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New method for visualizing 
the dose rate distribution 
around the Fukushima Daiichi 
Nuclear Power Plant using artificial 
neural networks
Miyuki Sasaki1*, Yukihisa Sanada1, Estiner W. Katengeza2 & Akio Yamamoto3

This study proposes a new method of visualizing the ambient dose rate distribution using artificial 
neural networks (ANNs) from airborne radiation monitoring results. The method was applied to the 
results of the airborne radiation monitoring which was conducted around the Fukushima Daiichi 
Nuclear Power Plant by an unmanned aerial vehicle. Much of the survey data obtained in the past were 
used as the training data for building a network. The number of training cases was related to the error 
between the ground and converted values by the ANN. The quantitative evaluation index (the root-
mean-square error) between the ANN-converted value and the ground-based survey result converged 
at 200 training cases. This number of training case was considered a rough criterion of the required 
number of training cases. The reliability of the ANN method was evaluated by comparison with the 
ground-based survey data. The dose rate map created by the ANNs method reproduced ground-based 
survey results better than traditional methods.

Large quantities of radionuclides were released into the atmosphere after the Fukushima Daiichi Nuclear Power 
Plant (FDNPP) accident in March 20111. Nine years after the accident, the ambient dose rate (air dose rate) has 
been decreased by radioactive decay, decontamination work, and weathering effect within the 80-km radius zones 
from the FDNPP2. As a quick and efficient survey method, manned helicopters and unmanned aerial vehicles 
(UAVs) have been developed to visualize the environmental distribution of the air dose rate in the airborne 
radiation survey (UAV-survey) after the FDNPP accident3,4. UAVs are effective tools for data collection over wide 
areas that are located around FDNPP because a person does not have to approach a dangerous place5,6. However, 
a UAV-survey is less accurate than a ground-based radiation survey using a handheld survey meter because it 
has a long distance from the ground surface source.

In a conventional approach, the count rates and the pulse height distributions collected by the UAV-survey 
are converted into air dose rates and deposition of radioactive cesium on the ground. In this approach, the 
ground is assumed to have a flat form, and this is called the flat source model (FSM)7. Improving UAV-survey 
accuracy requires accounting for the topographic features in radiation survey areas. Some reports suggested 
that the topographic effect was corrected by published big topographical data, such as the digital elevation 
model (DEM) and the digital surface model (DSM)8,9. A conversion method using the maximum-likelihood 
expectation-maximization (ML-EM) method was recently proposed to convert the value measured from the sky 
into an air dose rate of 1 m above the ground level (agl.)10,11. The conversion using the ML-EM method requires 
the creation of many types of attenuation parameters to improve the conversion accuracy. This method is effec-
tive for conversion in complex terrain areas, such as mountains or forests, which could not be reproduced by 
conventional FSM methods. However, the decision on the parameters needs many on-site measurement experi-
ments or simulation work.
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To solve this problem, we attempted herein to convert radiation measurement values using an artificial neural 
network (ANN). The ANN is applied to the study fields of medicine, physics, etc. as a kind of deep learning12,13. 
Simple and easy ANN software was recently published14,15. Moreover, the ANN method was applied to search for 
radiation sources for nuclear security16. Compared to the ML-EM method, the conversion by an ANN is expected 
to reduce both the workload of creating many parameters and the calculation time (Fig. 1). We have many data 
sets from the UAV-survey and the ground-based survey in the same locations because periodical surveys were 
conducted around the FDNPP as part of the national project4–6. These data sets were suitable for the training 
set in the ANN with published topographical data17. The air dose rate maps created by the UAV-survey are used 
for emergency monitoring data and determine the evacuation route of inhabitants; thus, the reliability of the 
created air dose rate map must be evaluated.

We developed herein a new conversion method using the ANN to improve the accuracy and the analysis time 
of the UAV-survey. This ANN method was optimized by evaluating the number of hidden layers constituting 
a network. In addition, we also evaluated the relationship between the number of data cases used for the train-
ing and the error between the ANN-converted UAV-survey and ground-based survey values. Finally, the ANN 
method validation was evaluated by comparison with the FSM and the ML-EM method.

