
Gamma-aminobutyric acidA (GABAA) receptors 
(GABAARs), which form a subclass of receptors of the 
inhibitory neurotransmitter GABA, are ionotropic recep-
tors involving chloride channels that mediate fast synaptic 
inhibition when activated by GABA [1]. GABAARs include 
19 subunits (alpha 1–6, beta 1–3, gamma 1–3, delta, epsilon, 
theta, pi, and rho 1–3) [2]. Most native GABAARs are 
thought to consist of two alpha, two beta, and one gamma 
or delta subunits, and some GABAARs can be formed from 
homo- or heteropentamers composed of rho subunits [3]. The 
GABAARs being formed from rho subunits are also called 
GABAAOr receptors (previously termed GABAC receptors) 
[2,3].

GABAARs are mainly located in the neural system and 
retina [3,4], but have also been detected in many nonneural 
cells and tissues, for example, in human peripheral blood 
mononuclear cells [5], human hepatic cells and carcinomas 
[6], the human prostate [7], the human thyroid [8], murine 
enteroendocrine cell line STC-1 [9], cat chemosensory 
glomus cells [10], and the rat taste bud [11] and kidney [12]. 
In the eye, GABAAR B-chain protein has been detected in 
human corneal stem cells [13] and the GABAAR β-subunit 
(GABAAβ) protein in the cultured human RPE [14]. In animal 
models, the GABAAR beta 3 subunit protein has been iden-
tified in cultured mouse lens epithelial cells [15], GABAAβ 
protein isolated from the cultured rat RPE [14], and GABAAR 
alpha 1 (GABAAα1) and rho 1 subunit (GABAAρ1) mRNAs and 
proteins present in the chick RPE [16]; GABAAρ1 has also 
been visualized in the chick sclera [17].

GABAARs have been reported to regulate intracellular 
calcium concentration ([Ca2+]i) in a variety of cells. The 
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Purpose: Gamma-aminobutyric acidA (GABAA) receptors (GABAARs), which are ionotropic receptors involving chlo-
ride channels, have been identified in various neural (e.g., mouse retinal ganglion cells) and nonneural cells (e.g., mouse 
lens epithelial cells) regulating the intracellular calcium concentration ([Ca2+]i). GABAAR β-subunit protein has been 
isolated in the cultured human and rat RPE, and GABAAα1 and GABAAρ1 mRNAs and proteins are present in the chick 
RPE. The purpose of this study was to investigate the expression of GABAAα1 and GABAAρ1, two important subunits in 
forming functional GABAARs, in the cultured human RPE, and further to explore whether altering receptor activation 
modifies [Ca2+]i.
Methods: Human RPE cells were separately cultured from five donor eye cups. Real-time PCR, western blots, and immu-
nofluorescence were used to test for GABAAα1 and GABAAρ1 mRNAs and proteins. The effects of the GABAAR agonist 
muscimol, antagonist picrotoxin, or the specific GABAAρ antagonist 1,2,5,6-tetrahydropyridin-4-yl) methylphosphinic 
acid (TPMPA) on [Ca2+]i in cultured human RPE were demonstrated using Fluo3-AM.
Results: Both GABAAα1 and GABAAρ1 mRNAs and proteins were identified in cultured human RPE cells; antibody stain-
ing was mainly localized to the cell membrane and was also present in the cytoplasm but not in the nucleus. Muscimol 
(100 μM) caused a transient increase of the [Ca2+]i in RPE cells regardless of whether Ca2+ was added to the buffer. 
Muscimol-induced increases in the [Ca2+]i were inhibited by pretreatment with picrotoxin (300 μM) or TPMPA (500 μM).
Conclusions: GABAAα1 and GABAAρ1 are expressed in cultured human RPE cells, and GABAA agents can modify [Ca2+]i.
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GABAAR agonist muscimol increases [Ca2+]i in rat astrocytes 
[18], as well as in embryonic and early postnatal neocor-
tical cells [19], embryonic rat ventral spinal cord neurons 
[20], embryonic rat striatal neurons [21], and rat cerebellar 
Purkinje neurons [22]. It also alters [Ca2+]i in rat pituitary 
lactotrophs [23], immortalized gonadotropin -releasing 
hormone neurons [24], and alphaT3–1 gonadotropes [25]. 
Within ocular tissues, muscimol increases [Ca2+]i in postnatal 
mouse retinal ganglion cells [26] and mouse lens epithelial 
cells [15]; these increases have been prevented by GABAAR 
antagonists bicuculline and picrotoxin.

