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Accurate predictions of classification biomarkers and disease status are indis-

pensable for clinical cancer diagnosis and research. However, the robustness

of conventional gene biomarkers is limited by issues with reproducibility

across different measurement platforms and cohorts of patients. In this

study, we collected 4775 samples from 12 different cancer datasets, which

contained 4636 TCGA samples and 139 GEO samples. A new method was

developed to detect miRNA-mediated subpathway activities by using direc-

ted random walk (miDRW). To calculate the activity of each miRNA-medi-

ated subpathway, we constructed a global directed pathway network

(GDPN) with genes as nodes. We then identified miRNAs with expression

levels which were strongly inversely correlated with differentially expressed

target genes in the GDPN. Finally, each miRNA-mediated subpathway

activity was integrated with the topological information, differential levels of

miRNAs and genes, expression levels of genes, and target relationships

between miRNAs and genes. The results showed that the proposed method

yielded a more robust and accurate overall performance compared with other

existing pathway-based, miRNA-based, and gene-based classification meth-

ods. The high-frequency miRNA-mediated subpathways are more reliable in

classifying samples and for selecting therapeutic strategies.
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1. Introduction

MicroRNAs (miRNAs) are short, endogenous, noncod-

ing RNAs that regulate post-transcription by inhibiting

the expression of target genes, thereby affecting the initi-

ation, progression, and prognosis of cancers (Chen

et al., 2012; Li et al., 2015; Luan et al., 2015; Rottiers

and Naar, 2012; Tomasetti et al., 2014; Zhang et al.,

2014). Many high-throughput miRNA expression pro-

filing studies have been performed with the aim to iden-

tify disease-relevant miRNAs for clinical utility in

diagnostic and prognostic applications (Bagnoli et al.,

2016; Lin et al., 2015; Meiri et al., 2012; Xu et al.,

2011). Moreover, a number of studies reported that the

miRNAs were stable both in the body and in paraffin

blocks, which provided better biomarkers of tumor clas-

sification (Baker, 2010; Iqbal et al., 2015; Lu et al.,

2005; Matamala et al., 2015; Raponi et al., 2009; Zen

and Zhang, 2012). Thus, some researchers proposed sev-

eral methods to find miRNA biomarkers of the cancers,

such as miRNA instance-based approaches and miRNA

feature-based approaches (Breiman, 2001; Breiman

et al., 1984; Zararsiz et al., 2017). Similar to the perfor-

mance of using gene biomarker classification (Perez-

Diez et al., 2007; van ‘t Veer et al., 2002; Wang et al.,

2005), the reproducibility of the miRNA biomarkers

has been challenged (Dupuy and Simon, 2007; Ein-Dor

et al., 2006). The prediction performance of gene and

miRNA biomarkers often descended drastically in other

independent datasets when one dataset was used as the

training dataset for the same disease phenotype. These

problems may be caused by cellular heterogeneity within

tissues, the racial differentiation of the patients, the

measurement error in microarray platforms, and the

sample shortages.

The core task of the classification method is how to

obtain the best classification feature. Previous studies

demonstrated that pathways could be used as a crucial

feature in identification and classification of disease-re-

lated biomarkers (Khatri et al., 2012). For example,

pathway enrichment analysis is widely used to identify

core regulatory mechanism of biological processes such

as tumorigenesis (Shen et al., 2017). Pathways can also

be used as diagnosis and prognosis biomarkers (Fey

et al., 2015). Importantly, topologically supported

pathway analysis attracts more attention because the

interactions between genes can more accurately eluci-

date the biological mechanism. Therefore, pathway

topological analysis can also be used to sort specific

pathways of disease subtypes (Ren et al., 2018). In order

to mine candidate features for classification, researchers

inferred the pathway activity with those member genes,

which were in the pathway and function-related genes.

Most of these methods integrated member genes

together and calculated a score (pathway activity) of

those member genes. For example, Guo et al. (2005)

inferred the pathway activity by computing the mean

and median of the expression values of the member

genes. Bild et al. (2006) inferred the pathway activity by

using the first principal component of the expression

values of the member genes. To infer the pathway activ-

ity, Lee et al. (2008) used condition-responsive genes

(CORGs), which combined the expression of the most

discriminative power member genes for the disease phe-

notype. Liu et al. (2013) proposed a directed random

walk-based (DRW) method to evaluate the topological

importance of each gene and inferred the pathway activ-

ity. In addition, there are some probability-based

approaches to estimate the pathway activity (Efroni

et al., 2007; Su et al., 2009). Moreover, a wide vari-

ety of high-throughput omics data were integrated

together to detect disease-specific pathways (Feng et al.,

2016; Li et al., 2017; Shi et al., 2016; Vrahatis et al.,

2016a). For example, Li et al. (2017) performed integra-

tive pathway analysis of gene and metabolite to reveal

metabolism abnormal regions in the ESCC. Shi et al.

(2016) presented a new method, which identified dys-

functional pathway by integrating lncRNA–mRNA

expression profile and pathway topologies. These meth-

ods successfully incorporated different high-throughput

omics data into the disease classification procedures and

achieved better classification performance.

The joint impact from genes and miRNAs on dis-

ease phenotypes is very important since miRNAs can

disrupt biological pathways and cause diseases by tar-

geting genes. Therefore, many studies analyzed

miRNA-mediated pathways by integrating genes and

miRNAs (Kretschmann et al., 2015; Li et al., 2014a).

