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Abstract
Due to an unprecedented agreement with the European Mobile Network Operators, 
the Joint Research Centre of the European Commission was in charge of collecting 
and analyze mobile positioning data to provide scientific evidence to policy mak-
ers to face the COVID-19 pandemic. This work introduces a live anomaly detection 
system for these high-frequency and high-dimensional data collected at European 
scale. To take into account the different granularity in time and space of the data, 
the system has been designed to be simple, yet robust to the data diversity, with 
the aim of detecting abrupt increase of mobility towards specific regions as well as 
sudden drops of movements. A web application designed for policy makers, makes 
possible to visualize the anomalies and perceive the effect of containment and lifting 
measures in terms of their impact on human mobility as well as spot potential new 
outbreaks related to large gatherings.

Keywords Anomaly detection · Data science · Mobile network operator data · High-
dimensional time series analysis

1 Introduction

By means of a letter to European MNOs, the European Commission asked for 
fully anonymised aggregated mobility data. This represents an unprecedented case 
of business to government agreement during crisis time. In compliance with the 
‘Guidelines on the use of location data and contact tracing tools in the context of the 
COVID-19 outbreak’ by the European Data Protection Board EDPB (2020), these 
data do not provide information about the behaviour of individuals; it can, however, 
give valuable insights into mobility patterns of population groups.
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The availability of Mobile Network Operators (MNO’s) data at EU scale in 
almost real time has the potential to enhance the situational awareness about events 
deviations from “usual” mobility patterns. Such anomalies may identify large gath-
erings that could be used as input to meta-population modelling and early warning 
applications aiming at flagging and projecting clusters that may lead to increases of 
Rt , the reproduction number.

Despite the fact that mobility data alone cannot predict future needs, they can 
show already compelling citizens needs, like transportation or heathcare facility 
allocation needs and they represent well human behavior (Bwambale et al. 2020). 
Moreover, thanks to the capability of collecting mobile data at very high time fre-
quency and space granularity, the time evolution of the mobility patterns can indeed 
show changes or ongoing trends or help to measure policy effects like the COVID-
19 containment measures.

It is important to remark that, since mobile phone services unique subscribers1 
represent about 65% of the population across Europe (GSMA  2020), mobile data 
can reliably be used to capture the aggregate mobility patterns of the population.

In this work, we present an anomaly detection system for mobile positioning 
data data for 19, out of 27, member states of the European Union (namely: Austria, 
Belgium, Bulgaria, Czechia, Germany, Denmark, Estonia, Spain, Finland, France, 
Greece, Croatia, Hungary, Italy, Portugal, Romania, Slovakia, Sweden, Slovenia) 
plus Norway. The data have been provided for good, and within the scope of sup-
porting the COVID-19 fight of the pandemic, by 17 different MNO’s to the Joint 
Research Centre (JRC) of the European Commission. This work introduces a live 
anomaly detection system for these high frequency and high-dimensional data col-
lected at European scale. Given the high volume and the diversity of the input data 
(see Sect. 2 for details), a robust system for anomaly detection was developed at JRC 
to detect not only excess of mobility but also sudden drops of mobility patterns.

As anomaly detection corresponds to structural change detection in time series of 
human mobility, they are one of the key elements of a COVID-19 monitoring and 
situational awareness system. As it is now recognized (Trafton 2020; Wong and Col-
lins 2020), super-spreader events are often linked to gathering events (Szablewski 
et al. 2020; Honderich 2020; News 2020), which can be detected as deviations from 
expected mobility. Such anomalies can help retrospective analysis of emerging clus-
ters or in ex-post contact tracing. At the same time, it is also well known that impor-
tation of cases is one of the main vehicles of virus spread in the early phases of the 
pandemic (Mouchtouri et  al. 2020; Dickens et  al. 2020; Pinotti et  al. 2020; Chih 
2020) especially when between two areas there is a high differential in the number 
of cases. This was the case of the Sardinia Island in Italy last summer, for which the 
system generated several inbound mobility anomalies in the first 10 days of August 
and originating from several other Italian regions with relatively high number of 
cases, leading to a surge of new cases at destination 10–14 days later. As the system 
detects also abrupt drops in mobility, became an extremely interesting tool for the 