The RPE is a single layer of predominantly hexagonal, 
pigmented cells that interact apically with the interphoto-
receptor matrix and the photoreceptor outer segments and 
basally with the Bruch’s membrane of the vascular choriocap-
illaris (reviewed in [27]). Ca2+ signals play essential roles in 
the function of the RPE [28,29], and a normal [Ca2+]i appears 
to be essential if the RPE is to conduct its normal retinal 
maintenance functions [30]. Abnormal [Ca2+]i levels in the 
RPE have been reported to be associated with high lipofuscin 
formation [31], retinal dystrophy [32], and cell death [33]. The 
[Ca2+]i in RPE can be modified by various neural transmitter 
receptors, for example, acetylcholine muscarinic receptors 
[34], alpha7 nicotinic acetylcholine receptors [35], adrenergic 
receptors [36,37], and GABAB receptors [38]. Whether stimu-
lation of GABAARs modifies the [Ca2+]i in RPE is unknown. 
The purpose of this study was to investigate the expression of 
GABAAα1 and GABAAρ1—two important subunits in forming 
functional GABAARs [3]—and the effects of the GABAAR 
agonist muscimol, antagonist picrotoxin, and specific 
GABAAρ antagonist TPMPA [39] on the [Ca2+]i in the cultured 
human RPE.

METHODS

Human RPE cell culture: The RPE cell cultures were estab-
lished from five donor eyecups from one eye of each of five 
previously healthy adults after the corneas were removed for 
donor cornea transplantation surgery. Donors included three 
males (aged 38, 73, and 75 years) and two females (aged 66 
and 70 years) of Han nationality. Eyecups were received 
within 24 h of death. The study was approved by the Institu-
tional Review Board of Shandong University’s Qilu Hospital 
and was performed in accordance with “The Code of Ethics 
of the World Medical Association (Declaration of Helsinki)” 
for experiments involving humans.

Primary cultures of human RPE cells were produced as 
previously described [40,41]. After the anterior segments and 
vitreous were removed, the retinal tissue was separated from 
the RPE and was retained for use as the positive control. After 

being washed three times in PBS (1X; 120 mM NaCl, 20 mM 
KCl, 10 mM NaPO4, 5 mM KPO4, pH 7.4; Gibco, Rockville, 
MD), The posterior eyecups were incubated with 0.25% 
trypsin-EDTA (Gibco) and the RPE cells were collected using 
Dulbecco’s modified Eagle’s medium (DMEM; manufacturer 
product number: 11965-092, Gibco, Rockville, MD) with 
10% fetal bovine serum (Gibco, Rockville, MD) and seeded 
in a culture flask; cells from each donor were kept separate 
(n = 5). When reaching confluence, the cells were digested 
using 0.25% trypsin-EDTA, and were passaged; the experi-
ment used the third passage cells. The cell phenotype was 
identified using immunofluorescence with an RPE-specific 
marker, namely the RPE 65 antibody (Millipore, Billerica, 
MA) [42]. To determine whether the cultured cells were 
contaminated by other cells such as glial cells [43], Müller 
cells [44], fibroblasts [43], or choroidal melanocytes [45], the 
cultured cells were also stained with S100 antibody (Zhong-
shan Jinqiao Company, Beijing, China).

Real-time PCR: Total RNA extraction and reverse transcrip-
tion were performed as previously described [16]. Based on 
the sequences reported in the GenBank database, primers for 
human GABAAα1 and GABAAρ1 were designed and ordered 
from Shanghai Biosune Biotechnology Company (Shanghai, 
China). The primer sequences of human GABAAα1 were F: 
5’- ACT TTT CAG CTG CTC CAG CCC G-3’, R 5’- CTC 
CCA ATC CTG GTC TCA GGC GA-3’. The sequences of 
human GABAAρ1 were F: 5’- GGC TGG TAC AAC CGT 
CTC TA-3’, R: 5’- CAC AAA GCT GAC CCA GAG GT-3’. 
RNA concentration and purity were determined at an optical 
density ratio of 260:280 using a spectrophotometer. SYBR 
Green real-time PCR was accomplished according to the 
manufacturer’s protocol. Briefly, denaturation was performed 
for 10 s at 95 °C, annealing for 10 s at 60 °C, and extension for 
10 s at 72 °C. β-Actin was used as the housekeeping gene. The 
real-time PCR products were sent to the Shanghai Biosune 
Biotechnology Company for sequence analysis. Correct 
product size was confirmed by DNA agarose gel and lack of 
primer dimer formation was verified by melt curve analysis. 
The human retina was used as the positive control, and the 
samples without cDNA were used as the negative control.

