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ABSTRACT: We create an approach to efficiently calculate two-electron reduced
density matrices (2-RDMs) using selected configuration interaction wavefunctions.
This is demonstrated using the specific example of Monte Carlo configuration
interaction (MCCI). The computation of the 2-RDMs is accelerated by using ideas
from fast implementations of full configuration interaction (FCI) and recent
advances in implementing the Slater−Condon rules using hardware bitwise
operations. This method enables a comparison of MCCI and truncated CI 2-
RDMs with FCI values for a range of molecules, which includes stretched bonds and
excited states. The accuracy in energies, wavefunctions, and 2-RDMs is seen to
exhibit a similar behavior. We find that MCCI can reach sufficient accuracy of the 2-
RDM using significantly fewer configurations than truncated CI, particularly for
systems with strong multireference character.

1. INTRODUCTION
The molecular Hamiltonian incorporates at most two-particle
interactions. Hence, the two-electron reduced density matrix
(2-RDM) is all that is needed to compute the energy, as well as
the expectation value of any other one- or two-electron
operator. This is of particular interest for the calculation of
electron scattering and X-ray scattering from molecules where
the experimental observable is obtained from the Fourier
transform of the 2-RDM.1−7 It also plays a crucial role in the
efficient implementation of analytic energy gradients for
configuration interaction (see, e.g., ref 8). The 2-RDM enables
electron pair intracules to be calculated to study electron
correlation9,10 and explicit-r12 correlation corrections to be
included perturbatively.11 Furthermore, it facilitates the
computation of exchange−correlation holes, which are of
interest for improving the approximate functionals in density-
functional theory (see, e.g., ref 12). Transition 2-RDMs are an
essential part when calculating analytic non-adiabatic coupling
matrix elements,13 and permit natural transition geminals to be
found for the qualitative characterization of doubly excited
transitions.14 Two-electron operators also occur in approx-
imations to relativistic quantum chemistry15 via the Breit-Pauli
Hamiltonian and allow spin−orbit coupling calculations to go
beyond one-electron operators with effective nuclear charges.
For a single-particle basis set of size M, the 2-RDM cannot
have more that M4 terms, in contrast to the combinatorial
scaling of the full configuration interaction (FCI) wave-
function. With respect to calculating the expectation values of
one- and two-electron operators, one may therefore regard the

2-RDM as a lossless compression of the wavefunction. Using
this representation can thus enable large gains in efficiency
compared with the storage, transfer, and manipulation of the
full wavefunction.

If we consider water, use the cc-pVDZ basis, and do not
exploit symmetry, there are almost two billion Slater
determinants in the FCI wavefunction, but fewer than
400,000 terms constitute the 2-RDM, amounting to just
0.018% of the size of the wavefunction. We note that the
wavefunction itself has been the focus of compression, for
example, by controlling the number of non-zero coefficients in
an FCI algorithm,16 and one could also consider selected
configuration interaction methods as a form of this, albeit one
where there will be some trade-off between size and accuracy.

Although the FCI wavefunction is the most accurate for a
given basis, considering the number of Slater determinants
required, its calculation is currently possible only for small
systems and basis sets. When wavefunctions have numerous
important configurations, often termed multireference prob-
lems, elegant and efficient approaches based on small
corrections to a single determinant, for example, CCSD17 or
CCSD(T),18 can perform poorly,19 and multireference
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coupled cluster methods are still being developed. These cases,
such as stretched bonds or excited states, can require the use of
CASSCF20 to achieve qualitative results, often proceeded by
MRCI21 or CASPT222 for quantitative accuracy. However,
such an approach can rapidly become computationally
intractable, like FCI, as the active space becomes larger.
However, small active spaces can be insufficient or require
expert knowledge to construct and thus introduce the risk of
bias. One promising class of methods to model multireference
problems in an unbiased manner with tractable wavefunctions
is the selected configuration interaction23−32 where a compact
wavefunction is built up by selecting and removing
configurations based on relevant criteria and performing
multiple diagonalizations. In this work, we consider the
selected CI approach of Monte Carlo configuration interaction
(MCCI)24,33,34 where configurations are chosen randomly, and
we appraise its ability to approximate the FCI 2-RDM.
Therefore, we investigate two improvements in the efficiency
when constructing 2-RDMs: the first is in the substantially
smaller configuration space required for MCCI that can allow
systems that are too large for FCI to be modeled, while the
second is achieved by combining ideas from alpha and beta
string FCI35,36 with recent advances in implementing the
Slater−Condon rules using hardware bitwise operations.37

