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Abstract

The development of ‘molecular-omic’ tools and computing analysis platforms have greatly

enhanced our ability to assess the impacts of agricultural practices and crop management

protocols on soil microbial diversity. However, biotic factors are rarely factored into agricul-

tural management models. Today it is possible to identify specific microbiomes and define

biotic components that contribute to soil quality. We assessed the bacterial diversity of soils

in 51 potato production plots. We describe a strategy for identifying a potato-crop-productiv-

ity bacterial species balance index based on amplicon sequence variants. We observed a

significant impact of soil texture balances on potato yields; however, the Shannon and

Chao1 richness indices and Pielou’s evenness index poorly correlated with these yields.

Nonetheless, we were able to estimate the portion of the total bacterial microbiome related

to potato yield using an integrated species balances index derived from the elements of the

bacterial microbiome that positively or negatively correlate with residual potato yields. This

innovative strategy based on a microbiome selection procedure greatly enhances our ability

to interpret the impact of agricultural practices and cropping system management choices

on microbial diversity and potato yield. This strategy provides an additional tool that will aid

growers and the broader agricultural sector in their decision-making processes concerning

the soil quality and crop productivity.

Introduction

Soil microbial communities are impacted by meteorology [1,2], soil properties [3–5], agricul-

tural management practices [6–9] and cropping systems [10,11]. In turn, the diverse composi-

tion of archaea, bacteria, fungi, protista and other eukaryotic communities found in soil and in

the rhizosphere impacts the quality of soil, water and air resources [12], the degradability of

organic matter [13] as well as the uptake of nutrients by plants [14,15]. Moreover, specific soil

microbial groups can suppress soil-borne plant pathogens [16].

Doran and Parkin [17,18] defined soil quality as “the capacity of a soil to function within

ecosystem and land-use boundaries to sustain biological productivity, maintain environmental

quality, and promote plant and animal health”. According to Pankhurst et al., (1997) [19],

the term soil health encompasses “the living and dynamic nature of soil, and captures the
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ecological attributes of the soil which have implications beyond its quality. These attributes are

chiefly those associated with the soil biota: its biodiversity, its food web structure, its activity

and the range of functions it performs”. Moebius-Clune (2016) [20] considered soil quality to

include both inherent and dynamic soil properties and that soil health is equivalent to dynamic

soil quality.

In agro-ecosystems, soil quality is assessed to enhance and sustain productivity. As for natu-

ral ecosystems, soil quality is monitored to favor the maintenance of environmental quality

and biodiversity conservation [12]. A necessary requirement for soil quality assessment is the

identification of sensitive soil attributes linked to soil functions [12]. To identify crop manage-

ment effects, soil quality assessments must also include baselines.

Historically, soil quality is measured by monitoring abiotic, biochemical and biological

indicators. Abiotic indicators include soil texture, wet aggregate stability, available water

capacity, soil hardness, pH, cation exchange capacity and extractable nutrients. Biochemical

indicators include organic matter, active carbon and the soil protein index. Finally, biological

indicators include microbial respiration rate, nitrogen mineralization potential and microbial

biomass [20–24]. These biological indicators provide no detailed information on soil biota at

any taxonomic levels that may be impacted by the drivers and pressure factors identified in the

Driver-Pressure-State-Impact-Response framework as applied to soil [12,25].

The lack of detailed information hinders the development of efficient land-use management

strategies that could address the benefits humans derive from ecosystem services and the

advantages and trade-offs derived from soil-based ecosystem services. The links between soil

biota diversity/composition, soil functions and soil-based ecosystem services have been well

established [12,26–29]. Microbial diversity and composition have been proposed as sources of

biological indicators of soil health and agricultural soil quality [27].