Furthermore, disease phenotypes are found to be

highly associated with the key local subpathways,
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rather than by entire pathways (Li et al., 2009, 2013).

Focusing on subpathways has been proved to be more

effective in identification of disease-relevant biomark-

ers (Alaimo et al., 2017; Calura et al., 2014; Vrahatis

et al., 2016b; Wang et al., 2014; Zhang et al., 2017).

Therefore, integrating genes and miRNAs at subpath-

way level might help identification and classification of

disease-relevant biomarkers.

Here, we developed a new method that computes

miRNA-mediated subpathway activity by a directed

random walk (miDRW). Briefly, miDRW incorporates

various information, such as the differentially expressed

level of miRNAs and genes, the topological importance

of genes in the global directed pathway network

(GDPN), clinical information of samples, and target

relationships between miRNAs and genes (Fig. 1). The

purpose of our method is to topologically infer active

miRNA-mediated subpathways toward precise cancer

classification. First, we collected the datasets from

TCGA (The Cancer Genome Atlas) and GEO (Gene

Expression Omnibus) databases and obtained the target

relationships between miRNAs and genes from TARBASE

V6.0 (Vergoulis et al., 2012), miRecords (Xiao et al.,

2009), miRTarBase (Hsu et al., 2011), and miR2Disease

(Jiang et al., 2009) databases. Second, the GDPN was

constructed with genes as nodes. Third, we inferred the

expression profiles of miRNA-mediated subpathway

activity and extracted the active miRNA-mediated sub-

pathways as candidate features with the greedy algo-

rithm. Finally, we compared the performance of the

classifier built by miDRW with other existing pathway-

based approaches based on eleven within-datasets and

one cross-dataset. The results showed the average values

of AUCs are 0.95 and 0.94 on eleven within-datasets and

one cross-dataset, respectively. This indicated that the

miDRW-based method could capture active miRNA-

mediated subpathways, which are more reliable clinical

biomarkers to classify phenotype.

2. Materials and methods

2.1. Datasets across cancers

Eleven within-datasets of gene and miRNA expression

profiles were obtained from the UCSC Cancer Browser

(https://genome-cancer.ucsc.edu), which provided an

open-access portal to download data from TCGA.

These normalized TCGA level 3 Illumina HiSeq gene

and miRNA expression profiles covered organs of head

and neck, breast, liver, lung, kidney, prostate, stomach,

thyroid, and uterine corpus (Table S1, Data source). To

ensure detection reliability and reduce noise, two filters

were applied to eleven sample-matched datasets of genes

and miRNAs. First, miRNAs and genes whose 20%

expression value equaled to 0 were eliminated. Second,

we selected those datasets that had more than twenty

differentially expressed miRNAs (Student’s t-test

method, P < 0.05) and sample-matched datasets for fur-

ther analysis.

One cross-dataset of gene and miRNA expression

profiles were obtained from the GEO (http://www.ncbi.

nlm.nih.gov/geo/). Gene and miRNA expression pro-

files of the prostate cancer, which were detected on

GPL5188 and GPL8227 platforms (GSE21034 and

GSE21036), contained sample-matched information on

28 normal controls and 111 cancer samples (Table S1,

Data source). We considered the average expression of

genes or miRNAs, which were repeated in the expres-

sion profiles. We implemented the same filtering process

that was used in within-dataset experiments. Finally, we

identified 2427 differentially expressed genes and 68 dif-

ferentially expressed miRNAs shared by the TCGA and

GEO datasets.

2.2. miRNAs associated with cancers

More and more studies have confirmed that gene

expressions can be regulated not only by neighbor

genes, but also by miRNAs. In this study, the target

relationships between miRNAs and genes were derived

from TarBase (Vergoulis et al., 2012), miRecords (Xiao

et al., 2009), miRTarBase (Hsu et al., 2011), and miR2-

Disease (Jiang et al.,2009) databases. After we removed

redundancy, a total of 755 226 nonrepeated human-

specific interactions among 1137 miRNAs and 20 263

genes were obtained as follows: 598 pairs from miR2Di-

sease, 1749 pairs from miRecords, 26 388 pairs from

TARBASE (V6.0), and 750 381 pairs from miRTarBase.

We integrated predicted and experimentally verified

miRNA–gene relationships in our study.

2.3. Constructing the global directed pathway

network (GDPN)

There were many methods to convert the pathways into

graphs (Judeh et al., 2013; Sales et al., 2012; Vrahatis

et al., 2016b). These methods used the interaction or

regulation relationships between genes to convert path-

ways into graphs. We used the ‘SUBPATHWAYMINER v3.0’

(Li et al., 2009) software package (http://www.idg.pl/

mirrors/CRAN/web/packages/SubpathwayMiner/ or

https://github.com/chunquanlipathway) to convert each

KEGG pathway into a directed graph. First, those

KGML files were converted (KEGG Markup Lan-

guage, http://www.genome.jp/kegg/xml/) into list
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variables. In both cases, two genes were connected by

an edge: (a) if a common compound existed in their cor-

responding reaction in a metabolic pathway; and (b) if

two genes had a relationship such as interaction,

binding, or modification in a nonmetabolic pathway.