Materials and methods
ANN method.  In this study, the ANN was constructed using NeuralWorks Predict (NeuralWare, Carn-
egie, USA), a software that uses cascade correlation to determine the optimal network structure with a simple 
graphical user interface18. This learning is classified as a regression problem of supervised learning. The cascade 
correlation is a constructive learning rule and a supervised learning algorithm that constructs a feed-forward 
network. Learning starts with a minimal network consisting only of the input and output layers. Minimizing 
the overall error of a network, new hidden layers are then added step by step. The cascade correlation builds a 
network in which one hidden layer has one neuron. Figure 2 depicts the ANN modeling flowchart. One training 
datum (set of input and target variables) is defined as a “training case.” A dataset of multiple training cases is 
defined as a “training set”.

The training set was randomly divided into two cases depending on the purpose of this method. In the ANN 
construction, 70% of all the training cases were randomly selected. The other training case was used to evaluate 
the calculation of the correlation coefficient with the target variable. The changes in the evaluation were observed 
each time the learning was repeated. Learning was stopped when the correlation coefficient stopped improving. 
The construction flow of the network is presented below and in Fig. 2:

1)	 Conversion of the input variable: The input variable is represented by some functions. The data with a high 
correlation between the input and target variables are normalized and added as the input data.

2)	 Learning of the input and output layers: Training is first implemented only on the input and output layers 
without the hidden layer. The output layer is a sigmoid function recommended from NeuralWorks Predict.

3)	 Addition of a hidden layer: If the index of the reliability (the correlation coefficient) of the output value in 
the training of former procedure 2) was not enough, one hidden layer would be added automatically. All 
hidden layers are tanh functions recommended from NeuralWorks Predict.

4)	 Re-learning: Learning will be performed again with the added hidden layer. The connection is fixed between 
the hidden and input layers, and the weight values are not updated. One hidden layer will be added again if 
the output vale is not improved. When learning is judged to be sufficient, the hidden layer addition is stopped, 
as well as learning.

Figure 1.   Images of the application of the artificial neural network to the airborne radiation survey.
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The neural network was constructed with simple input variables and one hidden layer function for judging 
whether the UAV-survey data can be converted by the ANN. The output value of the network was compared with 
the target variable using the correlation coefficient (r) which is defined as a criterion for sufficient learning. The 
learning was continued until no improvement of r was observed. r can be expressed as follows:

where n is the total number of data; x is the converted value; y is the ground-based survey value (normalized 
target variable); and x and y are the averages for each value. The weight update method used was the adaptive 
subgradient method19. The objective function was cross-entropy with added ridge regression.

Training set.  The radiation measurement data used for the ANN were acquired by the UAV (i.e., in this 
case, a type of unmanned helicopter from FAZER-R-G2, Yamaha Motor Co. Ltd., Shizuoka, Japan) around the 
FDNPP at the fiscal year of 2018 and 2019. The UAV was originally developed for spraying pesticides but was 
later adopted for radiation measurements. This UAV is operated manually during takeoff and landing and has a 
program operator for autonomous flight and an operator for the radiation detector. The UAV can conduct a pro-
grammed flight with the help of detailed self-localization using a real-time kinematic global positioning system. 
Its flight waypoints and altitude can be set. The detailed specifications of the UAV are given in a past research4,5. 
The dedicated radiation detector consisted of a LaBr3 (Ce) scintillation detector (38 mm φ  × 38 mm H × three 
detectors) and detected gamma-rays in the energy range of 50–2800 keV (Japan Radiation Engineering Co. Ltd., 

(1)
r =

∑n
i (xi − x)

(

yi − y
)

√

(
∑n

i (xi − x)2
)

(

∑n
i

(

yi − y
)2
)

Figure 2.   Flow of the network construction. The network was constructed by cascade correlation. The weight 
update method used was the adaptive subgradient method. The objective function was cross-entropy with added 
ridge regression.
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Ibaraki, Japan). Figure 3 depicts a typical gamma-ray spectrum. The UAV typically uses 50 m, 5 m s−1 and 50 m 
agl. as the flight line space, flight speed and flight altitude, respectively. The typical flight altitude used to obtain 
the training set was 80 m, but the actual altitude above the ground ranged from approximately 40 m to 240 m 
to avoid buildings, mountains, steel towers, etc. A photographic survey using an unmanned helicopter was also 
conducted to construct a 3D orthophoto map for calculating the flight altitude above the ground or object sur-
face. Each datum was averaged over a 10 m mesh.