1 All mobile services subscribers, including IoT, are about 86% of the population, 76% of which real 
smartphone users.
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local authorities to monitor the extent and the response time to which the citizens 
adhere to the different containment measures like curfews, partial or full lock-downs 
in the second wave of the pandemic. Overall, the ability of detecting and quantify-
ing the changes in human mobility can be used as input not only to epidemiological 
models and monitoring activities, but also to economic modelling to estimate the 
size of the causal effects of the different containment measures or the impact of non-
pharmaceutical interventions on mobility. This work presents the general detection 
system and few insights leaving out all socio-economic and epidemiological analy-
ses which will be part of further studies.

This work is structured as follows. Section 2 describes the input data in terms of 
volume, granularity and diversity. Section 3 describes the basic idea of the anomaly 
detection systems and its scopes and Sect. 4 shows examples of the output of the 
detection system. Section 5 presents some screenshots of an internal visualization 
platform aimed at policy makers. Section 6 summarizes the limits of the proposed 
approach.

2  The mobile positioning data

The data received by the JRC are in the form of ODM: Origin-Destination Matrix 
(Mamei et al. 2019; Fekih et al. 2020; Kishore et al. 2020). Although the concept is 
somehow known to the general public, it is important to describe their nature to justify 
why the anomaly detection system of Sect. 3 has to be designed simple yet robust to 
handle many different situations in a context of big and high frequency data.

To deliver their telecommunication services, the MNOs need to collect informa-
tion details like, e.g., the customer’s position, which needs to be constantly updated 
to route calls and data to the user. Two types of events are continuously being moni-
tored: the Call Detail Records (CDR), which include mobile phone calls, messag-
ing, and internet data accesses, and the eXtended Detail Records (XDR), which also 
include network signalling data.

As mentioned, the starting input data of the anomaly detection system of Sect. 3 
is an ODM. Each cell [i − j] of the ODM shows the overall number of ‘movements’ 
(also referred to as ‘trips’ or ‘visits’) that have been recorded from the origin geo-
graphical reference area i to the destination geographical reference area j over the 
reference period.

To avoid any ex-post re-identification of individuals, before getting into an ODM, 
the data have to undergo several additional procedures such as deletion of any per-
sonal data, removal of singularities, thresholding, application of differential pri-
vacy (noise and distortions) methods and so forth. In fact, the ODM comes in fully 
anonymised and aggregated form so that the risk of re-identification of individuals is 
virtually impossible.

In general, an ODM (see also Fig. 1) contains the following minimal information: 
a timestamp for the start time and end time of the events considered, the areas of 
origin and destination and the counts (movements, trips, etc). The table below is a 
fictitious example of how data are received: 
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Origin_id Destination_id Start time End time Counts

zone001 zone001 2020-07-02 20:00:00 2020-07-02 21:00:00 3527
zone001 zone002 2020-07-02 20:00:00 2020-07-02 21:00:00 227
zone001 zone003 2020-07-02 20:00:00 2020-07-02 21:00:00 35
⋮ ⋮ ⋮ ⋮ ⋮

Sometimes, data may contain additional attributes like the distinction of type of 
contract (business, personal), age class, gender, national or foreign sim, etc, but in 
that case, the confidentiality threshold kicks in, i.e., most rows contain zeros to pre-
serve privacy. As shown in the example above, the diagonal of the ODM contains 
the higher counts in our setup. To identify a movement between an origin area and a 
destination, it is necessary to define the dwelling (or stop) time. This dwelling time 
may vary from a few minutes to a few hours. A movement is recorded in the ODM 
only when the user stops for at least a duration equal to the dwelling time in the 
destination area having previously stopped for at least the same time in the origin 
area. An alternative way of defining a movement is to split the day in a number of 
time windows (normally 1-, 6- or 8-h long) and to count the users that move from 
one geographical area to another between time windows; in this case, a user’s origin 
and destination areas are defined as those where the user spent most of the time in 
that time window. Also, consider that the number of movements do not correspond 
exactly to the number of persons, as under some circumstances, one person can gen-
erate more than one movement. Furthermore, the definition of geographical area 
can be very different from one case to another: it can be an administrative area or 
a regular spatial grid. The construction of the ODM therefore depends on a number 
of tuning parameters. Depending on the choice of these tuning parameters, an ODM 
will be able to capture some types of movements but not others. For instance, an 
ODM may capture movements that extend for a long period of time but not shorter 
movements and vice-versa. The technical details on how Call Detail Records (CDR) 
and eXtended Detail Records (XDR) are transformed into an ODM is specific to 
each MNO and it is considered proprietary technology not to be disclosed publicly 
although known to the authors.