In this paper, we initially discuss the calculation of the 2-
RDM from Slater determinant wavefunctions and ways to
improve the efficiency. Next, we summarize the MCCI
approach and how we can convert configuration state functions
(CSFs) to Slater determinants by applying the projector
operator approach of ref 38 to enable the use of the efficient 2-
RDM approach for pure spin states. We calculate FCI 2-RDMs
for wavefunctions of up to 2.4 billion determinants, then
compare MCCI and truncated CI to the FCI values for
energies, 2-RDMs, and wavefunctions for a range of molecules,
which include stretched bonds and excited states.

2. THEORY
2.1. Derivation of the 2-RDM Equations. In the

notation of second quantization, the standard non-relativistic
Hamiltonian in quantum chemistry may be written in terms of
molecular spin orbitals as39

= | | + |† † †H p h q a a pr qs a a a a
1
2pq

p q
pqrs

p r s q
(1)

For molecular spatial orbitals, this becomes

= + |† † †H h a a pr qs a a a a
1
2pq

pq p q
pqrs

p r s q
(2)

where †ap creates molecular spatial orbital p of spin σ while as

annihilates molecular orbital s of spin σ′. Here, p, q, r, and s
range over all molecular spatial orbitals M in the basis set, and
σ is the spin coordinate which is either up (↑) or down (↓).
The one-electron integrals, hpq, are

= *
| |

i
k
jjjjjj

y
{
zzzzzzr

r R
r rh

Z
( )

1
2

( ) dpq p
A

A

A
q1 1

2

1
1 1

(3)

where ZA and RA are the charge and position of nucleus A, and
r1 is the electron coordinate. The two-electron integrals ⟨pr|qs⟩
are
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and the expectation value | |H gives the energy

= + |E h pr qs
1
2pq

pq pq
pqrs

prsq
(5)

Here, γpq is an element of the spin-free one-electron reduced
density matrix (1-RDM) in terms of spatial molecular orbitals

= | |†a apq p q
(6)

and Γprsq is an element of the spin-free 2-RDM

= | |† †a a a aprsq p r s q
(7)

The factor of 1/2 in eq 5 is sometimes incorporated into the
2-RDM, but we highlight that this is not carried out in this
work. As we consider the non-relativistic Hamiltonian, which
does not contain spin, then the spin-free 2-RDM is sufficient to
give the energy or any other spin-independent one- or two-
particle property. If we wished to go beyond this and calculate
spin-dependent properties, then the four combinations of spin
in eq 7 could be considered separately to give spin blocks of
the 2-RDM. To calculate Γprsq from an expansion of Slater
determinants |Ψ⟩ = ∑ici|Φi⟩, we have

= * | |† †c c a a a aprsq
i j

i j i p r s q j
, (8)

We initially set the 2-RDM to zero and then consider all
pairs of determinants (i and j) for the following three situations
of two, one, and zero differences in the lists of orbitals
comprising the determinants:

• Two differences
For two differences, we have spin orbitals s q, as the

differences in the determinant on the right where s is the
spatial orbital of the first difference and has spin σs.
Furthermore, spin orbitals r p, are the differences in the
determinant on the left where r is the spatial orbital of its first
difference.

When considering all contributions to the 2-RDM and
swapping operators to return to the form † †a a a ap r s q , we have
four cases in total, and the 2-RDM is updated according to
algorithm 1

Here, Θ is the sign that results from placing the
determinants in maximum coincidence and

x y
is the

Kronecker delta of the spins of x and y .
• One difference

In this case, there is a single difference in the lists of spin
orbitals from the two determinants, spin orbital q for the right
determinant and spin orbital p for the left determinant.
Looping over all other spin orbitals s in the determinant, we
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have algorithm 2 where again we use s for a spin orbital and s

for the corresponding spatial orbital.

• No differences
Finally, we have no differences where all ordered pairs of

spin orbitals s and q in the determinant are looped over
(algorithm 3).