Table 1 summarizes the input variables (training set). The count rate (i.e., P1, P2, P3, and P4) was obtained 
by dividing the gamma-ray spectrum into four regions (Fig. 3) to separate the following components: scattered 
radiation, P1; direct radiation from radiocesium, P2; and natural radiation, P3 and P4. P5 is the absolute altitude 
of the UAV, which is a major factor used to assess the air attenuation of gamma radiation. The absolute altitude 
was calculated by subtracting the surface altitude (DEM) from the flight altitude above sea level using the global 
navigation satellite system. The air dose rate at 1 m agl. (T1) was used as the target variable for the ANN and 

Figure 3.   Typical gamma-ray spectrum of a UAV spectrometer with a LaBr3 (Ce) sensor. This spectrum was 
obtained at 50 m agl. around the FDNPP.

Table 1.   List of training and test sets.

Data type Survey method Parameter Unit

Data range (Min–Max)

Description
Training set (37,936 
sets) Test set (3442 sets)

Input variable

UAV-based survey data

P1 cps 301–17,396 640–13,069 Count rate of 50–450 keV
Scattered radiation

P2 cps 35–1663 70–1350
Count rate of 450–
900 keV
Direct radiation from 
radiocesium

P3 cps 14–27 16–26
Count rate of 900–
1400 keV
U and Th series natural 
radiation

P4 cps 13–26 18–26
Count rate of 1400–
2800 keV
40K, U and Th series 
natural radiation

GPS position data

P5 m (agl.) 44–244 43–75
Absolute altitude in 
measurement
(Flight altitude)—(Surface 
altitude)

Ground-based survey data

Target variable T1 µ Sv h-1 0.064–13 – For training

Validation data V1 µ Sv h-1 – 0.12–10 For validation
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acquired using a handheld CsI (Tl) (38 mm L × 38 mm W × 25 mm H) scintillation detector (Hot spot finder, 
Japan Shield Technical Research Co. Ltd., Fukushima, Japan). The training set (input and target variables) had 
37,936 cases (Table 1 and Fig. 4a). Figure 4a illustrates a three-dimension scatter diagram of the total count 
(P1 + P2 + P3 + P4), which is as an index of the radiation intensity, and the absolute altitude (P5) to enable us to 
understand the training set distribution. In this figure, the number of training cases on 120–150 m agl. of the 
absolute altitude in the measurement was relatively higher. In contrast, the condition of both high radiation 
intensity and high absolute altitude in the measurement was relatively small.

Test set.  The test set different from the training set was used to evaluate the constructed ANN. The test set was 
obtained from Futaba-machi, which is located 3 km northwest from the FDNPP. This study area (1 km × 2 km) 
is still acknowledged as an evacuation area by the Japanese government. The flight line space, flight speed, and 
flight altitude of the UAV used were 50 m, 5 m s−1, and 50 m agl., respectively. For the output value validation, 
the ground-based survey data (V1) were obtained using a handheld survey meter at the same time as the UAV 
flight. All data were obtained for less than 8 h on August 19, 2018. Each datum was averaged over a 10 m mesh.

The test set had 3442 cases (Table 1). For comparison with the distribution of the training set, a three-
dimensional scatter diagram of the total count (P1 + P2 + P3 + P4) and the absolute altitude (P5) was shown in 
Fig. 4b. The average flight altitude of the test set was 50 m. However, the actual altitude above the ground ranged 
from approximately 40 m to 80 m due to the avoidance of obstructions. Almost all test cases were understood 
to be within the range of the training set (Fig. 4a,b).

Evaluation of the neural network condition.  The accuracy of the ANN method was expected to 
depend on the neural network condition (e.g., number of hidden layers and a distribution range of the training 
set). We conducted some verification tests to determine the effectiveness of the output validation by the neural 
network condition.

First, the output value validation was evaluated by limiting the number of hidden layers. NeuralWorks Predict 
automatically creates a hidden layer based on the correlation coefficient (r) value. This software has the option 
for which the maximum layer is limited. Nine different types of networks (i.e., 0, 2, 4, 6, 8, 10, 12, 15, and 25 
hidden layers) were constructed by the training set to optimize the number of hidden layers of a network. The 
test set was converted using each network. We calculated the root–mean–square error (RMSE) for nine types of 
network as follows using Eq. (2):

where N is the number of training cases; Yi is the converted value (output value) of the UAV-survey data in mesh 
i ( µ Sv h−1: air dose rate at 1 m agl.); and Gi is the ground-based survey value (V1) in mesh i ( µ Sv h−1).