Thus, with the ‘SUBPATHWAYMINER v3.0’ software pack-

age, we obtained the reconstructed pathway graphs,

which retained the topological structure of each

Fig. 1. Details of the miDRW-based miRNA-mediated subpathway activity inference method. The miRNA-mediated subpathways are

obtained from the gene profiles based on the miDRW method. The z(gi) is a row vector of gene gi expression value across all samples. The

a(miRj) (i.e., miRNA-mediated subpathway activity) is also a row vector which is the row j of the miRNA (namely miRj) expression value

across all samples. The middle panel is the overview illustration of miDRW-based miRNA-mediated subpathway activity inference. The

GDPN is constructed on 150 metabolic and 150 nonmetabolic pathways, which include 4113 gene nodes and 40 875 directed edges. The

dotted line circle is a virtual node which ensures gene weights flow through the GDPN. P0 is the initial weight of the genes, and P∞ is the

output weight vector. For the miRj, we reversed the edge direction when merged the pathways into the GDPN. The miRNA-mediated

subpathway activity a(miRj) only integrated expression value vector of the significantly differentially expressed target genes of miRj into P∞.

2214 Molecular Oncology 13 (2019) 2211–2226 ª 2019 The Authors. Published by FEBS Press and John Wiley & Sons Ltd.

miRNA-mediated subpathways for classification Z. Ning et al.



pathway. Finally, the total 300 graphs were merged into

a global directed pathway graph, which contained 150

metabolic and 150 nonmetabolic pathways. Moreover,

we added a virtual node to the global directed pathway

graph. The virtual node pointed to each node of the

directed pathway graph, and all nodes of the directed

pathway graph also pointed to the virtual node (Liu

et al., 2013). The global directed pathway graph was

closed by the virtual node, so we called it the closed glo-

bal directed pathway network (GDPN), which covered

4113 nodes and 40 875 directed edges. Each node repre-

sents a gene, and each directed edge represents interac-

tion or regulation relationships between genes in the

GDPN. The direction of the edge is derived from the

type of interaction between two genes, which is available

from KEGG. For example, if gene A inhibits or acti-

vates gene B, the direction of edge pointed to B. The

random walk (Lovasz, 1996) on the GDPN is similar to

the PageRank algorithm, which is used by the Google

search engine (Brin and Page, 1998). The basic idea of

the PageRank algorithm is that a web page is important

if more other pages point to it. However, a gene is

important if it influences more other genes (Draghici

et al., 2007). Thus, we reversed the directions of all

edges in the GDPN (Fig. 1). The GDPN is a biological

network, which should be significantly different from

random networks (Maslov and Sneppen, 2002). The

result showed that the distributions of node degree

approximately followed power law distributions with an

R2 = 0.715, 0.78, and 0.707 for the in-degree, out-de-

gree, and total degree, respectively. Only a limited frac-

tion of gene nodes has higher degrees in the GDPN,

which is one of the most important basics of random

walk algorithm (Watts and Strogatz, 1998).

2.4. Calculating node topology score in the

GDPN

A node topology score was defined to reflect the topo-

logical importance of each gene in the GDPN. We used

the directed random walk algorithm to calculate the

node topology score with the gene expression value in

the GDPN (Eqn 1). The directed random walk algo-

rithm simulated an iterative walker from its source node

to a randomly selected immediate neighbor, or at the

current node at each time step in the graph. This algo-

rithm could be used to capture global topological rela-

tionships within the GDPN and to compute the

proximity between the nodes. The formula with restart

is defined as follows:

ptþ 1 ¼ ð1� rÞMT pt þ rp0 ð1Þ

where M is the row-normalized adjacency matrix of the

GDPN. The exact approach is to divide the sum of all

elements in the row by each element of the row; pt is a

vector in which the ith element holds the probability of

being at node (genes) i at time step t. The parameter r is

the restart probability, which has been demonstrated to

have only a slight effect on the results of the directed

random walk algorithm (Kohler et al., 2008). In this

study, the restart probability r was set as 0.7.

To start this algorithm, |t�score | (the absolute t-test

score was called t-score in the following paper) was

assigned to each node (except for the virtual node,

whose initial probability was 0), and the initial proba-

bility vector p0 was constructed and normalized to a

unit vector. After several steps, the probability pt will

converge to a unique steady state p∞. This steady state

was obtained by the iteration until the

ptþ1 � ptk k� 10�10 . The node topology score can be

measured by the steady state p∞, which provided a

measure of the topological importance of the genes in

the GDPN and was used as the weight vector of genes

at the step of miRNA-mediated subpathway activity

inference. We used t-scores as the initial probabilities,

and the magnitude of the t-score also contributed to

weight adjustments. Thus, the genes will obtain higher

topological weights, which are both topologically

important and significantly differentially expressed.

2.5. miRNA-mediated subpathway activity

inferences

We identified a list of differentially expressed miRNAs

(t-test, P-value < 0.05) whose expression level had

inverse correlations with significantly differentially

expressed target genes (t-test, P-value < 0.05) in the

GDPN. Thus, the target genes of each miRNA could

be integrated into a special value, which was called

miRNA-mediated subpathway activity. Consider a

miRNA-mediated subpathway miRj that targets nj dif-

ferential genes fg1; g2; . . .; gnjg . The miRNA-mediated

subpathway activity a(miRj) of the jth miRNA is cal-

culated as follows:

aðmiRjÞ ¼
Pnj
i¼1

p1ðgiÞ � sgn t miRj

� � � t gið Þ� �� � � z gið ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPnj
i¼1

p1 gið Þð Þ2
s ð2Þ

p∞ (gi) is the final weight of gi; t() is the t-score for

miRj or gi from a two-tailed t-test with expression val-

ues between normal and disease samples; and z (gi) is
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the normalized expression value vector of genes across

the samples; contrary to common sign function, the

sgn() returns +1 for negative numbers and �1 for posi-

tive numbers. However, we only consider the negative

regulation between miRNAs and genes. For example,

for upregulated miRNAs, we only integrated downreg-

ulated target genes into the gene set and calculated

miRNA-mediated subpathway activity, and vice versa.