We validate the derivation of Γprsq by verifying that it gives
the correct energy viaeq 5. To do this we note that, from the
definition of the RDMs and the anticommutation relations for
the creation and annihilation operators, the 1-RDM may be
calculated from the 2-RDM using

=
N

1
1pq

j
pjjq

e (9)

where Ne is the number of electrons in the system. As the 2-
RDM is all that is needed to give the energy, or any two-
electron property, we note that there has also been impressive
work on approximating the 2-RDM to do away with the
wavefunction altogether,40−42 and recent research has
advanced these approaches so that they can be used for
geometry optimization.43,44 However, variationally optimizing
the 2-RDM can lead to unphysical solutions unless further
constraints are applied (see, e.g., ref 45). Our FCI 2-RDMs in
this work for wavefunctions of up to 2.4 billion determinants
should therefore also provide useful benchmark data for
researchers developing methods based on approximate 2-
RDMs.

For large FCI wavefunctions, the calculation of the 2-RDM
can become onerous even if we consider only i ≤ j. However,
each determinant has non-zero 2-RDM contributions only
from those determinants it is linked to by a single or double
substitution. Rather than checking every determinant to see
whether it contributes, we only consider the singles and
doubles for each determinant. This means that, when not
considering symmetries, instead of O N( )SD

2 terms we have, for
fixed numbers of electrons, O(NSDM2), where M is the number
of basis functions. This is due to the doubles dominating as
there are Nα(M − Nα)Nβ(M − Nβ) double substitutions of
mixed spin. When the number of electrons is not fixed but
much smaller than the number of basis functions, the scaling
will therefore be O N M N( )SD

2
e
2 . As the number of determinants

increases combinatorially with basis size for FCI, this will lead
to a substantial reduction in the number of terms. Of course, if
calculating the singles and doubles is computationally

expensive, we will not have accelerated the calculation of the
2-RDM. Hence, to do this efficiently, we use ideas from fast
implementations of FCI, which we discuss next.

2.2. Alpha Beta String Efficient FCI Approach for 2-
RDM Construction. Generally, for FCI implementations, the
main computational cost is applying the Hamiltonian matrix to
trial vectors, Hb = d (see, e.g., ref 36), in the Davidson
algorithm46 for iterative diagonalization. For large FCI, storing
H requires too much memory, so its elements are calculated on
the fly. For ∑kHikbk, only terms which have a determinant Φk
formed by a single or double substitution from determinant Φi
need to be considered. Early in the development of FCI
calculations it was noted35 that, for = =M N N( ) 0s

1
2

,
the locations of singles and doubles was only needed for the
lists of α orbitals specifying determinants (α strings), thereby
considering only NFCI rather than NFCI terms. Furthermore,
the matrix elements for double α substitutions are independent
of the β and vice-versa, so these matrix elements can be
precomputed.

Based on this approach, we implement an efficient parallel
FCI program. We briefly sketch the procedure below when
symmetry is not used and Ms = 0 so that the β are the same as
the α strings. We note that the program can also work with
symmetry and for Ms ≠ 0. In the latter case, we need to store
the locations of the singles and doubles for the β strings as
well.

We generate all allowed α strings, and for each one, we store
the location of its single and double excitation strings. We also
store its double excitation matrix elements and the single
excitation orbitals together with the sign from putting the
single substituted string in maximum coincidence with the
original. The diagonal part of the Hamiltonian matrix is also
stored. For the later 2-RDM calculation, we also retain the
double excitation orbitals and the signs for the doubles.

We map the combined α string location (αloc) and β string
location (βloc) to a FCI vector location (FCIloc) using

= +FCI ( 1)loc loc total loc (10)

where αtotal is the total number of α strings.
For the calculation of Hamiltonian matrix elements and the

signs from putting strings in maximum coincidence, we use the
approach of ref 37 to exploit hardware bit operations in
modern CPUs for efficiency. This depends on using the
hardware instructions of popcnt, to count the number of ones
(orbitals) in the binary representation of an integer, and trailz,
to give the number of trailing zeroes. For example, we get the
number of orbitals of a given irrep in an α string by calculating
its bitwise AND with a symmetry bitmask (an integer whose
binary representation only has ones for all the orbitals of that
irrep) followed by using popcnt. The list of orbitals from an α
string can be found by using trailz to give the lowest numbered
occupied orbital and then taking the bitwise AND of the α
string subtract one with the original α string to give a new α
string and repeating until this is zero. For di = ∑kHikbk,
different i are considered in parallel by using OpenMP to
parallelize the α string loop. If the FCI vector is sufficiently
small, we keep all of the b and d vectors in memory. Otherwise,
we keep all but three of these vectors on disk.