Second, we verified how many data cases can construct a network to converge the error between the ANN 
conversion value and the ground-based survey value using a limited training set. An ANN was constructed by 

(2)RMSE =

√

∑N
i=1 (Yi − Gi)

2

N

Figure 4.   Characteristics of the (a) training set (37,936 cases) and the (b) test set (3442 cases). The areas of TD1 
and TD2 are the training cases presented in Fig. 6.
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randomly selecting data from a limited training set hereinafter referred to as “random training.” Two different 
kinds of data set were selected to evaluate the required number of training cases. The random training network 
was constructed by a limited training set (i.e., TD1 and TD2) (Table 2). The distribution of each random train-
ing set shown in Fig. 4 was selected by considering the radiation intensity or flight altitude of the test set. A 
random training dataset was extracted from the training (Fig. 4a) and test (Fig. 4b) sets. The number of training 
cases used for learning ranged from 50 to 1000 (50, 100, 200, 300, 400, 500, 750, and 1000). A random training 
network was constructed with the same settings. A total of 500 cases of data, other than those selected as the 
training set, were converted by the random training network to calculate the RMSE between the converted and 
ground-based survey values.

ML‑EM method.  The detailed procedure of the ML-EM method is given in the paper of Sasaki et  al. 
(2019)10,11. The ML-EM method is a type of inverse estimation method that employs radiation information from 
various directions. The ML-EM method is theoretically expressed as follows by Eq. (3):

where, k is the number of calculation iterations; j is the calculation position on the ground; B is the total number 
of ground-based calculation positions; i is the detection position; and D is the total number of detection posi-
tions. � is the calculated intensity value on the ground. yi is the measured count rate which is corrected by the 
detector response of radiocesium point source. Cij is the parameter containing the attenuation coefficient. Cij 
accounts for the attenuation by air, soil, and forest and is expressed as follows:

Fx is the attenuation rate due to air Fx and is calculated from the distance x (m) between i and j by using the 
particle and heavy ion transport code system (PHITS) developed by the Japan Atomic Energy Agency20. Fx was 
obtained from the decrease in the number of incident photons according to the distance from the point source 
of 137Cs. The calculation result yielded 1.97 and 0.010 as parameters α1 and α2 , respectively. Fθ is the attenuation 
rate due to the effect of the soil scattering calculated from the angle θ (deg) formed by i–j and the soil surface. 
Parameters A, γ and σ corresponded to the values of − 0.727, − 35.2, and 34.5, respectively. Fθ was evaluated 
using the PHITS from the decrease in the number of incident photons when the angle between the soil surface 
and i–j was changed upon centering on the point source of 137Cs. Fh is the attenuation rate due to forest shield-
ing calculated from the distance h (m) that passes through the forest area between i and j. h is calculated using 
the DEM and the DSM. Accordingly, 0.061 was used for parameter ϕ . Our previous research on the relationship 
between the air dose rate by the ground-based survey and the UAV-survey in the forest area11 showed that Fh 
depended on the tree height.

FSM method.  The count rate obtained by a dedicated UAV-survey detector (Call: 50–2800 keV) was con-
verted into the air dose rate (Y) using a conversion factor (CD: 0.00028 µ Sv h−1 cps−1) and an attenuation factor 
(AF: 0.0061 m−1). The CD was obtained in advance by comparing the count rate in the calibration area at altitude 
Hstd (m) with that measured using a survey meter on the ground. The AF was calculated from the data obtained 
by varying the flight altitude on the ground from 20 to 150 m. Equation (9) shows the conversion expression in 
mesh i.

(3)�
(k+1)
j =

�
(k)
j

∑D
i=1 Cij

D
∑

i=1

yiCij
∑B

j=1 Cij�
(k)
j

(4)Cij = Fx(x) · Fθ (θ) · Fh(h)

(5)Fx(x) = x−α1(x ≤ 200)

(6)Fx(x) =
200−α1 exp (−α2x)

exp (−200α2)
(200 < x)

(7)Fθ (θ) = 1+ Aexp
[

−((θ − γ )/σ)2
]

(8)Fh(h) = exp (−ϕh)

(9)Yi = (Calli − CBG) · CD · exp[−AF(Hstdi −Hmi)]

Table 2.   Limited training set for evaluating the neural network condition. *Sum of P1, P2, P3, and P4.