Despite the diversity of the ODMs handled in this project, the ODM for a given 
MNO is consistent over time and relative changes are possible to be estimated. 

Fig. 1  The simplified logic behind the anomaly detection strategy: a sudden drop of the volume of the 
cell may identify an anomaly, while one within the natural variability of the data not
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Some applications of these data to different contexts than the one presented here can 
be found in Santamaria et al. (2020) and Iacus et al. (2020a, 2020b).

3  A simple, robust and scalable approach to anomaly detection

Detection of anomalies has a long history in statistics and quality control theory. In 
the context of change point analysis for the location parameter one can see, e.g., Bai 
(1997) and Csörgő and Horváth (1997) for i.i.d. settings and Bai (1994) for classical 
time series analysis, and in the context of the scale parameter for several classes of 
processes, e.g., Inclan and Tiao (1994) and Iacus and Yoshida (2012). These meth-
ods assume special data generation models and work with low-dimensional and 
low-frequency data mostly. In our case, we seek for robustness to data specification, 
computational efficiency and operational sustainability; therefore, several decisions 
have been made to simplify the approach.

On one side, the anomaly detection system has:

• to detect areas characterised by large increases of mobility that could be con-
nected to gathering events;

• to systematically provide data-driven knowledge of such events that can be input 
to real epidemiological early warning systems.

on the other hand, the system has:

• to be computationally efficient given the dimensionality of the data in terms of 
frequency, spatial granularity and number of countries analysed;

• operationally feasible, i.e., produce almost real time and interpretable analysis;
• be robust with respect to high diversity of the input ODMs;
• be completely data driven in the sense that it should adapt itself to the time frame 

and granularity of the data.

In which terms the problem that the proposed system for anomalies detection has 
to consider consists in handling high-dimensional data? As said, the ODM are gen-
erated by different MNOs with different time frequency and space granularity: the 
ODM can be as large as2 9800 × 9800 entries time the 24 hourly sampling. The sys-
tem should be able to capture anomalies of two types: the excess of volume and the 
sudden drop of volume as well as unexpected filling of some elements of the sparse 
ODM matrix at hand. It has to consider a non symmetric approach, as sudden drops 
and unexpected excesses are structurally different. Being counts, the zero is a natural 
lower limit for low volumes times series, while the upper limit should be determined 
through standard statistical ideas. We used a simple approach that takes into account 
both privacy thresholds (we do not consider cells whose moving average is below the 

2 For example, for Italy and many other member states.
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threshold th (20 in our application3), natural variability and moving average. As it is 
well known that there exists both intra-daily, intra-weekly and seasonal patterns, we 
apply short period moving average from the given date, time frame and space granu-
larity. Let i be the origin, j the destination, s the start time and e the end time of the 
sampling of the ODM for the date d. We denote each cell of the ODM matrix by

where i and j spans the set of unique origin and destination labels C , d is a calendar 
date and s, e are typically timestamps in the format “YYYY-MM-DD HH:MM:SS” 
though in our case they are in the order one or several hours. If we want to consider 
the total inbound flow to a cell j, we use the notation

and we denote by

the outbound movements from cell i. As there are situations in which the local 
movements are not interesting or such that the diagonal entries of the ODM matrix 
do not represent movements but people who stay in the same cell, we also consider 
the same quantities without the diagonals, i.e.,

and we denote by

The moving average is take over the previous p periods ( p = 4 in our application), 
i.e.,

and the rolling standard deviation is calculated similarly
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3 The privacy threshold ranges from 5 to 20 across MNO, so we decided to keep a common value for all 
operators.
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The reason why p = 4 has been chosen is due to the fact that human mobility have 
persistent patterns by day of the week, time of the day, season, etc. Taking p = 4 
is equivalent to consider the past 4 weeks (i.e., the previous month) of data for the 
same time slot and day of week. Taking p smaller is statistically not reasonable as 
the moving average will be very unlikely to represent a trend; taking it larger will 
consider a too long time frame with the effect of smoothing out too much the sea-
sonality. In any event, p is a tuning parameter that the researcher can fix according to 
his or her experience with the particular data ad hands.