When the Davidson algorithm has converged, the FCI
vector and structure are used to calculate the 2-RDM
efficiently by using the FCI α string approach to consider
only the singles and doubles for each determinant. This step is
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not parallelized as there would be multiple processes
simultaneously trying to modify the same data (race
conditions) due to different determinants contributing to the
same 2-RDM elements.

We note that the standard N-resolution method for direct
FCI will scale as O(NSDM4) and the minimal operation-count
method scales as O N M N( )SD

2
e
2 when the number of orbitals is

larger than the number of electrons.47 In ref 47 Helgaker,
Jorgensen, and Olsen provide an approach for the calculation
of the 1-RDM but not the 2-RDM where they note that “a
well-designed algorithm for the construction of the two-
electron density matrix will have an operation count identical
to the count of a direct CI iteration for a two-electron
operator.” Hence the present method, although the prefactor
may be different, would be expected to scale similar to a well-
designed approach for calculating the 2-RDM based around
the minimal operation-count method.

2.3. Efficient Method for General Slater Determinant
Wavefunctions. To efficiently compute 2-RDMs in the case
of a general Slater determinant wavefunction, we make use of
the same methods presented above adapted to a subset of the
configurational space. As stated before, Slater−Condon rules
serve to discriminate the non-zero overlaps between the
different Slater determinants and, making use of the bitwise
operations from ref 37, one can apply the methods presented
for FCI to a general wavefunction. We have developed an
efficient search algorithm that calculates the single and double
excitations for each of the Slater determinants considered and
searches for them in the configuration interaction vector
expansion. Considering that not all possible determinants are
present in a general case, the speed-up for a general
wavefunction is less than that for FCI, and the necessity for
a search algorithm also decreases this compared to a
calculation based solely on the approaches discussed in the
previous sections.

2.4. Truncated CI and MCCI. If the FCI vector is too large
to be stored in memory, one straightforward approximation is
to limit the configuration space to determinants formed by
single and double substitutions from the reference (CISD).
This can be systematically improved to include triple
substitutions (CISDT), then quadruple substitutions
(CISDTQ), and so forth. In this work, we denote CISDTQ
as CI(4), CISDTQQ as CI(5), and so on.

If the FCI wavefunction is well-described by small
corrections to a single reference, one would expect CISD to
be reasonably accurate. However, when there are many
important configurations, much higher levels of substitutions
may be needed for accurate results. For these multireference
situations, the calculation of a sufficiently accurate truncated
CI wavefunction can rapidly become unwieldy as we are
compelled to include higher-level substitutions. However, in
quantum chemistry, many of the determinants often have
negligible importance in the wavefunction.

Selected configuration interaction approaches seek to exploit
this observation and find compact wavefunctions that can
describe multireference problems sufficiently well. To do this,
they build up a wavefunction by repeatedly adding and
removing configurations based on the results of diagonalizing
the Hamiltonian matrix in the current space.

One approach that has been demonstrated to be effective is
MCCI.24,33,34 This removes any possible bias by adding new
configurations randomly and then removing newly added

configurations if their absolute coefficient in the resulting
wavefunction is less than the cutoff value cmin. Every 10
iterations, all configurations are considered for deletion, and
the calculation ends when the energy converges to within a
threshold. In contrast to efficient methods for FCI, the
Hamiltonian matrix is stored in memory in MCCI as the
configuration space is much smaller, and the Hamiltonian
matrix is not expected to change drastically from one iteration
to the next. This saves recalculating all the matrix elements on
every iteration. In addition, the wavefunction coefficients for
each state of interest are used as initial b values for the next
iteration to accelerate the convergence of the Davidson
diagonalization. We use MOLPRO48 to provide the one-
electron and two-electron molecular orbital integrals for
MCCI.