Microbial communities play key roles in ecosystem processes by driving the Earth’s biogeo-

chemical cycles and diversity metrics related to the richness, evenness, and phylogenetic diver-

sity of soil microbial communities. They can be used to analyze the functional consequences of

variations in soil microbial diversity [2,30]. Functional redundancy predicts that species loss

does not necessarily alter ecosystem functioning since different species may exhibit overlap-

ping functions [31]. The ecosystem functions performed by a number of microbial species

may be less prone to the impacts of diversity loss [32]. Consequently, the functional redun-

dancy impact may vary according to the ecosystem function(s) affected. For example, only

minor changes in carbon mineralization were observed despite major shifts in the growth of

soil bacteria and fungi [33]; yet, manipulations of soil microbial community composition pro-

duced heterogenous effects on ecosystem functioning, as measured by litter decomposition

rates [34]. Terrat et al. [2] developed a predictive model of soil bacterial richness that incorpo-

rated bacterial taxonomic richness based on Operational Taxonomic Unit (OTU) numbers.

These OTU numbers, determined by pyrosequencing 16S rRNA genes, were related to soil

characteristics, climatic conditions, geomorphology, land use, and space variations across

France. This French model provides a reference value of bacterial richness for a given pedocli-

matic condition.

Among microbial taxonomic groups, some sharing similar functionality are influenced by

agricultural practices. This suggests that, cropping practices may allow manipulation of influ-

ential community members [8]. Other investigators observed a shift in the flowering time of

plant hosts that may coincide with the inoculation of early- or late-flowering soil microbiomes

[35]. The reproducibility of the flowering phenotype across plant hosts suggests that micro-

biomes can be selected to modify plant traits and coordinate changes in soil resource pools.

The taxonomic composition of potato rhizosphere bacteria at various stages of plant devel-

opment was stable in the face of very diverse environmental conditions [36]. An ‘opportunistic
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microbiome’ was identified which comprised OTUs that occur randomly or only under spe-

cific environmental conditions. In contrast, “core microbiome” OTUs were found at all sites.

The ‘stable’ component of the core microbiome consisted of a few ubiquitous OTUs that were

repeatedly abundant throughout all samples and vegetation stages, whereas the ‘dynamic’ com-

ponent comprised OTUs that were enriched at specific vegetation stages [36]. The notion of

OTU has recently evolved with the development of MiSeq targeted sequencing data prepro-

cessing tools, such as DADA2 [37]. The new output unit defined has amplicon sequence vari-

ant (ASV) has improved our ability to define the basis of bacterial soil composition.

These recent studies spurred us to undertake this investigation, which has the following

objectives: i) determine the physico-chemical, agronomic, climatic characteristics prevailing

for each georeferenced soil sampled in 51 potato field plots; ii) determine the soil bacterial

alpha- and beta-diversity of each soil sample; iii) apply an innovative selection procedure using

physico-chemical, climatic and biological indicators to select amplicon sequence variants that

correlate with potato yields; and iv) develop an integrative approach using a species balance

index linked to potato productivity. The project’s paramount goal is to provide a state-of the-

art tool that will assist agricultural stakeholders in their decision-making processes concerning

the quality of soil and crop productivity.

Materials and methods

Soil sampling

This study was carried out on private agricultural lands. The owners of the agricultural lands

are collaborators in our research project. They gave us permission to conduct this study on

their lands.

During the 2013 and 2014 potato flowering period, 6 cm x 20 cm soil cores were collected

from 51 geo-localized (GPS coordinates) sampling plots in the Province of Quebec in Canada.

The plots were located in 13 potato fields. Each experimental plot was located at a corner of a

2500 m2 area in the field for a total of 4 samples per field. Each soil sample consisted of four

soil cores (6 cm x 20 cm) taken on the row between two potato plants and each core was sam-

pled at a corner of a 1m2 quadrant. The four soils cores of each sample were manually homoge-

nized, and the soil samples were placed in sealed bags and kept on ice before being quickly

stored at -80˚C prior to DNA extraction. A summary of the samples is presented in Table 1.

Soil characteristics

Soil physico-chemical analysis were performed on bulk soil of the 51 samples individually.

Total C and N were measured after sieving dried soils at 100 mesh and were analyzed by com-

bustion (Leco-CNS) [38]. Soil pH values were determined in water or in a 0.01M CaCl2 solu-

tion (1:1 v/v). Soil texture was determined by sedimentation [39]. The plots identified in the

project are very representative of potato production in Quebec. We have a dominance of sand

and loamy soils and a fairly variable range of potato yields.