In the event that for one or more past dates, the data are not available, the MA and 
SD are calculated on the available data only. If all past p data are missing, no signal 
will be estimated and the date d is marked as a “missing data” type. But historical 
variability in not enough as each ODM matrix, for different technical reasons at the 
MNOs level4, may have a daily volume which is overall different from that of previ-
ous dates. This happens rarely but should be taken into account to avoid instrumen-
tal false signals, especially toward zero. Therefore, to take into account the overall 
variability, we select a first threshold Δq corresponding to the q = 75% quantile of 
the distribution of elements of the matrix MAd

s,e
 such that MAd

s,e
(i, j) ≥ th . The upper 

limit is then set to

and the lower limit to

The MAd
s,e

+ Δq limit is larger than the limit MAd
s,e

+ 3SDd
s,e

 (similarly for the lower 
limit) very rarely and this occurs only when there is a technical problems in the data. 
It is a sort of robust safeguard against extreme outliers that may occur for the techni-
cal reasons explained in the above.

In essence, the method has three tuning parameters: the confidentiality threshold 
th, the quantile level q of the distribution of the ODM and the number of past peri-
ods p. In our application, we have (th, q, p) = (20, 0.75, 4).

Therefore, this is a simple 3-sigma approach combined with a robust evaluation 
of daily variability. More sophisticated time series approach or stochastic modelling 
(like inhomogeneous periodical Poisson process modelling) could have been used in 
spite of parametric tuning and estimation as well as computational time. Indeed, the 
present approach has been chosen also because of the need of the speed of calcula-
tion. All the formulas above have been implemented in R (R Core Team 2020) via 
sparse matrix linear algebra and, whenever possible, calculation on the data base 
have been used to reduce the data transfer bottleneck. The present approach can 
handle, for a single date, in less than an hour the analysis of 17 MNOs operators, 
providing data for 23 countries, at daily and, possibly, hourly frequencies. For exam-
ple, for a single MNO operator for the country Italy, we have an ODM matrix of 
about 9800 × 9800 cells × and 25 time frames. The analysis is performed also on the 

Ud
s,e

= max(MAd
s,e

+ Δq,MAd
s,e

+ 3SDd
s,e
),

Ld
s,e

= min(MAd
s,e

− Δq,MAd
s,e

− 3SDd
s,e
, 0).

4 It might happen that new antennas are installed in a given location, or an update of the mobile network 
occurs, and similar other very technical aspects.
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9800 rows ( ODM
d

s,e
(⋅, j) ) and 9800 columns separately ( ODM

d

s,e
(i, ⋅) ), considering 

the past 4 weeks as well (for the moving average calculation), i.e., the calculation 
of the anomalies is done on the non-null5 (9800 × 9800 + 2 × 9800) = 96, 059, 600 
times series taking into account the 25 time frames for 5 dates (the present and the 
past p dates).

3.1  Classification of the severity of signals

To help the policy makers in assessing the severity of the signals detected by the sys-
tem, a simple classification scheme has been designed. The signals are then marked 
as “lower” and “upper” signals and their intensity is evaluated in terms of relative 
increment with respect to the moving average. As the moving average per se is not 
interesting to the policy maker, the signals are transformed into viable information 
through the relative increment. Let us denote this increment by

then, the level of the signal is classified as

• level 0 = no signal, i.e. Ld
s,e
(i, j) ≤ DMd

s,e
(i, j) ≤ Ud

s,e
(i, j),

• level 1 if INCd
s,e
(i, j) < 50%,

• level 2 if 50% ≤ INCd
s,e
(i, j) < 100%,

• level 3 if INCd
s,e
(i, j) ≥ 100%.