In the original MCCI program,34 the representation used for
a determinant is orbital ordering then spin, for example,
ϕ1αϕ1β, ϕ2αϕ3β rather than spin then orbital ordering, for
example, ϕ1αϕ2α, ϕ1βϕ3β, which is used for the FCI program in
this work together with the efficient Slater−Condon routines
of ref 37 and the efficient 2-RDM calculation. MCCI can use
Slater determinants or CSFs, with the latter guaranteeing pure
spin states and resulting in a smaller Hamiltonian matrix.
However, the construction of the Hamiltonian matrix is much
more complicated when using CSFs.49

2.5. CSFs to SDs. By using the projector approach of ref
38, we can convert CSFs to Slater determinants and then apply
the efficient 2-RDM calculation. To project out wavefunctions
with spin quantum number k, we apply the operator of ref 38

= +
+ +

O S
S r r

k k r r
( )

( 1)
( 1) ( 1)k

r k

2
2

(11)

where the product is over all possible spin quantum numbers r
except the spin quantum number k we want. Here

= + + ++ +S s i s i s i s j M M( ) ( ) ( ) ( ) ( 1)
i i j

s s
2

(12)

where the operator +s i( ) acts on the i’th spin to flip β and
annihilate α, while this is reversed for s i( ) (see, e.g., ref 50).

For each list of orbitals defining a CSF, we apply the product
in eq 11 from r = 0 to half the number of unpaired electrons,
while we bypass r = k. Duplicates are removed in the small set
of Slater determinants for this CSF after each application to
ensure that we do not waste time acting on the same
determinant twice. The determinants are then stored, and we
move on to the next CSF. After all CSFs have been considered,
we remove duplicates in the full set of Slater determinants.
Thereby, we make the calculation faster than checking the full
set for duplicates after each CSF but at the cost of more
memory being required.

We verify that the procedure has worked correctly by
checking that the Slater determinant expansion is normalized
and that the energy and spin take the expected values. We note
that recently created CSF to SD transformations for large
numbers of unpaired electrons51 have allowed fast calculations
of SD expansions from tens of millions of CSFs for low-spin
states with many unpaired electrons. Furthermore, there is
recent work on getting the best of both worlds through
transformations that allow a hybrid CSF/SD approach for
configuration interaction.52
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3. RESULTS AND DISCUSSION
We first demonstrate the speed-up in the calculation of the 2-
RDM for the FCI wavefunction of the ground state of neon
using the 6-31G* basis set with one frozen orbital. We then
compare errors of truncated CI and MCCI with FCI for
energies, 2-RDMs, and wavefunctions. Next, we consider these
errors for an excited state of neon and then for CO in its
equilibrium and stretched geometries, where we look at the
speed-up for the 2-RDM calculation using a general Slater
determinant wavefunction. Increasing the basis set size is also
considered for equilibrium CO where the size/accuracy trade-
off of the wavefunction for SDs versus CSFs is compared as
well. This is also considered for the final system we look at, the
Ms = 1 triplet state of O2.

3.1. Neon. Initially, we look at the ground state of neon
using the 6-31G* basis set with one frozen orbital. The FCI
wavefunction has 125,861 SDs here, and we quantify the
multireference character for the given basis and molecular
orbitals using

= | |c1
i

iMR
4

(13)

which increases from 0 to 1 as the amount and spread of
important configurations grow.53,54 For this basis set, the neon
atom has a very low multireference character of just ςMR =
0.055.

We first demonstrate the improvements in the calculation
time of the 2-RDM by comparing four approaches:

1. orbital then spin ordering,
2. spin then orbital ordering and using the hardware

bitwise operations of ref 37,
3. spin then orbital ordering, using hardware bitwise

operations of ref 37 and only calculating i ≤ j from
the wavefunction expansion,

4. spin then orbital ordering, using hardware bitwise
operations of ref 37 and exploiting the FCI structure.

The timings on one thread of a 3.8 GHz 8-Core Intel Core
i7 CPU are displayed in Table 1 where we see that we can get

just over a ×4 speed-up compared with the initial approach
when using the method of hardware bitwise operations.37

Coupling this with using the FCI structure makes the
calculation around 220 times faster, thereby allowing us to
tractably compute 2-RDMs for much larger wavefunctions. We
note that the FCI structure needs to be calculated, but the FCI
calculation would be carried out anyway to obtain the
wavefunction and only required around 1 s using 16 threads.

We quantify the accuracies compared with FCI using the
error

= A A( )FCI
2

(14)

where the sum runs over all elements in the quantity of interest
A, which is either the energy, 2-RDM, or wavefunction
coefficients. The latter have their global phases chosen to
minimize the error. The errors are not normalized, so we
cannot necessarily say that one quantity is captured more
accurately than another for a single method, but we can
compare between methods to see whether a higher level of
excitation is needed in truncated CI to achieve an MCCI
wavefunction error than to reach an MCCI energy accuracy.