Soil bacterial composition

A 200 g aliquot of each soil sample was manually homogenized and sieved at 6 mm. Next, the

0.5 g sub-samples of 6 mm sieved soil were added to FastPrep-24 tubes containing 1.4 g of the

beads matrix E and 1 ml of the lysis buffer supplied with the FastDNA SPIN Kit for Soil (MP

Biomedicals, Solon, OH, USA). The DNA extraction step was performed according to the

manufacturer’s instructions. Each DNA pellet was suspended in 100 μl of sterile molecular

grade deionized water.

Using a soil bacterial species balance index to estimate potato crop productivity

PLOS ONE | https://doi.org/10.1371/journal.pone.0214089 March 22, 2019 3 / 15

https://doi.org/10.1371/journal.pone.0214089


The quality and quantity of the DNA extracts were evaluated by spectrophotometry using a

Biophotometer (Eppendorf, Mississauga, ON, Canada) with a G1.0 microcuvette μCuvette

(Eppendorf, Mississauga, ON, Canada) with readings at 260, 280, 230, and 320 nm. Genomic

DNA quality was also verified by electrophoresis on a 1.6% (w/w) agarose gel and visualized

under UV with a Gel Doc XR+ instrument (Biorad, Hercules, CA., USA).

Prokaryota (archaea and bacteria) rRNA 16S (V4 region) gene was amplified using 515FB

and 806RB primers [40–42] and a two-step dual-indexed PCR approach specifically designed

for Illumina instruments by Plateforme d’analyses génomiques (IBIS, Université Laval, Quebec

City, QC, Canada). Since bacteria are dominant, in this article text, the term bacteria will refer

to bacteria and archaea. Briefly, the gene specific sequence was fused to the Illumina TruSeq

sequencing primers and PCR was carried out in a total volume of 50 μl that contained 1X Q5

buffer (NEB, Whitby, ON, Canada), 0.25 μM of each primer, 200 μM of each dNTPs, 1 U of

Q5 High-Fidelity DNA polymerase (NEB, Whitby, ON, Canada), and 1 μl of template DNA.

The PCR began with an initial denaturation at 98˚C for 30 s followed by 35 cycles of denatur-

ation at 98˚C for 10 s, annealing at 55˚C for 10 s, and an extension at 72˚C for 30 s with a final

extension at 72˚C for 2 min. The PCR reaction was purified using the Axygen PCR cleanup kit

(Fisher Scientific, Nepean, ON, Canada). The quality of the purified PCR product was checked

by electrophoresis on a 1% (w/w) agarose gel. Fifty- to one hundred-fold serial dilutions of this

purified product were used as templates for a second PCR step with the goal of adding bar-

codes (dual-indexed) and missing sequences required for Illumina sequencing. The cycling

parameters for the second PCR were identical to the first, but only 12 cycles were completed.

PCR products were purified as above, checked for quality on a DNA7500 Bioanalyzer chip

(Agilent, Santa Clara, CA, USA), and then quantified spectrophotometrically using the Bio-

photometer with a G1.0 microcuvette μCuvette. Barcoded amplicons were pooled in an equi-

molar concentration for sequencing on the Illumina MiSeq platform using a 2 X 300 bp

sequencing kit.

After checking the quality of the run on the MiSeq instrument, the sequences obtained

were demultiplexed according to the tag used. Next, sequence quality control and feature table

construction were performed using QIIME 2 [43] and the dada2 plugin [37]. The SILVA 132

Table 1. Summary of soil samples and soil properties (range of min-max values).