For both lower ( DMd
s,e
(i, j) < Ld

s,e
(i, j) ) and upper ( DMd

s,e
(i, j) > Ud

s,e
(i, j) ) signals 

as well as for the inbound and outbound timeseries ODM
d

s,e
(⋅, j) and ODM

d

s,e
(i, ⋅) . 

This type of filtering is helpful for the visual inspection of the thousands of signals 
appearing on a daily analysis.

A possible extensions of this approach could consider also the spatial information con-
tained in the data as in this approach the entries of the cells are considered independently 
(the only way they area considered together is using the overall quantile of the matrix). 
This type of approach will be computationally quite hard to solve and requires additional 
ad hoc hypotheses according to the MNO source, country and granularity, which we pre-
fer not to use at this stage. Moreover, the introduction of a correlation structure in the sta-
tistical model will compromise the use of extreme parallelization of the system.

Indeed, a future direction of research to take into account the spatial compo-
nent is to include not the physical distance but the notion of connectivity between 
clusters of origins and destinations. Clustering will reduce the dimensionality and 
hence the computational burden, still loosing the ability to fully parallelize the pro-
cesses, a compromise to be understood yet. Indeed, in a related study by the same 
authors, the notion of Mobility Functional Areas (MFAs) has been introduced (Iacus 

INCd
s,e
(i, j) =

(

ODMd
s,e
(i, j)

MAd
s,e

− 1

)

⋅ 100%

5 Although many of the cells of the ODM matrix are empty being a sparse matrix, in a single day several 
thousands of them are not null and, therefore, should be considered in the analysis.
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et  al. 2020b). Each MFA represent a cluster of highly interconnected areas and it 
is obtained through network analysis by clustering the network graph generated by 
the daily ODMs. As these clusters vary daily, the subset of common subgroups of 
regions that appears at least 75% of the times in the same cluster are retained to 
form the final MFAs. The future work is to introduce this correlation structure into 
the anomaly detection system via Generalized Network AutoRegressive processes 
(GNAR) in the spirit of Knight et al. (2020) and Dahlhaus and Eichler (2003), but 
tailored for the high dimensionality of our setup.

The next section provides some examples of automatic detection in practice.

4  Examples of automatic detection: the case of Italy

As an example, we present graphically a few cases in which the system has spotted 
anomalies according to the previous description of the model. This section shows 
cases for which the system is expected to generate signals due to well-known pub-
lic events, as well as cases that were unknown ex-ante. For privacy reasons, and 
because the scope of this system is not the tracking of people, we remove any infor-
mation on the events and places that can potentially lead to identification of citizens 
or groups of people or communities, in accordance with the GSMA privacy guide-
lines6 for COVID-19 data sharing and the Letter of Intent between the European 
Commission and the GSMA.

Fig. 2  Map of inbound signals in Milan, Central Station (ACE: 003015146C005). People arrive at the 
Central Station to participate to a public event. On the left, the (green) areas of origin for people ter-
minating their trips to Central Station (red color). Movements are from around the city but also from 
external cities like Pavia and Bergamo. The intensity of the color is related to the relative amount of 
movements towards the destination

6 https ://www.gsma.com/publi cpoli cy/wp-conte nt/uploa ds/2020/04/The-GSMA-COVID -19-Priva cy-
Guide lines .pdf

https://www.gsma.com/publicpolicy/wp-content/uploads/2020/04/The-GSMA-COVID-19-Privacy-Guidelines.pdf
https://www.gsma.com/publicpolicy/wp-content/uploads/2020/04/The-GSMA-COVID-19-Privacy-Guidelines.pdf
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4.1  Public event in Milan, 2020‑06‑07

This is an example of expected gathering due to a public event in the city of Milan, 
Italy, and it serves as a benchmark to assess the correctness of the anomaly signals. 
The system spotted anomalies in daily and hourly inbound flows on 7th June 2020, 

Fig. 3  Inbound signal in Milan, Central Station (ACE: 003015146C005), 4–5 p.m., on 7th June 2020. 
Excess of +250% with respect to the previous 4 weeks. People going home from the public event?