Thus, the calculation of a(miRj) does not contain the

case of same sign (positive regulation). Each miRNA-

mediated subpathway activity (a(miRj)) is the integra-

tive score, which includes expression level, difference

level, and topological importance of dysregulated tar-

get genes in the GDPN. For a specific cancer, the

value of a(miRj) represents the influence of the jth dif-

ferentially expressed miRNA on the GDPN. The lar-

ger activity value is, the greater impact on the GDPN

it has. Therefore, the miRNA with larger value is pos-

sible to be the more effective biomarker of the cancer.

2.6. Classification evaluation

For within-dataset experiments, we randomly selected

one-fifth of samples for test and the rest for training

(fivefold cross-validation). To identify the most effective

miRNA-mediated subpathways for classification, we

further divided the training set into three subsets of

equal size. Two subsets were used as the Feature

Retrieve subset to establish the classifier, and the remain-

ing one subset was used as the Feature Selection subset

for optimizing the classifier and select features (classifi-

cation biomarkers). We ranked miRNA-mediated sub-

pathway activities of the Feature Retrieve subset in

ascending order by calculating the P-values of two-

tailed t-test statistics. The top biomarkers were used as

the candidate features. For fairly evaluating the perfor-

mance of methods, we implemented the methods with

the same number of candidate features (miRNA-medi-

ated subpathways) and recorded the frequency of the

miRNA-mediated subpathways appearing in the results.

The features were called high-frequency (HF) subpath-

ways if the frequency was larger than the median. The

top 20 miRNA-mediated subpathways were used as

candidate features to build classifiers (e.g., Logistic

regression, Naive Bayes, and J48) in our method. We

evaluated the influence of five different thresholds (top

10 to top 50) on the classifier. The results showed there

was no substantial improvement for the performance of

the classifier when the number of candidate feature

exceeded 20 (Fig. S1A,B). We identified candidate fea-

tures with greedy algorithm. The first classifier was built

by the miRNA-mediated subpathway ranking first, and

the remaining 19 miRNA-mediated subpathways were

added to the classifier sequentially, and we recorded the

areas under the curve (AUCs). The miRNA-mediated

subpathway was selected as a feature if the AUC

increased, or was removed otherwise. After the iterative

process, we could obtain one optimized classifier and

one feature set. The feature set was used to evaluate the

performance of the optimized classifier on the test set.

Therefore, three optimized classifiers and three AUCs in

the corresponding Feature Selection subset generated

from each training set. Thus, 15 AUCs were generated

from five test sets in turn. For unbiasedly evaluating the

performance of the classifier and estimating the fluctua-

tion of the AUCs, we repeated the above process for 10

times. The averaged AUC across 150 classifiers was

reported as the overall performance of the classification

method.

For cross-dataset experiment, one dataset was used

as the training set, and the other independent dataset

was used as the test set. The training set was randomly

divided into five subsets with equal size. One subset

was used as the Feature Selection subset to optimize

classifier and select features, whereas the remaining

subsets were used as the Feature Retrieve subset to

establish the classifier. For unbiased evaluation, we

built the classifier with the differentially expressed

miRNAs and target relationships of the training set,

and repeated the above process 10 times by using each

subset as the Feature Selection subset in turn and eval-

uated the optimized classifier on the test set. The aver-

aged AUC across 50 classifiers was reported as the

overall performance.

2.7. Reproducibility power

We consider the training–validation datasets to be

reproducible if their miRNA-mediated subpathway

activities provide similar discriminative power (Yang

et al., 2012). Then, we define reproducibility power by

CscoreðNÞ ¼ 1

N

XN

i¼1
t miRi

t

� �
t miRi

v

� � ð3Þ

t(miR) is the t-score (t-test, absolute t-value) of

miRNA-mediated subpathway activities between can-

cer and normal samples. miRi
t and miRi

v are the ith

miRNA-mediated subpathway activities of the training

dataset and the validation dataset, which are ranked

by t-scores in ascending order. N is the number of

selected miRNA-mediated subpathways. The repro-

ducibility power reflects the discriminative power and

the robustness of the miRNA-mediated subpathway

activity. For within-dataset experiments, we randomly

divided the samples into five equal-sized subsets. Each

subset was used in turn as the test set to evaluate the
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reproducibility, whereas the remaining subsets were

used as the training set. For unbiased evaluation, we

repeated the above procedure for 100 times. It was

reported as the overall reproducibility with the aver-

aged Cscore over 500 experiments.

For cross-dataset experiments, one dataset was used

as the training dataset, and the other independent

dataset was used as the test set with the same experi-

mental procedure.

3. Results and Discussion

3.1. Inferring subpathway activity and evaluating

classification performance

The general idea of the miDRW is depicted in Fig. 1.

miDRW calculates the topology score of genes accord-

ing to their topological importance in the GDPN.