Field Sample size Potato class pH Total carbon Total nitrogen Soil Texture Yield

n % % t/ha

F01 4 Russet(2)-Yellow(2) 4.56–4.75 1.59–2.38 0.13–0.17 Sand 18.75–23.11

F02 4 White round 4.95–5.38 2.59–3.32 0.18–0.27 Loamy sand—sandy loam 44.36–62.97

F03 4 Red round 5.30–5.40 1.56–2.38 0.15–0.27 Sand—loamy sand 26.73–35.86

F04 4 Russet 5.32–6.18 2.11–2.60 0.18–0.22 Sandy loam 33.35–53.48

F05 4 Russet 4.68–5.27 1.99–2.32 0.18–0.21 Sandy loam—loam 51.08–58.06

F06 4 White round 5.28–5.53 1.88–2.81 0.09–0.17 Sand—loamy sand 11.63–32.40

F07 4 White round 5.46–5.87 2.10–2.79 0.13–0.16 Loamy sand 30.34–41.97

F08 4 Red round 5.02–5.65 2.12–2.52 0.11–0.15 Loamy sand 23.43–38.29

F09 4 Red round 5.00–5.82 2.04–2.86 0.11–0.16 Sand—loamy sand 29.35–35.48

F10 4 Red round 4.98–5.70 1.79–2.85 0.10–0.18 Loamy sand 28.23–38.78

F11 4 White round 5.03–5.57 1.86–2.60 0.13–0.19 Loamy sand—Sandy loam 33.66–36.87

F12 3� White round(2)-Yellow(1) 5.36–7.32 1.92–2.46 0.14–0.15 Loamy sand 22.70–35.26

F13 4 White round 5.04–5.70 0.99–2.45 0.04–0.11 Loamy sand—sandy loam 32.08–34.53

� One of the four soil samples of Field F12 was mishandled and unfortunately it has been discarded from the study.

https://doi.org/10.1371/journal.pone.0214089.t001
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reference database [44] was used for taxonomic identification of amplicon sequence variants

(ASVs). Here the Amplicon Sequence Variant (ASV) nomenclature replaces the well-known

Operational Taxonomic Unit (OTU) appellation [45].

Weather

Historical weather data were gathered from Environment Canada (http://climat.meteo.gc.ca)

and transformed into weather indices, comparable to the procedure followed by Parent et al.

[38]. The equations listed in Table 2 were used to compute the weather indices.

Statistics

Preprocessing soil compositions. Ever since John Aitchison provided solutions to spuri-

ous statistics using compositional data [46], the transformation from proportions to log-ratios

has been widely adopted in soil [38,47,48] and life science studies [49,50]. The simplex consti-

tuted with proportions of carbon and nitrogen; as well as the non-overlapping mineral compo-

sition of sand, silt, and clay; was transformed into isometric log-ratios (ilr) [51] to generate

balances of components. Balances were structured as strictly bifurcating trees [52] and com-

puted with Eq 1:

ilrk ¼
ffiffiffiffiffiffiffiffiffiffiffi
rksk
rkþsk

r

ln
ðxi1xi2 . . . xirk Þ

1
rk

ðxj1xj2 . . . xjsk Þ
1
sk

; ð1Þ

where, for the kth balance (k 2 [1:D−1]) of a D-parts composition, rk and sk are the numbers of

components in the respective right and left subsets of the kth balance. Parts x with subscript i
belong to the right subset in the numerator and parts x with subscript j belong to the left subset

in the denominator. The coefficient
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rksk=ðrk þ skÞ

p
is a normalization coefficient used to

obtain an orthonormal domain.

As in Fig 1, balances are designated as [subset at denominator | subset at numerator], so

that when the subset at the numerator is larger than the subset at the denominator, the ilr
value is positive and conventionally placed to the right of the axis.

Preprocessing bacterial communities. Recent research [53–55] stresses the importance

of preprocessing microbial community data with a compositional transformation, which

requires imputing zeros with pseudo-counts [56] namely using Bayesian-multiplicative

replacements [57]. A feature-table was filtered by retaining only ASVs with a contingency of 2

to reduce the number of zeros in the table prior to transforming the data into centered log-

ratios (clr) ASVs done with the feature-table plugin implemented in QIIME 2.

Table 2. Description of weather indices.