Data type Total count rate* (cps) P5 (m) T1 ( µ Sv h−1) Number of cases

All training cases 370–19,099 43–244 0.064–13 41,378

TD1 0–5000 50–60 0.12–3.5 2469

TD2 5000–10,000 50–60 0.39–6.8 1544
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where CBG represents the background counts, including the cosmic ray and the natural radionuclides in the 
detector crystal, and Hm (m) is the flight altitude above the ground.

Mapping.  Mapping was performed by supplementing unmeasured areas via the interpolation of the meas-
ured results. Various methods (e.g., kriging and spline approaches) were proposed for the interpolation, but the 
kriging method, which linearly assigns weights to the values of the measurement points and in inverse propor-
tion to the distance, was applied herein to the UAV-survey data. The kriging method is easy to use when analyz-
ing a large amount of data because its parameter setting is simple7. The interpolation processing was conducted 
using ArcGIS software (Environmental Systems Research Institute Inc., California, USA). The spatial resolution 
of the resulting contour map for the air dose rate was 10 m × 10 m.

Validation method.  The ground-based survey data (G) were compared with the air dose rate calculated 
using the UAV-survey (Y). Both data were compared by visualizing the unevenness using a scatter diagram. The 
relative deviation (RD) of each measurement cell was calculated as follows to evaluate the accuracy of the scheme 
used in this study:

The calculated RDs were used to evaluate the total error and the statistical uncertainty shown as a histogram 
of frequency.

Results and discussion
Network construction.  Figure 5 shows the RMSE of the ground-based survey value (T1) and the output 
values under the condition of hidden layers in the network. The RMSE value tended to decrease with the layer 
increase, although some variation exists. This result suggests that the conversion accuracy improved as the num-
ber of hidden layers increased. In the case herein, a network with 12 hidden layers was most suitable for conver-
sion from the UAV-survey data to the air dose rate on the ground. From this result, the network shown in Fig. 2 
was constructed with 12 hidden layers for the test set calculation.

Number of training cases.  Two types (i.e., TD1 and TD2) of the random training set were created to 
evaluate the relationship between the number of training cases and the error between the output value by the 
ANN and the ground-based survey value. The RMSE was calculated by comparing the air dose rate with the 
ground-based survey data that differed from the random training set as an evaluation index. Figure 6 shows the 
RMSE variation with an increasing number of random training cases. Both RMSEs converged when the num-
ber of training cases was approximately 200 or more in random training. The RMSE with two types of different 
training data sets saturated at 200; thus, this number of training case was considered as a rough criterion for the 
required number of training data set. In addition, the RMSE values were saturated with a different value, which 
was expected to affect the statistics error depending on the radiation intensity.

Validation of the ANN method.  Figure 7a shows a 10 m mesh contour map of the air dose rate at 1 m agl. 
of the ground-based survey (V1). Figure 7b–d illustrate the results of converting the measurement values in sky 
to air dose rates at 1 m agl. using the FSM and those when using the ML-EM and the output value of using the 
ANN, respectively. This study area is a known path of the radioactive plume at the time of the accident6. The east 
side used as a residential region of this study area had a relatively high air dose rate of 2.0–10 µ Sv h−1), while the 
forest region in the western area had a relatively low air dose rate of 0.5–3.0 µ Sv h−1. The incline of the air dose 
rate for this study area was large compared with those from the other regions surrounding the FDNPP.

(10)RDi = (Yi − Gi)/Gi

Figure 5.   RMSE of the ground-based survey value (V1) and the ANN conversion values when the number of 
hidden layers increases. This is the result of the test set converted to the ANN constructed by the training set.
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Figure 8 shows a comparison of the ground-based survey values (V1: Fig. 7a) and the three types of converted 
values (i.e., ANN, ML-EM, and FSM). The panel is a scatter diagram of the ANN and FSM values and the ground-
based survey values in the same location. Three types of UAV-survey conversion values were correlated with the 
ground-based survey. The FSM tended to be relatively higher than the ground-based survey. The test set area in 
Fig. 7 was decontaminated in some areas after the accident; hence, the air dose rate at the decontamination area 
was locally decreased compared with the surroundings. In this case, the UAV-survey accuracy was expected to be 
affected by the changing field of view of the radiation detector21. On the contrary, the ML-EM method used the 
surrounding topographical and multiple measurement information. Therefore, the bias expressed as the RMSE 
or RD was better than the FSM. The ANN bias was reduced in the learning process to improve the error between 
the ground-based survey and output values. Figures 8(b1–3) present the RD histograms for quantitatively evalu-
ating this tendency. Table 3 shows the RMSE with the ground-based survey and the interquartile ranges of the 
RD (i.e., 25%, 50% and 75%). The 50% interquartile range of the ANN (0.22) was near zero compared with the 
other two. In addition, the ANN had the smallest RMSE value, indicating that it was best in reproducing the 
ground-based survey value.