Then, we computed the activity of each miRNA-medi-

ated subpathway by incorporating the expression of

genes, the differential level of miRNAs and genes, the

topology score of genes, and the target relationships

between miRNAs and genes. The more topologically

important the genes are, the larger topology score they

can obtain, and the larger activities they contribute to

the miRNA-mediated subpathway. Finally, the

miDRW method was used to convert expression pro-

files of genes into miRNA-mediated subpathway activ-

ity profiles (see Section 2).

For comparison with other miRNA-mediated sub-

pathway-based methods, we manually retrieved a lot of

literatures, whereas there were no similar methods. So

we implemented five famous pathway-based classifica-

tion methods that contained the Mean and Median

methods (Guo et al., 2005), the PCA method (Bild

et al., 2006), the PAC method (Lee et al., 2008), and the

previous DRW method (Liu et al., 2013). To test the

discriminative power of miRNA-mediated subpathway

activities between normal and cancer samples, we per-

formed within-dataset experiments similar to those used

in Lee et al. (2008) to evaluate the classification perfor-

mance of eleven TCGA datasets with 10 times fivefold

cross-validation (see Section 2). We used the top 20

pathway activities (our methods selected the top 20

miRNA-mediated subpathway activities, p-values in

ascending order) as the candidate features to build the

classifier with Logistic regression for the Mean and

Median methods, PAC method, PCA method, DRW

method, and miDRW method. Additionally, we investi-

gated the performance of the traditional gene-based and

miRNA-based classifiers that used genes and miRNAs

as markers. For the gene-based or miRNA-based

methods, we used not only the top 20 discriminative

genes (Genes method) and miRNAs (miRNAs method),

but also all genes (Genes(HF) method) and miRNAs

(miRNAs(HF) method) incorporated in the top 20

miRNA-mediated subpathway activities to evaluate the

performance of classification (Fig. 2A, Fig. S2A).

Figure 2 depicts a summary of AUCs of the within-

datasets and cross-dataset experiments. The miDRW

method calculated the average AUCs (accuracies)

(Fig. 2A, Fig. S2A) as 0.9885 (0.9741) based on all

within-datasets. The average AUC of miDRW method

had the minimum standard deviation of 0.009 among all

within-datasets (Table S1, Logistic within-datasets). The

AUCs of the miDRW method on the eleven within-

datasets were significantly greater than those of the

DRW (except LIHC), PAC, Mean, Median, PCA,

Genes, miRNAs, Genes(HF), and miRNAs(HF) methods

(Wilcoxon signed-rank test; Fig. 2D). Similarly, the

accuracies of the miDRW were also statistically signifi-

cant, compared with other methods (Wilcoxon signed-

rank test; Fig. S2D). This indicated that the miDRW

method outperformed other methods not only in AUC

but also in accuracy. These results showed that the

miRNA-mediated subpathways of miDRW-based

method were quite capable of discriminating different

phenotypes (normal vs. cancer). It is noted that the

miDRW method obtained the highest AUCs from seven

within-datasets and the second AUCs from the remain-

ing within-datasets. Meanwhile, the average value of

AUCs outperformed than other classification methods

on within-datasets. The overall trend of accuracies is

similar to AUCs (Fig. S2A). This indicated that

miRNA-mediated subpathways inferred by the miDRW

method were more discriminative, and the performance

of the classifier was more stable (Table S1, Logistic

within-datasets). This result also revealed that the topo-

logically inferred active miRNA-mediated subpathway

was an effective integration strategy for classification

problems.

Furthermore, we evaluated the generalization ability

of the classifier by carrying out the cross-dataset experi-

ment on the prostate adenocarcinoma samples. First,

the GEO prostate adenocarcinoma dataset was used as

the training set and TCGA prostate cancer dataset was

used as the test set (see Section 2); then, their roles were

swapped. The average AUC and accuracy of ‘CEO-

>TCGA’ and ‘TCGA->GEO’ are 0.9157 and 0.8747

(Table S1, Logistic cross-dataset), respectively. The

AUCs (accuracies) of the miDRW method on the cross-

dataset were significantly greater than those of the

DRW, PAC, Mean, Median, PCA, Genes, miRNAs,

Genes(HF), and miRNAs(HF) methods (Wilcoxon

signed-rank test of TCGA->GEO: p-value=1.41e-9
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(8.86e-8), 5.18e-9 (6.99e-2), 1.41e-9 (8.83e-11), 1.41e-9

(9.36e-9), 1.41e-9 (7.75e-4), 1.41e-9 (2.31e-9), 9.99e-5

(1.26e-2), 1.41e-9 (2.31e-9), 9.99e-5 (1.27e-2); Wilcoxon

signed-rank test of GEO->TCGA: p-value=4.74e-4
(3.57e-2), 3.85e-9 (5.65e-4), 1.40e-9 (1.94e-7), 1.40e-9

(2.04e-7), 7.30e-9 (6.90e-9), 1.40e-9 (2.00e-8), 7.79e-5

(4.98e-2), 1.40e-9 (2.00e-8), 7.79e-5 (4.98e-2); Fig. 2B,C,

Fig. S2B,C). Specifically, two prostate adenocarcinoma

datasets were detected on different measurement plat-

forms and cohorts of patients. This indicated that the

miDRW-based method not only considered topological

importance and differential expression of genes in the

GDPN, but also integrated the target relationships

between miRNAs and genes to construct the classifier.