We see in Figure 1 that CISD has already lowered the
energy error to around 0.005 hartree and that the energy, 2-

RDM, and wavefunction errors generally behave similarly on
increasing the excitation level. The 2-RDM and wavefunction
errors have crossed over by CI(5). However, the errors are
getting quite small by this point.

The first excited Ag triplet state of neon with Ms = 0 has a
strong FCI multireference character of ςMR = 0.848 when using
the 6-31G* basis. Figure 2 shows that CISD does not improve
much over CIS and neither gets sufficiently close to FCI in
comparison with CISD for the ground state. For this, we need
to go to CISDT to get errors that are similar to CISD in the
ground-state calculation.

Table 1. Timings for the Calculation of the 2-RDM from the
Neon FCI Wavefunction with 125,861 SDs for Our Four
Approaches as Detailed in the Text

method time for 2-RDM (s)

1 84.1
2 20.0
3 15.7
4 0.376

Figure 1. Truncated CI errors compared with FCI for the ground
state of neon using the 6-31G* basis set and one frozen orbital.

Figure 2. Truncated CI errors compared with FCI for the first excited
Ag triplet state of neon with Ms = 0 using the 6-31G* basis set and
one frozen orbital.
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Next, we consider the MCCI approach with cutoffs ranging
from 0.01 to 10−4 and see in Figure 3 that for the ground-state
of neon, MCCI can use fewer determinants than CISD, yet
give a lower error than CISDT for the energy and 2-RDM.

We see in Figure 4 that for the excited state, the error-to-SD
ratio is noticeably lowered with MCCI. All MCCI results now

have lower errors than CISD, and the plot suggests that we can
achieve errors lower than CI(4) using fewer determinants than
CISDT. Hence, for this problem with strong multireference
character, the performance of MCCI relative to truncated CI is
enhanced compared with the ground state, which had very
little multireference character. This fits in with the selected CI
approach being more able to find the important configurations.
However, if the system is well-described by a single reference,
the advantage of MCCI will be diminished as a large amount of
configurations with small coefficients can only make minor
improvements to the already quite accurate wavefunction.

3.2. CO. For CO, the 6-31G basis set, and two frozen
orbitals, the FCI wavefunction consists of 4,777,056 SDs. We
first consider the equilibrium bond length55 of 2.1316 a0 and
find that ςMR = 0.188, suggesting a small amount of
multireference character.

As for neon, the errors follow a similar trend (Figure 5) with
a crossing between the wavefunction and 2-RDM errors by an
excitation level of 6 for this system.

We also consider a stretched bond length of 4 a0, which has
a very high multireference character of ςMR = 0.9554. As the
MCCI wavefunctions are larger than they were for neon, this
system provides a good test for the improvements in the
computational time required to construct the 2-RDM for a
general Slater determinant wavefunction. On one thread of a
2.9 GHz Intel Xeon CPU, we find that the time to get the 2-
RDM from the MCCI wavefunction with cutoff 5 × 10−5 is
reduced by around a factor of 26 using the efficient approach
of this paper. In Figure 6, we plot the truncated CI errors. We

see that the errors are noticeably higher for the stretched than
that for the equilibrium geometry, with the 2-RDM errors
being around an order of magnitude larger. This illustrates the
challenge of modeling systems with strong multireference
character using highly truncated wavefunctions. If we wish to
lower the error in the stretched calculation to a similar size as
for CISD in the equilibrium geometry, we see in Figure 6 that
CI(4) is needed for the energies but CI(5) for the 2-RDM and
wavefunction. This is consistent with the expectation that it is

Figure 3. MCCI and truncated CI errors compared with FCI for the
ground state of neon using the 6-31G* basis set and one frozen
orbital.

Figure 4. MCCI and truncated CI errors compared with FCI for the
first excited Ag triplet state of neon with Ms = 0 using the 6-31G*
basis set and one frozen orbital.

Figure 5. Truncated CI errors compared with FCI for the ground
state of carbon monoxide using the 6-31G basis set and two frozen
orbitals for the equilibrium bond length of 2.1316 a0.

Figure 6. Truncated CI errors compared with FCI for the ground
state of carbon monoxide using the 6-31G basis set and two frozen
orbitals for a stretched bond length of 4 a0.
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more challenging to accurately compute the 2-RDM, which
can give any one- or two-electron property, than the energy, for
which the wavefunction is variationally optimized.