Western blots: Western blots were performed as previously 
described [16]. Total protein was extracted separately from 
each RPE sample and human retina sample (which served 
as the positive control). Proteins were separated by 7.5% 
sodium dodecyl sulfate polyacrylamide gel electrophoresis 
(SDS–PAGE), and transferred to polyvinylidene difluoride 
(PVDF) membranes. After being blocked in 5% fat-free 
milk diluted in Tris-buffered saline with Tween (TBST; 0.1% 
Tween-20, 150 mM NaCl, 50 mM Tris, pH 7.5) for 1 h, the 
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membrane was incubated with the polyclonal goat anti-human 
GABAAα1 antibody (1:100, Santa Cruz Biotechnology, Santa 
Cruz, CA), polyclonal goat anti-human GABAAρ1 antibody 
(1:100, Santa Cruz, CA), or monoclonal mouse anti-human 
β-Actin antibody (Zhongshan Jinqiao Company, Beijing, 
China) overnight at 4 °C, and then was followed by incubation 
with horseradish peroxidase (HRP)-conjugated secondary 
antibody (1:10,000) for 1 h at 37 °C. The bands developed 
by use of HRP-conjugated secondary antibody detection kits 
(Jingmei, Shenzhen, China) were scanned and analyzed with 
FluorchemTM 9900 Gel Imaging System (Alpha Innotech, San 
Leandro, CA).

Immunofluorescence: Immunofluorescence was performed 
as previously described [16,46,47]. Brief ly, after being 
fixed with 4% paraformaldehyde for 15 min, cells were 
blocked with 10% normal donkey serum for 30 min at room 
temperature and then were incubated with monoclonal mouse 
anti-human RPE 65 antibody (1:300), monoclonal mouse anti-
human S100 antibody (1:200), polyclonal goat anti-human 
GABAAα1 antibody (1:50), and polyclonal goat anti-human 
GABAAρ1 antibody (1:50) overnight at 4 °C. Subsequently, 
the cells were incubated with donkey anti-mouse secondary 
antibody (Alexa Fluor 568 conjugated; 1:1,000; Invitrogen, 
CA) and donkey anti-goat secondary antibody (Alexa Fluor 
488 conjugated; 1:1,000; Invitrogen) for 30 min at 37 °C. Cells 
incubated with PBS instead of primary antibodies served as 
negative control. A drop of Prolong Gold anti-fade reagent 
with 4',6-diamidino-2-phenylindole (DAPI; Invitrogen) was 
added before cell images were acquired using an LSM 710 
laser confocal microscope (EC Plan-Neofluar 40×/1.30 Oil 
objective, N.A. 0.55) equipped with ZEN 2009 Light Edition 
software (Zeiss, Germany).

Measuring [Ca2+]i: [Ca2+]i was measured as previously 
described [48]; Ca2+-dependent RPE functions and the 
use of RPE cell cultures to study these have been recently 
reviewed [28]. RPE cells were seeded onto specialized cell 
culture dishes 35 mm in diameter with a glass disc of 20 
mm in diameter inserted in the middle of the base (NEST, 
Wuxi, China). When cultures were confluent, the cells were 
incubated with 5 μM fluo3-acetoxymethyl ester (Fluo3-AM) 
calcium indicator for 20 min in the dark at 37 °C in normal 
physiological saline solution (N-PSS; 140 mM NaCl, 1 mM 
KCl, 1 mM CaCl2, 1 mM MgCl2, 10 mM glucose, 5 mM 
HEPES, pH 7.4). After being rinsed twice with N-PSS, cells 
were kept in N-PSS for another 10 min; the cell culture dishes 
with RPE attached were placed on the viewing stage of a 
confocal microscope (LSM 710, Zeiss). While images were 
being captured, the GABAAR agonist muscimol (100 μM; 
Sigma, MO) was added to the assay at set time points. To 