Therefore, the miDRW method, which can predict more

practical markers in clinical applications, has stronger

generalization ability and discriminative power.

Finally, we repeated the within-dataset and the

cross-dataset experiments to prove that the good per-

formance of the miDRW method was not dependent

on specific classification algorithms by using the Naive

Bayes model (John and Langley, 1995) and J48 (Chen

et al., 2014; Jagga et al., 2014). It is not surprising that

we obtained similar results to the Logistic regression

classification algorithm (Table S1, Naive Bayes within-

datasets, J48 within-datasets).

Fig. 2. Classification performances of Logistic regression. (A) The height of the bar represents the AUCs which are generated by Logistic

regression on within-datasets. (B) The height of the bar represents the AUCs which are generated by Logistic regression on the ‘GEO-

>TCGA’ cross-dataset. (C) The height of the bar represents the AUCs which are generated by Logistic regression on the ‘TCGA->GEO’

cross-dataset. (D) A global view of the statistical significances for 11 within-datasets. Rows represent cancers, and columns represent

methods. Values represent the �log10 (p) of the Wilcoxon signed-rank test between the AUCs of miDRW and the AUCs of other methods.

Error bars represent standard deviation in (A), (B), and (C).
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3.2. The miDRW method applied to KICH within-

dataset

We applied the miDRW method to the KICH within-

datasets (Table S1, Logistic within-datasets) and

obtained 18 miRNA-mediated subpathways. The three

high-frequency miRNA-mediated subpathways were

able to accurately classify samples by complete hierar-

chical clustering (Fig. 3A). The high-frequency

miRNA-mediated subpathways of the remaining 9

within-datasets also showed good discriminative ability,

even for highly heterogeneous BRCA (Fig. S3A-I).

However, the HNSC showed an unsatisfactory cluster-

ing effect because the within-datasets included multiple

subtypes (Fig. S3J). Moreover, the differentially

expressed target genes of hsa-miR-134 and hsa-miR-

326 were annotated to cancer-related pathways except

hsa-miR-3615 in the KICH, which contained only few

differentially expressed target genes (member genes, P-

value < 0.01 and FDR < 0.01; Fig. 3B,C). For the

annotated pathways by target genes of hsa-miR-134

and hsa-miR-326, we ranked them with the p-value in

ascending order, respectively, and selected the top 10

of pathways. Pathways in cancer (hsa05200) and cell

adhesion molecules (CAMs, hsa04514) were common

pathways of annotated results (Fig. 4, Fig. S4). In

renal cell carcinoma, hypoxia-inducible factor (HIF-)

transcription factor accumulates, resulting in the over-

expression of proteins that are normally inducible with

hypoxia, such as transforming growth factor (TGF-

and TGF-, respectively) and vascular endothelial

growth factor (VEGF), and platelet-derived growth

factor b chain (PDGF-b). The overexpressed VEGF,

PDGF-b, and TGF- act on neighboring vascular cells

Fig. 3. The selected active miRNA-mediated subpathways are associated with important pathways. (A) The hierarchical cluster analysis based

on active miRNA-mediated subpathways of KICH before the median frequency. The row and column represent miRNA-mediated subpathway

and samples (the red and green bars represent normal and cancer samples), respectively. (B) The summary bubble-bar plot shows the

functional enrichment results of the active miRNA-mediated subpathways of KICH. The bars on the right show the percentage of significantly

differentially expressed genes annotated to the KEGG pathways. The bubble size indicates the number of genes in each KEGG pathway, and

different colors correspond to different FDRs. The darker color indicates the smaller FDR. (C) The pie chart shows the proportion of active

miRNA-mediated subpathways present in different cancers. The majority of the active miRNA-mediated subpathways are cancer-specific.
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to promote tumor angiogenesis (Cohen and McGo-

vern, 2005). TGF was the common target gene of hsa-

miR-134 and hsa-miR-326 in the KICH, which pro-

moted cancer-cell proliferation and survival. For the

cell adhesion molecules pathway, an improved under-

standing of immunobiology uncovered the importance

of immune checkpoints in facilitating tumor escape,

leading to the development of multiple novel therapeu-

tics targeting PD-L1 (programmed death-ligand 1,

CD274) immune checkpoints (Patel and Kurzrock,

2015). In addition to the genes annotated to the above

two pathways, there are also the driver genes anno-

tated to the renal cancer-related pathways, such as

AKT2 (Guo et al., 2015) and TCEB1 (Hakimi et al.,

2015). Similarly, for each high-frequency miRNA-me-

diated subpathway, we obtained the member genes of

the subpathway and annotated these genes to the

KEGG pathways. The results showed that the major-

ity of these genes appeared in cancer-related pathways

(Table S2, Fig. S5A–H). Moreover, the pathway-re-

lated miRNAs were annotated to the corresponding

cancers in the HMDD (Human microRNA Disease

Database v3.0; Huang et al., 2019; Fig. S6, Table S3).

As shown in Fig. 3C, only a small fraction of miRNAs

was shared by different cancers, and most of the miR-

NAs were cancer-specific.