Figure 7 shows that for the equilibrium geometry, MCCI
with the lowest cutoff of 10−4 can achieve a low error

comparable to CI(4) but uses a similar magnitude of
determinants as CISDT. In this respect, MCCI performs
slightly better than that for ground-state neon, which fits in
with the multireference character being higher for carbon
monoxide.

Figure 8 reveals that MCCI can get a 2-RDM error
comparable to CI(6) for the stretched system but uses fewer

determinants than CI(4). Here, CI(6) required 1,788,324
determinants, while the largest amount needed for MCCI was
82,447. This, again, demonstrates the benefit of selected CI
wavefunctions when the multireference character is very
strong.

Next, we consider a larger basis for CO in its equilibrium
geometry. When using cc-pVDZ with two frozen orbitals, we
calculate the ground-state FCI wavefunction, which has
2,414,950,976 determinants, and use it to compute the 2-
RDM. Due to the size of the wavefunction, we do not retain it

after the calculation, and therefore, wavefunction errors are not
considered.

The minimum MCCI cutoff is now lowered to 5 × 10−5, and
for this wavefunction, the multireference character is found to
be ςMR = 0.21. We see in Figure 9 that, although MCCI does

much better than CISDT for a similar number of determinants,
we cannot reach CI(4) accuracy now that the FCI space is very
large even with this smaller cutoff. We contrast this with the
results for the smaller basis in Figure 7 where an accuracy
slightly higher than that for CI(4) could be achieved by MCCI
with a cutoff of 10−4. It is worth noting that the CI(4)
calculation for cc-pVDZ has become large with 2.8 million
determinants, which, together with not much multireference
character, suggests that the better performance of CI(4) should
be expected here.

We also compare the use of CSFs with SDs. Figure 10 shows
that fewer configurations are needed for a given error when

using CSFs rather than SDs. However, CSFs are not
necessarily improving the trade-off between size and accuracy
in terms of SDs. If we convert the CSFs to SDs, we see that the
corresponding number of SDs is greater for the CSF
calculation than that for the SD calculation, and in Figure
10, the converted CSF error curve against configurations is

Figure 7. MCCI and truncated CI errors compared with FCI for the
ground state of carbon monoxide using the 6-31G basis set and two
frozen orbitals at the equilibrium geometry of 2.1316 a0.

Figure 8. MCCI and truncated CI errors compared with FCI for the
ground state of carbon monoxide using the 6-31G basis set and two
frozen orbitals at a stretched geometry of 4 a0.

Figure 9. Truncated CI and MCCI errors compared with FCI against
the number of determinants for the ground state of carbon monoxide
using the cc-pVDZ basis set and two frozen orbitals.

Figure 10. MCCI errors using SDs or CSFs compared with FCI
against number of configurations for the ground state of carbon
monoxide using the cc-pVDZ basis set and two frozen orbitals.
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above the SD error curve. Table 2 shows that the spin
contamination is not high in the Slater determinant MCCI

wavefunction, suggesting that the main benefit is a more
compact expansion in the CSF representation for this singlet
system.

3.3. Triplet O2. We finally model a system with unequal
numbers of α and β electrons by considering the B1g triplet
state of O2 with Ms = 1 at the experimental bond length56 of
1.2075 Å. We use the 6-31G basis set and two frozen orbitals.
The FCI wavefunction contains 6,248,880 SDs in this case.

In Figure 11, we compare the errors when using SDs with
CSFs for the MCCI calculation with cutoffs from 10−2 to 10−4.

The multireference character for the MCCI SD wavefunction
at the lowest cutoff considered was not strong at ςMR = 0.178.
For this system and basis, we see that CSFs give a similar error
that is perhaps slightly larger for a similar number of
configurations than that for SDs. This is interesting given
that expanding the CSFs to SDs increases the number of
configurations by around four or five times here.

The good performance of SDs for the energy might be
expected to come at the cost of a large deviation from pure
spin states. However, Table 3 reveals that the spin
contamination is small for SDs here and decreases with the
number of configurations. Therefore, in terms of SDs, the
wavefunctions are much more compact than that in the CSF
calculation with only a small amount of spin contamination as
a penalty. The difference from pure spin is slightly less than
that for CO (Table 2) for a given cutoff, but the order of
magnitude is similar.