Index Description Unit Formula

PPT Cumulative precipitation mm PPT ¼
Pn

i ¼ 1
Rdi

SDI Shannon Diversity Index for rainfall - SDI ¼
�
Pn

i¼1
½Pi lnðPiÞ�

lnðnÞ , Pi ¼
Rdi
PPT

GDD Growing degree-days ˚C
GDD ¼

0 if Tmi < 7
Pn

i ¼ 1
Tmi if Tmi � 7

( )

Rd is daily rainfall, n is the number of days and Tm is the daily mean temperature. The rainfall (SDI) equals 1 when daily precipitations are evenly distributed

throughout the measured period and approaches 0 when precipitations occur on the same day.

https://doi.org/10.1371/journal.pone.0214089.t002
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We transformed ASV counts to clrs [46] using Eq 2:

clrk ¼ log
xk

x1 � x2 � . . .� xkð Þ
1=k

 !

ð2Þ

Statistical analysis workflow. We designated potato yield as a performance index. Envi-

ronmental variables, i.e. weather and soil, are likely to affect yield, so a linear regression was

performed (i) to compare the effects of environmental variables with the effects obtained in a

similar study previously carried out in the Province of Quebec, Canada [38], and (ii) to

obtain a residual yield, i.e. the part of the yield unexplained by environmental variables.

Then a correlation analysis was run between the clr-transformed bacterial microbiome and

the residual yield. In order to calculate a bacterial species balance index of potato productiv-

ity (SBI-py), we computed a log-ratio of ASVs whose clrs were positively (numerator) and

negatively (denominator) correlated to residuals yield, at a significant 0.05 level. This index

was compared to the Shannon and Chao1 biological diversity indices as well as to Pielou’s

evenness index. These diversity indices are commonly used to assess alpha diversity [58–60].

Finally, we attempted to detect ecological niches related to SBI-py by analyzing the effect of

the environmental variables on potato productivity. The analysis workflow is presented in

Fig 2.

Computational environment. Statistical computations were performed in the R version

3.5.0 [61]. The tidyverse version 1.2.1 meta-package was used for generic data analysis. The

vegan package version 2.5–1 [62] was used to compute the redundancy analysis. The composi-

tions package version 1.4.1 [63] was used for soil isometric log-ratio transformations. The

zCompositions package version 1.1.1 [64] was used to impute counted zeros in the ASV table.

The data and the R code are both available at https://git.io/fhHEj.

Results and discussion

The 51 samples of the 13 fields described in Table 1 were distributed between sand to loam

textures (Sand: 30; Loamy sand: 8; Sandy loam to Loam: 13) and 4 classes of potato (Red

round:18; White round: 20; Russet: 11; Yellow:3). The quality of the data is very good and

meets the quality criteria to allow a microbial diversity analysis. After the application of the

DADA2 pipeline, the average sequence rate per sample was 18613 for a total of 949242

sequences for the 51 samples. 2008 different ASVs were observed in the dataset.

Fig 1. Balance structure used to compute soil isometric log-ratios.

https://doi.org/10.1371/journal.pone.0214089.g001
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Regressions analysis of potato yield with meteorological and physico-

chemical variables

A regression model was used to analyze the relationship between the selected weather and

chemical variables and the potato yield. The slope coefficients of the scaled and centered vari-

ables are shown in Fig 3.

Fig 2. Statistical analysis workflow applied to soil microbiome and potato crop productivity.

https://doi.org/10.1371/journal.pone.0214089.g002

Coefficient of scaled variable

not significant significant

Fig 3. Slope coefficients and their 95% confidence intervals from a linear model linking environmental and

physico-chemical features to potato yield.

https://doi.org/10.1371/journal.pone.0214089.g003
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The two textural balances, [Clay | Silt, Sand] and [Silt | Sand] displayed significant negative

slope coefficients at the 0.05 level. This implies that the increase in sand content in the soil rela-

tive to clay (i.e., the [Clay | Silt, Sand] balance) is negatively correlated to potato yield, or in

other words, the relative proportion of clay compared to non-cohesive particles is positively

linked to yield. Also, a higher proportion of sand compared to silt (i.e., the [Silt | Sand] bal-

ance) is negatively correlated to yield. Otherwise, no significant coefficients with variables

linked to the [N | C] balance, pH, and weather were observed.