Fig. 4  Outbound hourly signals from the area of the gathering near the US General Consulate in Milan 
on 7th June 2020 between 6 and 7 p.m. People going home after the event?
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compared to the previous 4 weeks, to the census cell ACE7: 003015146C005, which 
corresponds to the Central Railways Station in the city of Milan. Figure  2 shows 
the daily inbound movements for this ACE on a map while Fig. 3 shows a peak of 
inbound hourly traffic between 4 and 5 p.m.

Similarly, an outbound signal for the area where the gathering actually took place 
is shown in Fig. 4. Clearly we can only guess that this signals are generated by spe-
cific gatherings, but the time series plot of Fig. 3 clearly shows an unexpected peak 
compared to the history of the mobility from and to that geographical area. A likely 
story for these signals is that people gather during the morning to Milan also from 
outside, then after the events either go home with train (around 5–6 p.m.) or by local 
transportation means to closer places (around 6–7 p.m.).

4.2  Summer nightlife and tourism: Lipari (Sicily), mid to end of August 2020

A different anomaly increase in mobility pattern has been spotted for inbound flows 
to the census cell ACE: 019083041C000, which corresponds to island of Lipari 
(Sicily), around mid to end of August 2020 at 2–3 a.m. as shown in Fig. 5. These 
events have been reported to increase the number of infected people, similar to the 
case of Sardinia on the same dates.

4.3  Venice Carnival (8–25 Feb 2020)

The system spotted anomalies increases also in inbound flows to the two census 
cells (ACE: 005027042C001 / 005027042C002), which corresponds to the city of 

Fig. 5  Inbound signal in Lipari at night (ACE: 003015146C005), 2 a.m.–3 a.m., possibly connected to 
Summer nightlife and tourism activities. Excess of about + 300%

7 ACE is the smaller census administrative geographical unit for Italy.
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Venice. The dates are around the Carnival 2020 (18–22 February 2020) as shown 
in Fig. 6. These events are quite relevant in terms of predicting the pandemic as 
at that time no physical distancing measures were in place. The dates spotted by 
system are: 8, 15 and 22 February 2020.

4.4  An unexpected large gathering on 7th June 2020

While the previous anomalies could have been guessed, the system also usually 
finds several other cases. Just as an example, on June 7th, the system spotted and 
anomalous number of movements toward a very specific destination area (see 

Fig. 6  Inbound daily signals in the two ACE cells of Venice, during the events of Carnival 2020, 8, 15 
and 22 February 2020

Fig. 7  Peak of movements toward a specific area around 5–6 p.m. Excess of about +300%
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Fig. 7). An increase of about 300% more movements than usual where registered 
between 5 and 6 p.m. This was quite surprising as it occurred few days after a 
national lockdown was lifted. If an increase in the number of cases were spotted 
around that location, and luckily this was not the case, the local authorities could 
have informed the local community to undergo COVID-19 testing implementing 
contact tracing that otherwise could have been impossible to do.

5  Visual application to explore anomalies aimed at policy makers

The previous set of examples show that expected and unexpected signals can be cap-
tured well by the system. The performance of the systems is essentially the same 
in all countries and for all mobile network operators considered. But while the 

Fig. 8  The overall number of signals around the European countries. In the top panel the total number 
of daily signals and below the total number of hourly signals for the same time period. The time span of 
the two plots is not the same as for some MNOs we do not have hourly data and viceversa. The red bar 
represents the data for which the dashboard will show the signals on the map. In the example, it is set to 
7 September 2020

Fig. 9  Inbound and outbound signals on 16-03-2020, daily data. Blue = lower limit signal, Red = upper 
limit signal. Mobility almost stopping compared to the 4 previous weeks
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time-series plot and the absolute numbers are of interest mainly for the modellers 
in epidemiology, the policy makers need a more intuitive tool to extract the same 
information. For this reason, an interactive web application to explore the signals 
has been developed and its in use by some policy makers.

A couple of examples for daily and hourly signals is given in Figs.  9 and 10. 
In Figs.  9 and 11, it is shown how mobility suddenly reduces after the lockdown 
which happened almost at the same time overall Europe around 16th March 2020. 
On the contrary, while Fig. 10 shows movements mainly towards, and in, the coastal 
areas around Italy and a reduction of mobility within the cities. This is expected and 
suggests that probably a seasonal effect should be take in consideration within the 
model, but this requires at least 2 complete years of data. Unfortunately, data from 
MNO are available from at most January 2020.