4. SUMMARY
We have demonstrated that 2-RDMs can be efficiently
calculated to sufficient accuracy by using the compact
wavefunctions of the selected configuration interaction
approach of MCCI and by exploiting the structure of the
wavefunction together with bitwise operations on modern
CPUs. For this latter approach, we demonstrated that the
calculation of the 2-RDM from a FCI wavefunction can be
accelerated around 220 times, while a speed up of about 26
was shown for a MCCI wavefunction. This enabled us to
investigate the accuracy of the 2-RDM when using truncated
CI and MCCI for a set of systems that ranged from having
almost no multireference character to being very strongly
multireference. The general behavior of the errors for the 2-
RDM compared with those for the energy or wavefunction was
fairly similar.

Even for ground-state neon, which is well-described by
methods based on small corrections to a single reference, we
found that the stochastic selection of configurations in MCCI
could produce wavefunctions that gave a lower error than
CISDT for the 2-RDM, despite using fewer configurations than
CISD. For the multireference system of excited neon, this
improvement in accuracy was more pronounced where all the
MCCI results had lower errors than CISD, and errors lower
than CI(4) using fewer determinants than CISDT could be
achieved.

For CO in its equilibrium geometry, which only has some
multireference character, MCCI could reach a similar accuracy
to CI(4), again only requiring roughly the same amount of
determinants as CISDT. When the CO bond was stretched to
4 a0, the system was strongly multireference, and all the errors
were noticeably larger than that for the equilibrium geometry.
To make the truncated CI errors in the stretched geometry
similar to CISD in the equilibrium geometry, we had to go to
CI(4) for the energies but CI(5) for the 2-RDM. MCCI could
achieve a 2-RDM accuracy similar to CI(6) but using fewer
determinants than CI(4). When increasing the size of the basis
set to cc-pVDZ for the equilibrium geometry, we found that,
although MCCI had much higher accuracy than CISDT, it
could not reach that of CI(4) due to the larger FCI space.
CI(4) used around 2.8 million determinants, and the
multireference character is not strong here. For this singlet
system, we also considered the use of CSFs for the 2-RDM
calculation and found that the main benefit seemed to be a
reduced size of the wavefunction in the CSF representation as
the spin contamination for MCCI with SDs was not large.
Finally, we looked at CSFs when constructing the 2-RDM for
the Ms = 1 triplet state of oxygen. Now, the reduction in the
size of the wavefunction when using CSFs was not observed,
unlike for the CO singlet. However, again, the spin
contamination was very low when SDs were used.

Table 2. MCCI SD Spin Error for CO Quantified as the
Difference to the Pure Singlet Total Spin Squared
Expectation Value of S(S + 1) = 0

cutoff spin error

0.01 2.2 × 10−2

0.005 2.3 × 10−2

0.001 1.5 × 10−3

0.0005 1.1 × 10−3

0.0001 8.3 × 10−4

Figure 11. MCCI errors using SDs or CSFs compared with FCI
against number of configurations for the B1g ground state of oxygen
with Ms = 1 using the 6-31G basis set and two frozen orbitals.

Table 3. MCCI SD Spin Error for O2 Quantified as the
Difference to the Pure Triplet Total Spin Squared
Expectation Value of S(S + 1) = 2

cutoff spin error

0.01 1.5 × 10−2

0.005 8.7 × 10−3

0.001 9.3 × 10−4

0.0005 8.5 × 10−4

0.0001 2.0 × 10−4
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The efficient calculation of the 2-RDM enabled these
comparisons with FCI 2-RDMs calculated from wavefunctions
as large as 2,414,950,976 ×( 2.4 10 )9 determinants. These
large FCI 2-RDMs should provide useful benchmark data for
developers of 2-RDM functional theory.57 Previous work has
demonstrated that the selected CI approach of MCCI can
construct wavefunctions that capture the energy58,59 or
multipoles60 accurately, yet use only a very small fraction of
the FCI space. Now, we have shown that for the considered
systems, the FCI 2-RDM can also be efficiently computed with
sufficient accuracy using MCCI. This is particularly true for
systems with strong multireference character and can be
achieved with significantly fewer configurations than with
truncated CI. Therefore, this work paves the way for the
efficient calculation of any properties of multireference systems
that depend on the 2-RDM, including analytic energy gradients
and X-ray scattering.
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