For a detailed evaluation of the ANN accuracy, the correlation with the ANN result and the number of 
training cases were evaluated and shown in Fig. 9. Figures 9(b1–4) depict examples for the correlation with the 

Figure 6.   Relationship between the number of training cases and the error. This is the RMSE of the ground-
based survey value and the ANN conversion values when the number of training cases increases in a random 
training network. TD1 and TD2 were constructed with the dataset shown in Table 2.

Figure 7.   Air dose rate maps at 1 m agl. by (a) ground-based survey, (b) UAV-survey using the FSM, (c) UAV-
survey using the ML-EM, and (d) UAV-survey using the ANN. This map was created using ArcGIS 10.5. https​://
www.esri.com/ja-jp/arcgi​s/about​-arcgi​s/overv​iew.

https://www.esri.com/ja-jp/arcgis/about-arcgis/overview
https://www.esri.com/ja-jp/arcgis/about-arcgis/overview
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number of training cases and the RD of the ANN and ground-based values. The number of training cases was 
classified and counted every 10 m at altitude, every 5000 cps of the total count (P1 + P2 + P3 + P4), and every 1 
μSv h−1 of the ground-based survey value (T1). The histograms show a few changes in the RD and RMSE with 
the change of the number of training cases. Table 4 presents the RMSE between the ground-based survey value 
and the ANN value, and the interquartile ranges of 25%, 50%, and 75% to quantitatively evaluate this tendency. 
The RMSE decreased as the number of training cases increased. As a result, the training case number which is 

Figure 8.   Comparison of the ground-based survey values and the three types of converted values (i.e., ANN, 
ML-EM, and FSM): (a) scatter diagrams of the ground-based survey value and the ANN and FSM values in the 
same location; and (b) histograms of the RDs (i.e., ANN, ML-EM, and FSM).

Table 3.   Evaluation result of the converted value of the UAV-survey data in the FSM, ML-EM, and ANN. All 
data numbers are 3442.

Parameters

ANN ML-EM FSMMetrics Range (%)

RMSE 0.66 0.85 1.00

Interquartile range of RD

25 − 0.04 − 0.04 0.37

50 0.22 0.30 0.78

75 0.47 0.70 1.18

Figure 9.   Comparison of the ground-based survey values and the ANN conversion values for the number of 
training cases in the ANN of Fig. 7d: (a) scatter diagrams of the ground-based survey value and the ANN value; 
and (b) histograms of the RD for each number of training cases.
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necessary to calculate reliable converted value was 200 as well as the simulated verification as shown in Fig. 6. The 
tendency of the accuracy with the number of training cases was clarified from this application to the field data.

Conclusion
In this study, we attempted to establish a new conversion method of the UAV-survey using published ANN soft-
ware. The big data of the UAV-survey that we acquired after the FDNPP accident was used as the ANN training 
set. Constructing an ANN using the training set around the FDNPP resulted in an optimized hidden layer with 
12 layers. The number of training cases was related to the error between the ground value and the ANN-converted 
value. The evaluation index between the ANN-converted value and the ground-based survey converged at 200 
training cases; hence, this number was considered as a rough criterion of the required minimum number. It is 
thought that the number of training cases can be used as an index to evaluate the reliability of the ANN-converted 
value. The dose rate map made by the ANN method reproduced ground-based survey results much better than 
the traditional methods. However, this study used only the basic input variables in the radiation measurement 
and did not use terrain and photographic data as the input variables. The conversion accuracy is expected to be 
improved when these input variables are added. Future research will focus on the application of ANN conversion 
using terrain and photographic data and evaluate the effect of each input variable on conversion.

Data availability
The DEM data set we used in the study can be found on the web site of Geospatial Information Authority 
of Japan17. The UAV-survey data set we used in the study can be found on web site of Nuclear Regulation 
Authority22. All data and the code that support the results within this paper and other findings of this study are 
available from the corresponding author upon reasonable request.
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