The above results indicated that these high-fre-

quency subpathways were active in cancers and dis-

criminative for classification. One reason might be that

the active miRNA-mediated subpathway was inte-

grated by cancer-relevant genes. This integrative strat-

egy considered differential expressions, differential

levels, topological information, and target relation-

ships. Therefore, these miRNA-mediated subpathways

could be used as classification biomarkers.

3.3. miRNA-mediated subpathways show high

reproducibility

In our previous study, the DRW method inferred the

pathway activity by integrating the gene expression

profiles and obtained stronger discriminative power

Fig. 4. A snapshot of the pathways in cancer (hsa05200). The orange (yellow) color nodes represent the differentially expressed target

genes of hsa-miR-134 (hsa-miR-326). The pink color nodes represent the common differentially expressed target genes of hsa-miR-134 and

hsa-miR-326.
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and robustness active pathways. In this study, we

upgraded the DRW method by considering the

miRNA expression profiles and the target relationships

between miRNAs and genes. The greater reproducibil-

ity power indicates more generalization ability of clas-

sifier and stronger robustness of miRNA-mediated

subpathways. We calculated the reproducibility power

according to formula 3 and ranked the miRNA-medi-

ated subpathways in descending order on each within-

dataset. We compared the mean reproducibility power

of the miDRW-based method and pathway-based

methods. Moreover, we also evaluated the repro-

ducibility power of the top genes and miRNAs. The

genes were chosen from the 4113 genes covered by the

GDPN, and the miRNAs were differentially expressed

between normal and cancer samples. The reproducibil-

ity of miRNA-mediated subpathway activities exhib-

ited the greatest power to distinguish normal from

cancer samples for three datasets (PRAD, STAD, and

UCEC). The PAC method obtained the greatest repro-

ducibility power only on the LUSC dataset. The

DRW-based method obtained the highest reproducibil-

ity power on the remaining datasets (Fig. 5A,

Fig. S7A–J). For the cross-dataset reproducibility

experiments, our method was slightly inferior to the

DRW-based method (Fig. S7K). Moreover, the AUCs

and accuracies of the miDRW-based method were

higher than those of the DRW-based method (Fig. 2B,

C, Fig. S2B,C). It implied that the biomarkers were

more reproducible by topologically inferring, and the

miDRW-based method outperformed the DRW-based

method.

3.4. Robustness of high active miRNA-mediated

subpathways

We built the classifier with frequently selected miRNA-

mediated subpathways, which may be new, robust

active markers for cancers. The TCGA and GEO data-

sets of prostate adenocarcinoma shared 180 miRNAs,

68 of which were significantly different (P-value

< 0.05). Then, we repeated the within-dataset experi-

ments based on the differential miRNAs and their dif-

ferential target genes of TCGA and GEO datasets. We

obtained 9 and 27 robust active miRNA-mediated sub-

pathways, respectively. Finally, 4 miRNA-mediated

subpathways were frequently selected by within-dataset

experiments from TCGA and GEO datasets, including

hsa-miR-96, hsa-miR-133b, hsa-miR-192, and hsa-

miR-136 (hypergeometric test, P-value = 0.004). The

Fig. 5. The influence of topological structure and reproducibility power of the miDRW method for within-dataset experiments. (A) The line

indicates the reproducibility power of the miDRW method for within-dataset experiments. The x-axis represents the number of top miRNA-

mediated subpathways, and the y-axis shows the reproducibility power Cscore of the top k miRNA-mediated subpathways, k = 10, 20, 30,

and 40. (B) The line shows the influence of topological structure and target relationships on the miDRW method. The x-axis represents the

percentage of deleted target genes and miRNAs, and the y-axis shows the AUCs obtained corresponding to those percentage.
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null hypothesis of the hypergeometric test was no over-

lap between the miRNA-mediated subpathways of the

TCGA and GEO datasets. If the P-value is < 0.05, we

reject the null hypothesis, which means that these

miRNA-mediated subpathways could be used as classi-

fication biomarkers to classify samples. It is reported

that miR-96 usually functions as an oncogene during

tumorigenesis, which is overexpressed in prostate can-

cer (Guo et al., 2012, 2014; Haflidadottir et al., 2013;

Xu et al., 2013). It has been shown that overexpression

of miR-133b in LNCaP cells boosted cell proliferation

and cell-cycle progression, and miR-133b might be

independent prognostic factors of biochemical recur-

rence (Li et al., 2014a,b). Sun et al. (2016) indicated

that miR-192 negatively regulated NOB1 expression

and impaired the tumorigenicity of prostate cancer

cells.

To test the influence of the topological structure on

the classifier, we randomly deleted the 5–40% of the

target genes in the GDPN and miRNAs in turn. The

results of the cross-dataset experiment in the ‘TCGA-

>GEO’ case demonstrated that the AUC decreased

dramatically when the percentage exceeded 35%, con-

firming the importance of topological network

(Fig. 5B). Results indicated that the miDRW-based

method was capable of identifying more robust active

and cancer-related miRNA-mediated subpathways,

though the datasets came from different measurement

platforms and patient cohorts. Meanwhile, the

miDRW method can resist certain topological damage

and has good robustness.

To test the influence of the target relationships

between miRNAs and genes on the classifier, we per-

formed the deleting experiment on the within-datasets.