Once the residuals of the regression, here referred to as the residual yield, are extracted they

can be related to the biological components of the soils.

Correlation between soil bacterial composition and residual potato yield

We correlated the clrs of ASV counts with residual potato yields. From these correlations, we

retained ASVs associated to significant correlations at the 0.05 level. We identified 79 posi-

tively correlated and 61 negatively correlated ASVs from a total of 2008.

The Fig 4A shows the counts of ASVs identified per bacterial phyla from the bacterial com-

position of soil samples, while Fig 4B shows the number of positively and negatively correlated

ASV in non-neutral phyla.

Retained ASVs belong to 12 bacterial phyla. The total and retained abundance patterns of

ASV were similar, although Verrucomicrobia, Armatimonadetes and other less abundant phyla

were absent from the retained ASVs. The most of retained ASVs were from the Proteobacteria,

Actinobacteria, Chloroflexi, Bacteroidetes, Gemmatimonadetes and Acidobacteria phyla. In the

case of Proteobacteria, Bacteroidetes and Acidobacteria, there was a higher number of retained

ASVs that positively correlated with residual potato yield. Among the the Saccharibacteria and
Nitrospirae phyla, we observed no clrs of ASVs counts that negatively correlated with the

Fig 4. (A) Counts of ASVs per bacterial phyla (bacteria and archaea) detected in soil samples and (B) counts of ASVs per bacterial phyla that significantly

correlated, either positively or negatively, with residual yields at the 0.05 level of significance.

https://doi.org/10.1371/journal.pone.0214089.g004
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residual potato yield. This suggests that among these six bacterial phyla, most retained ASVs

contribute positively to potato crop productivity.

Relationship between potato yield and soil bacterial diversity indicators

A species balance index related to potato yield (SBI-py) was computed as the log-ratio between

the ASV counts associated to positive (numerator) and negative (denominator) significant cor-

relations (at the 0.05 level) between ASV clrs and potato residual yields. Fig 5 illustrates the

correlations between potato yield, residual potato yield and three commonly used alpha diver-

sity indices (Shannon diversity, Pielou’s evenness and Chao 1 diversity), as well as the SBI-py.

The three alpha diversity indices were barely correlated with potato yield and residual

potato yield. The Pielou index correlated less well with potato productivity than did the other

two alpha diversity indices. Alpha diversity indicators have been used to assess impact of land

uses [2] and of diverse soil management practices and cropping systems on soil quality

[16,27,65]. The comparison of organic farming vs conventional agriculture [8,66] and of differ-

ent farming systems [10,67] showed significant differences of alpha diversity indices values. In

our study, the relative homogeneity of the cropping systems and management practices may

explain that no links between bacterial alpha diversity indices and the potato residual yield

have been observed.

It has been reported that specific guilds of taxa among the soil bacterial microbiome can be

selected to modify plant traits and to coordinate changes in soil resource pools [7,35,36]. These

reports spurred us to identify specific bacterial species/ASVs among soil bacterial composition

Fig 5. Relationships between alpha diversity metrics and the SBI-py index with residual potato yield.

https://doi.org/10.1371/journal.pone.0214089.g005
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linked to potato productivity. Since the influence of soil properties and weather conditions on

the microbiome is widely known [68,69], we first performed a linear regression with potato

yield to get a residual yield that was not affected by the weather or soil parameters. Then the

clrs of ASV counts that correlated positively or negatively with this residual yield have been

used to determine a species balance index related to potato yield (SBI-py). This innovative selec-

tion procedure of ASVs lead by design to good correlations between the newly developed

species balance index (SBI-py) and the residual potato yield of the field plots sampled.

Burns et al., [7] reported a relative hierarchy of effect of vineyards management practices,

cropping systems, soil properties and soil resource pools on microbial community structure

based on NMDS analysis using coarse and fine (genus) taxonomic level.