determine the impact of the GABAAR antagonist, cells were 
preincubated with either the GABAAR antagonist picrotoxin 
(300 μM; Sigma) or the GABAAρ antagonist TPMPA (500 
μM; Sigma) for 10 min before muscimol (100 μM) was 
added. To determine the effects of muscimol on [Ca2+]i in 
buffer without Ca2+, cells were rinsed and kept in PSS without 
Ca2+ added. PBS was added instead of agents as the control. 
Sequences of images were acquired using the laser confocal 
microscope (LSM 710, Zeiss) equipped with a 488 nm laser 
at 5 s intervals.

The fluorescent intensity over the cultured human RPE 
cell body was measured before and after agent application, 
and was calculated and analyzed using Zen 2009 Light 
Edition software (Zeiss).

Statistical analysis: Data were acquired from the five 
different cell samples and each was repeated at least in dupli-
cate. Numerical data were analyzed using SPSS software 
(SPSS Inc., version 16.0, Chicago, IL) and were expressed 
as mean ± standard deviation (SD). The differences in the 
baseline fluorescent intensity across treatment groups in the 
buffer either with Ca2+ or without Ca2+ were analyzed using 
one-way ANOVA and the Dunnett’s post-hoc test. The differ-
ences of fluorescent intensity between the baseline and that 
after either muscimol or PBS was added in each group were 
analyzed using paired t-test. Differences were defined as 
significant at p<0.05.

RESULTS

Human RPE cell culture and identity: The cultured primary 
human RPE cells reached confluence in 2–3 weeks. The 
third passage cells were all positively stained with the RPE 
65 antibody, and were negative for the S100 antibody (Figure 
1). This suggests that the cultured cells were RPE cells and 
were not contaminated with other cells such as glial cells [43], 
Müller cells [44], fibroblasts [43], or choroidal melanocytes 
[45].

GABAAα1 and GABAAρ1 mRNA expression in cultured human 
RPE: Real-time PCR showed that GABAAα1 and GABAAρ1 
mRNAs were detected in cultured human RPE and in the 
retina (positive control), but not in the negative control. 
Ethidium bromide–stained agarose gels of real-time PCR 
products showed specific bands present at the positions of 
211 bp (GABAAα1), 263 bp (GABAAρ1), and 302 bp (β-Actin) 
in cultured human RPE and retina samples, but not in the 
negative control (Figure 2). The sequence analysis revealed 
that the sequence of the products corresponded to the targeted 
mRNA sequence of the GABAAα1 and GABAAρ1.
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GABAAα1 and GABAAρ1 protein expression in cultured human 
RPE: Western blots revealed intense bands at 51 kDa, 48 kDa, 
and 43 kDa for samples incubated with the anti-GABAAα1, 
anti-GABAAρ1, and anti-β-Actin antibody, respectively, in 
cultured human RPE and retinal samples (positive control; 
Figure 3A).

Immunofluorescence revealed immunoreactivity to anti-
bodies for GABAAα1 and GABAAρ1 in the cultured human RPE 
cells but not in the negative control. Immunofluorescence was 
mainly observed in the cell membrane and was also identified 
in the cytoplasm, but not in the nucleus (Figure 3B).

GABAAR agents modify the [Ca2+]i in cultured human RPE: 
There were no significant differences in baseline fluorescent 
intensity across treatment groups in the buffer either with 
Ca2+ (one-way ANOVA, p>0.05, n=5), or without Ca2+ (one-
way ANOVA, p>0.05, n=5). The GABAAR agonist muscimol 

(100 μM) induced a rapid and significant [Ca2+]i increase in 
the cultured human RPE cells in the buffer either with Ca2+ 
(paired t-test, p<0.05, n=5; Figure 4A) or without Ca2+ (paired 
t-test, p<0.05, n=5; Figure 4D). The [Ca2+]i reached its peak in 
20–40 s, and then gradually declined (Figure 4A,D). When 
the cultured human RPE cells were preincubated with either 
the GABAAR antagonist picrotoxin (300 μM; Figure 4B,E) or 
the GABAAρ antagonist TPMPA (500 μM; Figure 4C,F), the 
muscimol (100 μM) induced [Ca2+]i increase was completely 
blocked (both when the buffer contained Ca2+, Figure 4B,C, 
and when it did not, Figure 4E,F). The addition of the control 
agent, PBS, did not alter the [Ca2+]i of the cultured human 
RPE cells (paired t-test, p>0.05, n=5).

