek and validate network crucial
genes in association with HCC from the database of TCGA and GEO. We identified
six crucial genes (NDC80, ESR1, ZWINT, NCAPG, ENO3 and CENPF) based on the
degree of centrality and module analysis of DEGs network and studied the significance
of the expression pattern of the crucial genes for overall survival of patients with HCC.
Moreover, we used qRT-PCR to validate our bioinformatics results: NDC80, ZWINT,
NCAPG and CENPF mRNA expressions were significantly upregulated in HCC, and ESR1
and ENO3 were downregulated in HCC. Furthermore, by TCGA data, mRNA expression
of crucial genes were negatively correlated with methylation levels of their promoter region.
Additionally, ESR1 expression correlated significantly with clinicopathological variables,
indicating that it may be a crucial tumor suppressor gene of HCC. The crucial genes we
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identified may be useful biomarkers for diagnosis and prognosis of HCC, even if further
experimental validations are needed to confirm the findings.
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