Also, a detailed statistical analysis on the operational taxonomic unit (OTU) level, repre-

senting bacterial species detected in potato rhizosphere, revealed a stable component and a

dynamic component of a core microbiome related to potato crop and field sites sampled [36].

As observed in our study based on bulk soil prokaryotic microbiome analysis, the diversity

metrics of potato rhizosphere bacterial community showed that the β-diversity was more sig-

nificantly modified than the α-diversity [36].

The use of ASV instead of OTU tables or taxonomic tables allowed a better appreciation of

the complexity and species variability among soil microbiomes. The accuracy of the taxonomic

tables (phylum, class, order, family or genus levels) is limited due to the reference databases

that are used for each OTU or ASV taxonomic assignations. This limitation is even more

important with the use of OTUs made with 97% similarity between sequences instead of

ASVs.

Effect of environmental variables on the SBI-py

The triplot shown in Fig 6 results from a redundancy analysis between environmental vari-

ables, soil physico-chemical balances and the clrs of ASVs. The positively and negatively signif-

icantly (at the 0.05 level) correlated clr-transformed ASV counts at each site (greyish dots) are

plotted along the contours of the species balance index scores. By design, the SBI-py contours

follow the pattern of positive and negative ASVs.

The obvious delineation of positive and negative ASVs zones indicate potential ecological

niches related to favorable and unfavorable soil microbiomes for potato cropping systems.

Because the [Clay | Silt, Sand] balance vector points in an opposite direction of the high SBI-py

positive values, we infer that soils with higher clay proportions are linked to higher SBI-py pos-

itive values. The same reasoning applies to the [N | C] balance: higher nitrogen to carbon con-

tent is linked to higher SBI-py positive values. On the other hand, high organic contents,

([Clay, Silt, Sand | N, C] balances) and sandy soils (high [Silt | Sand] balances) are linked to

negative SBI-py index values. The Shannon diversity index of rainfalls [SDI] points through a

negative SBI-py values, indicating that a more even distribution of precipitations is linked to

low SBI-py values. Finally, although the pH vector does not follow the highest SBI-py gradient,

we can find relatively high SBI-py values at low pH.

Conclusions

Our results highlight the importance of using soil bacterial composition as a biological index of

soil quality and, more specifically, of crop productivity. We developed the SBI-py index based

on the evidence that specific components of the soil microbiome can explain aspects of potato

productivity. While, by design, the SBI-py showed a high correlation with yield detrended

from several environmental conditions (0.77), three commonly used alpha-diversity indices

(Shannon, Chao1 and Pielou’s evenness indices) poorly correlate to potato productivity. The
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approach we employed to develop the SBI-py index could be further validated using a larger

sample size combined with machine learning techniques.

The soil microbiome encompasses different prokaryotic and eukaryotic organisms dis-

persed along a complex interacting food web, thus providing numerous soil ecosystemic func-

tions that may promote plant growth [70]. For example, the potato tuber yield was impacted

by the fungal diversity in rhizosphere soil of continuous cropping potato subjected to different

furrow-ridge mulching managements (71). The rhizosphere soil under the on-ridge planting

with full-mulch (T2) soil had the highest fungal diversity and the highest potato yield.

We have recently undertaken a study of the interactions between bacterial and fungal diver-

sity in soil and rhizosphere of potato cropping systems to evaluate their impact on potato yield

and soil productivity.

Fig 6. Triplot of a redundancy analysis showing ecological niches of ASVs that exhibit a significant positive (+) or negative (-) correlation with

potato yield residual, as well as those ASVs with no significant correlation (translucid points) in distance scaling (scaling 1).

https://doi.org/10.1371/journal.pone.0214089.g006
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Our results represent a significant contribution to research aimed at selecting biotic data

that give more detailed information on soil biota than the usual biological indicators. These

biotic data can be incorporated as biological indicators into the determination of soil quality

indices. Our strategy for the selection of significant ASVs in specific component of soil micro-

biome can also be implemented in a variety of agricultural applications.
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