We randomly deleted 10%, 20%, 30%, 40%, and 50%

of all target relationships, which were disease-specific

target pairs of differentially expressed miRNAs and

genes. The AUCs and accuracies of classifiers

decreased slowly with the increase in the percentage of

deleting the target relationships (Fig. S1C,D). For

example, even though we deleted 50% of all target

relationships, the AUCs and accuracies of classifiers

on within-datasets were still larger than 0.8. These

results implied that the performance of our method

was stable. A reasonable explanation is that our

method obtained miRNA-mediated subpathway activi-

ties by integrating multi-omics data with topological

information. Moreover, the miDRW method could

assign more weights to differentially expressed genes,

which were the targets of the miRNA-mediated sub-

pathway in the GDPN. Therefore, the classifier can

robustly classify phenotypes with reproducible

miRNA-mediated subpathway activities.

4. Conclusions

In conclusion, our findings showed that high active

miRNA-mediated subpathways improved cancer classi-

fication performance and showed high reproducibility

between the training set and the test set. Moreover,

the miDRW method did not depend on specific classi-

fication algorithms. We computed the activity of each

miRNA-mediated subpathway by incorporating the

expression of genes, the differential levels of miRNAs

and their target genes, topological importance of dif-

ferential target genes, and clinical information of

matched samples. Therefore, the miDRW method can

significantly reduce noise from sequencing errors and

samples’ heterogeneity by integrating pathway topo-

logical information. However, our method depends on

the data collection and credibility of target relation-

ships. Thus, with the rapid development of human

interaction databases and the sequence technology, we

believe that the miDRW method is a promising way to

precisely predict the state of disease and provide a bet-

ter guide for patient treatment.
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Fig. S1. The influence of thresholds and target rela-

tionships deleting on the classification performance.

(A)-(B) The height of the bar represents the AUCs

and accuracies which are generated with different

thresholds (top 10-top 50) of the miDRW method on

within-datasets. (C)-(D) The line indicates the AUCs

and accuracies of the miDRW method for within-data-

set experiments. X-axis represents the deleted ratio of

miRNA and gene pair, and y-axis represents AUCs

and accuracies. The error bars represent standard devi-

ation in (A) and (B).

Fig. S2. Classification performances of Logistic regres-

sion. (A) The height of the bar represents the accura-

cies which are generated by Logistic regression on

within-datasets. (B) The height of the bar represents

the accuracies which are generated by Logistic regres-

sion on ‘GEO->TCGA’ cross-dataset. (C) The height

of the bar represents the accuracies which are gener-

ated by Logistic regression on ‘TCGA->GEO’ cross-

dataset. (D) A global view of the statistically signifi-

cant for 11 within-datasets. Rows represent cancers,

and columns represent methods. Values represent the -

log10(p) of the Wilcoxon signed-rank test between the

accuracies of miDRW and the accuracies of other
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methods. The error bars represent standard deviation

in (A), (B), and (C).

Fig. S3. The hierarchical cluster analysis based on

active miRNA-mediated subpathways of other cancers

before the median frequency. The row and column

represent miRNA-mediated subpathway and samples

(the red and green bars represent normal and cancer

samples), respectively.

Fig. S4. A snapshot of the Cell adhesion molecules

(CAMs, hsa04514). The orange (yellow) color nodes

represent the differentially expressed target genes of

hsa-miR-134 (hsa-miR-326). The pink color nodes rep-

resent the common differentially expressed target genes

of hsa-miR-134 and hsa-miR-326.

Fig. S5. The summary bubble-bar plot shows the func-

tional enrichment results of the active miRNA-medi-

ated subpathways of other cancers. The bars on the

right show the percentage of significantly differen-

tially expressed genes annotated to the KEGG path-

ways. The bubble size indicates the number of genes in

each KEGG pathway, and different colors correspond

to different FDRs. The darker color indicates the

smaller FDR.

Fig. S6. A global view of topologically inferring active

subpathways and cancers. Each column represents one

cancer, and each row represents an active miRNA-me-

diated subpathway.

Fig. S7. Reproducibility power of the miDRW method

for within-datasets and cross-dataset experiments. (A)-

(J) The line indicates the reproducibility power of the

miDRW method for within-dataset experiments. The

x-axis represents the number of top miRNA-mediated

subpathways, and the y-axis shows the reproducibility

power Cscore of the top k miRNA-mediated subpath-

ways, k=10, 20, 30, 40. (K) The line indicates the

reproducibility power of the miDRW method for

PRAD cross-dataset experiments. The x-axis represents

the number of top miRNA-mediated subpathways,

and the y-axis shows the reproducibility power Cscore

of the top k miRNA-mediated subpathways, k=10,

20, 30, 40.

Table S1. Data source and validation results. Data

source: The datasets used in evaluation of the miDRW

method. Logistic within-datasets: Shown are the aver-

age AUCs and average accuracies of within-dataset

experiments using Logistic classifier. Naive Bayes

within-datasets: Shown are the average AUCs and

average accuracies of within-dataset experiments using

Naive Bayes classifier. J48 within-datasets: Shown are

the average AUCs and average accuracies of within-

dataset experiments using J48 classifier. Logistic cross-

dataset: Shown are the average AUCs and accuracies

of cross-dataset experiments using Logistic classifier.

Table S2. The differentially expressed target genes of

hsa-miR-134 and hsa-miR-326 were annotated to path-

ways of Pathways in cancer and Cell adhesion mole-

cule. We collected relationship between the genes,

pathways and cancers from NCBI PubMed.

Table S3. The results of collecting the cancer-associ-

ated miRNAs from the HMDD.
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