Figure 1. Phenotype identification 
of the cultured human RPE cells 
using immunofluorescence (repre-
sentative image; n = 5). A: All of 
the cultured cells were positively 
stained with the RPE65 antibody. 
B: All of the cultured cells were 
negatively stained with the S100 
antibody. Nuclei were stained by 
4',6-diamidino-2-phenylindole 
(DAPI). Scale bar = 50 μm.

Figure 2. Sample ethidium bromide 
gel of real-time PCR products 
of gamma-aminobutyric acidAα1 
(GABA Aα1) and GABA Aρ1 in 
cultured human RPE cells (repre-
sentative image, n = 5). β–Actin 
(302 bp), GABAAα1 (211 bp); 
GABAAρ1 (263 bp). Abbreviations: 
NC, negative control; PC, human 
retina (positive control).
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DISCUSSION

GABAAα1 and GABAAρ1 mRNAs and proteins were expressed 
in the cultured human RPE cells; the protein was primarily 
located in the cell membrane, and was also present in the 
cytoplasm, but was not observed in the nucleus. The GABAAR 
agonist muscimol induced a [Ca2+]i rise in the cultured human 
RPE cells irrespective of whether the buffer contained Ca2+ 
or not, and the [Ca2+]i increase was completely blocked by the 
GABAAR antagonist picrotoxin and the GABAAρ antagonist 
TPMPA. This suggests that both GABAAα1 and GABAAρ1 

occur in cultured human RPE cells and that in these cells, 
GABAAR stimulation can modify [Ca2+]i. This means that 
GABAAβ [14], GABAB1 and GABAB2 [38], and now GABAAα1 
and GABAAρ1 have been identified in cultured human RPE 
cells, collectively showing that human RPE cells possess 
various GABA receptors, and thus that the GABAergic path-
ways in the RPE are likely complex.

In the retina, the GABAAR agonist muscimol increase 
the [Ca2+]i in the early embryonic chick retina [49] and in 
postnatal mouse retinal ganglion cells [26]. The GABAAR 

Figure 3. Gamma-aminobutyric 
acidAα1 (GABAAα1) and GABAAρ1 
protein expression in cultured 
human RPE cells detected by 
western blots (A) and immuno-
f luorescence (B) (representative 
image; n = 5). A: Specific bands 
presented at the approximate 
location of 51 kDa (GABAAα1), 
48 kDa (GABAAρ1), and 43 kDa 
(β-Actin) in lysates of RPE and 
the retina (positive control, PC). 
B: Immunofluorescence staining of 
GABAAα1 and GABAAρ1 in cultured 
human RPE. Nuclei were stained 
by 4',6-diamidino-2-phenylindole 
(DAPI; blue; bar = 20 μm). NC, 
negative control.
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antagonist picrotoxin has been shown to attenuate the 
muscimol-induced [Ca2+]i increase in postnatal mouse 
retinal ganglion cells [26]. In this study, we observed that the 
GABAAR agonist muscimol increase the [Ca2+]i in cultured 
human RPE cells and that the antagonist picrotoxin blocked 
this rise. This suggests that activation of the GABAAR modi-
fies the [Ca2+]i in RPE cells as it does in retinal ganglion 
cells [26].

In the retina, the GABAAρ antagonist TPMPA has been 
shown to suppress both the GABA-induced current and the 
light-evoked feedback inhibition observed in ON-cone bipolar 
cells and to enhance the light-evoked excitatory postsynaptic 
currents of ON-transient amacrine cells [50]. TPMPA reduces 
the stimulation thresholds of ON-center retinal ganglion cells 
[51], and increases the light responsiveness of retinal ganglion 
cells in a rat model of retinitis pigmentosa [52]. Here, we 
found that TPMPA inhibited the muscimol induced [Ca2+]i 
increase in cultured human RPE cells; suggesting that the 
GABAAρ receptor functions are not unique to the retina.