Figure 12 shows that the mobility in France and Spain was already restarted by 
mid May contrary to Italy. This clearly shows how the system can detect anomalies 
irrespective of the country and MNO data but it also enable the policy maker to have 
a broader view of the overall situation on a EU scale and the impact of containment 
and lifting measures.

Finally, Fig. 13 shows the overlap of the anomaly detection maps with the official 
ECDC data about number of cases per 100K inhabitants which serves to both the 
policy makers and the modelers to draw conclusions about the pandemic evolution 
and its relationship with human mobility.

Figure 8 shows the interactive daily and hourly histograms that are available in 
the visual dashboard. The reader can have an intuition of the amount of signals that 

Fig. 10  Inbound and outbound signals on 13-08-2020, hourly data. Blue = lower limit signal, Red = 
upper limit signal. Mobility almost exploding in the coastal areas and still freezing ìn the cities, com-
pared to the 4 previous weeks
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Fig. 11  Inbound and outbound signals on 16-03-2020, daily data for the whole set of European countries. 
Blue = lower limit signal, Red = upper limit signal. Mobility almost stopping compared to the 4 previous 
weeks in all countries
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Fig. 12  Inbound and outbound signals on 16-05-2020, hourly data. Blue = lower limit signal, red = 
upper limit signal. Mobility re-exploding in Spain and France but not, e.g., in Italy compared to the 4 
previous weeks. For Italy, we need to wait till July/August 2020. See also Fig. 10
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are detected in almost real time8 for this very large scale problem. The system has 
detected peaks up to 21,000 hourly signals within a day, or 5000 daily signals and 
sees from the histograms. In practice, the policy makers look at their own regions 
and filter the signals according the severity to monitor the effects of the implementa-
tion of the policy measures.

6  Conclusions and limits of this approach

As said, this simple and direct approach to the anomaly detection does not consider 
the spatial information contained in the data. This can be a nice addition in future 
developments of the system. Indeed, parametric and non-parametric geo-statistical 
models can also be considered at the cost of putting assumptions on the data (by 
country and MNO) and demanding for more computational time. The dimensional-
ity of the problem is so high that, even using some restrictions like local dependency 
structure, it will become quite unfeasible to obtain model estimates in practical times 
though as parallel computing for millions of time series trajectories of each origin-
destination dyad in the ODMs will be no longer an option. As mentioned in Sect. 3, 
future direction of investigation will consider the introduction into the anomaly 
detection system of Generalized Network AutoRegressive processes (GNAR) (2003; 
Knight et al. 2020).

The system has been designed to alert on mobility anomalies for early warning 
capacity in case of COVID-19 outbreaks. Since these anomalies can be generally 
attributed to large gatherings and unusual mobility patterns in a broader sense, the 
system is a precious tool to understand the potential spread of the virus in case of 
outbreaks. At the same time, the system can allow authorities to monitor the imple-
mentation of mobility restrictions.

Fig. 13  The anomaly detection dashboard with the additional layer of official ECDC data on the number 
of cases per 100K inhabitants

8 The system runs two times a day and whenever new MNO data are ingested into the infrastructure.
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The system is not designed to be a tracking system as it is totally agnostic to real-
ity. The examples of the previous sections show the validity of the system in case of 
a known event, and its detection serves to benchmark testing.

It is also worth to mention that the system has not be designed to produce a 
real COVID-19 early warning system but only to spot anomalies in the data in the 
terms explained in Sect. 3. This means that there is no direct link in this applica-
tion between, e.g., the large gatherings spotted and the reproduction rate Rt of the 
COVID-19 pandemic. Our data could only serve as an input to further epidemio-
logical models or to policy makers to assess the effectiveness of the containment 
measures.

Despite its limitations, the system seems to be able to capture what it is supposed 
to capture. It is fast to execute and can accommodate different sources of MNO data 
without any stringent assumptions rather than the confidentiality threshold th = 20 , 
the length of the moving average p = 4 and the quantile level 75% . These are the 
only three tuning parameters of the anomaly detection system and can be changed 
by the researcher.
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