GABAARs have been shown to be involved in eye 
growth and myopia development in animal models [53-58], 
and levels of GABA transporter 1 (GAT-1) increased in the 
myopic mouse retina [59]. The GABAAR agonist muscimol 
induced myopia development in chicks [53] and prevented 

the myopia-reducing effects of normal vision [54], whereas 
the GABAAρ antagonist TPMPA inhibited form-deprivation 
myopia in both chicks [53,54] and guinea pigs [56,58]. The 
pathway, targets, and mechanisms for the eye growth effects 
of these GABA agents are unclear. Previously, as GABAARs 
are expressed in retina [4], and the GABAAR agonist 
muscimol and the GABAAρ antagonist TPMPA modify the 
functions of many retinal cells [26,50,51], the retina was 
considered the most plausible target. In this study, we found 
that GABAAα1 and GABAAρ1 are expressed in the human 
RPE, and that muscimol and TPMPA modulate the [Ca2+]i. 
Thus, the RPE is a potential additional site for the actions 
of muscimol and TPMPA. The sclera ultimately determines 
ocular size [60], and thus, how activation of the GABAARs in 
the RPE might influence scleral physiology requires further 
investigation.

Additional roles of GABA receptors and their impacts 
on RPE physiology require investigation. Here, we have 
shown that GABA agents can modify the [Ca2+]i of RPE 
cells. Ca2+ acts as a second messenger controlling many 
cellular processes, including secretion, cell differentiation, 
and signal transmission (reviewed in [61]). For example, in 
cultures of RPE cells, calcium antagonists have been shown 
to reduce RPE cell proliferation and increase pigmentation 

Figure 4. Evidence that the gamma-aminobutyric acidA receptor (GABAAR) agonist muscimol, the antagonist picrotoxin and the GABAAρ 
antagonist 1,2,5,6-tetrahydropyridin-4-yl) methylphosphinic acid (TPMPA) can modify the intracellular calcium concentration ([Ca2+]i) 
in the cultured human RPE. A: Muscimol (100 μM) increased the [Ca2+]i in cultured human RPE cells in buffer with Ca2+ (paired t-test, 
p<0.05). B: Pretreatment with picrotoxin (300 μM) completely inhibited the muscimol (100 μM) induced increase of [Ca2+]i in buffer with 
Ca2+. C: Pretreatment with TPMPA (500 μM) completely blocked the muscimol (100 μM) induced increase of [Ca2+]i in buffer with Ca2+. D: 
Muscimol (100 μM) increased the [Ca2+]i in cultured human RPE cells in buffer without Ca2+ (paired t-test, p<0.05). E: Pretreatment with 
picrotoxin (300 μM) completely inhibited the muscimol (100 μM) induced increase of [Ca2+]i in buffer without Ca2+. F: Pretreatment with 
TPMPA (500 μM) completely blocked the muscimol (100 μM) induced increase of [Ca2+]i in buffer without Ca2+. Left, representative images 
(1, 8, and 15 images were acquired, respectively). Right, fluorescent intensity in the images acquired before and after muscimol application. 
The red bar represents the time when muscimol was added. FI represents the fluorescence intensity color scale, with the direction of the 
arrow indicating higher intensity. *indicates a p<0.05, and ** indicates a p<0.01, compared to the baseline, paired t-test, n=5 for each group.
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[62]. The Ca2+ balance is critical for preventing the accu-
mulation of lipofuscin in RPE cells during phagocytosis 
[31]. [Ca2+]i overload causes lipofuscin accumulation, and 
this can be prevented by a Ca2+ antagonist that suppresses 
Ca2+ influx [31]. In cultured mouse lens epithelial cells [15] 
GABA agents can modify the [Ca2+]i, and the authors [15] 
speculate that GABA-mediated Ca2+ signaling may be used 
to prevent sustained Ca2+ overload, which can both cause 
cataract (reviewed in [63]) and trigger apoptosis [64]. In the 
RPE, GABA-mediated Ca2+ signaling is thus likely to have 
similarly critical cellular roles. In summary, GABAAα1 and 
GABAAρ1 mRNAs and proteins were expressed in cultured 
human RPE cells, and the GABAAR agonist muscimol, 
antagonist picrotoxin, and GABAAρ antagonist TPMPA were 
shown to modify [Ca2+]i.
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