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Abstract

City air quality monitoring (AQM) network are typically sparsely distributed due to high oper-

ation costs. It is of the question of how well it can reflect public health risks to air pollution

given the diversity and heterogeneity in pollution, and spatial variations in population den-

sity. Combing high-resolution air quality model, spatial population distribution and health risk

factors, we proposed a population-health based metric for AQM representativeness. This

metric was demonstrated in Hong Kong using hourly modelling data of PM10, PM2.5, NO2

and O3 in 2019 with grid cells of 45m * 48m. Individual and total hospital admission risks

(%AR) of these pollutants were calculated for each cell, and compared with those calculated

at 16 monitoring sites using the similarity frequency (SF) method. AQM Representativeness

was evaluated by SF and a population-health based network representation index (PHNI),

which is population-weighted SF over the study-domain. The representativeness varies sub-

stantially among sites as well as between population- and area-based evaluation methods,

reflecting heterogeneity in pollution and population. The current AQM network reflects popu-

lation health risks well for PM10 (PHNI = 0.87) and PM2.5 (PHNI = 0.82), but is less able to

represent risks for NO2 (PHNI = 0.59) and O3 (PHNI = 0.78). Strong seasonal variability in

PHNI was found for PM, increasing by >11% during autumn and winter compared to sum-

mer due to regional transport. NO2 is better represented in urban than rural, reflecting the

heterogeneity of urban traffic pollution. Combined health risk (%ARtotal) is well represented

by the current AQM network (PHNI = 1), which is more homogenous due to the dominance

and anti-correlation of NO2 and O3 related %AR. The proposed PHNI metric is useful to

compare the health risk representativeness of AQM for individual and multiple pollutants

and can be used to compare the effectiveness of AQM across cities.
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Introduction

Urban air-pollution is a severe driver of mortality and loss of disability-adjusted life years

(DALY), and associated with a number of short -and long-term health complications such as

respiratory diseases [1], pulmonary diseases [2], cancer [3] or heart diseases [4]. Globally,

more than 80% of city-dwellers experience air quality levels that exceed the World Health

Organization’s (WHO’s) limits [5]. Dominant air pollutants include particulate matter of vari-

ous sizes (generally classified as PM10 with a diameter of< 10 micrometres, and PM2.5 with a

diameter of< 2.5 micrometre), as well as gaseous pollutants as Nitrogen Dioxide (NO2) and

Ozone (O3) [6, 7].

In many cities, air quality measured from fixed-site monitoring (FSM) stations is typically

used for public information and regulatory compliance [8]. Due to high expense and complex-

ity in operation, the distribution of FSM is typically sparse in space, e.g. district-based [9].

However, due to complexities in weather, emission and urban morphology, urban air quality

exhibit high spatial and temporal variability [10]. Knowing how well FSM can reflect variations

in air quality becomes important for epidemiological studies, compliance to regulation, deci-

sion making of individual citizens and while setting up, moving or removing obsolete sensors

in a network.

Many approaches have been developed to evaluate the representativeness of FSM, including

simple geometry [11], classification by land use [12, 13], remote sensing [14], chemical trans-

portation models [15, 16], computational fluid dynamics [17] or classification based on envi-

ronmental parameters [18]. In recent years, high-resolution air quality data down to street

level become available with the development of urban air quality models. For example, Rodri-

guez et al. used the Parallel Micro-Swift-Spray (PMSS) to evaluate the representativeness of

FSM, which achieved a resolution of 3 metres [19]. However, this and the previous methods

are mostly developed to evaluate spatial representation [20] as well as the ability to detect stan-

dard violations [21]. There is a lack of consideration of health impacts, which is the primary

goal in formulating air quality guidelines and control strategies. A paradigm of health-based

evaluation is needed to judge and compare the representativeness of FSMs to deliver proper

information for public health.

The health risk of air pollution at a certain place depends on the abundance of different air

pollutants measured or estimated at that location and the toxicity of air pollutants. Concentra-

tions reported by FSM may reflect the abundance of different air pollutants. Still, these concen-

trations cannot be added or compared among pollutants for health risk because of differences

in toxicity. For example, the added short-term health risk in hospital admission is a 0.51% per

unit increase in O3 concentration (10 μg/m3) while it is a 0.28% per unit increase in PM10 con-

centration (10 μg/m3) in Hong Kong [22]. To deliver health risks information from total air

pollution, Stieb et al. proposed an air quality health index (AQHI) which transformed the air

pollutants concentrations at a given location into additive health risks [23]. The resulting

added health-risks (%ARtotal) from the AQHI method can be used to express total health risks

of air pollution at a given location as well as contributions to it from different pollutants,

which can be a useful metric in evaluating the representatives of FSMs for health risks.

Total health impacts of an urban population do not only depend on the geographical vari-

ability in health risks calculated by %AR, but also on the population distribution. In a single

city, people live in places with substantial variability in air quality. In epidemiological studies,

areas with higher population density would be granted heavier weights when estimating the

total health impacts for the whole population [24, 25]. Modern cities, such as Hong Kong are

very heterogeneous in population distribution, which may lead to substantial differences in

total health risk estimates among FSMs compared to traditionally used space-based method.
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This is especially important when evaluating whether an FSM should be set up, moved or

removed from a monitoring network regarding the public health for the whole community.

In the light of the increasing importance of inter-city competition [26, 27], city-networks

[28], urbanisation [29], and fast-changing pollution levels [30, 31], a comparable metric to

judge the quality of air-pollution management would enormously benefit accountability and

good-governance efforts. As urban areas around the globe are facing locally different air-pollu-

tion challenges and individual pollutants contribution to total health impacts can vary, such a

metric should be based on the representation of public health impacts from air-pollution

derived of local risk factors, and not on the representation of individual pollutant species’ con-

centration levels.

Following these considerations, this study proposes a population-health risk-based method

in evaluating the representativeness of urban FSM networks, which is able to: (1) assess and

compare the representativeness of health risks among FSMs for different pollutants (including

PM10, PM2.5, NO2, and O3) and for total short term health impacts (%ARtotal); (2) evaluate the

representativeness of whole air quality monitoring network for single and combined health

risks of pollutants.

The method will be demonstrated using Hong Kong as a testbed. There are sixteen FSMs

spatially distributed over an area of 1,100 km2 in Hong Kong, located in areas of different func-

tionalities such as roadside, residential, commercial, industrial urban areas, and rural areas.

The accessibility of air quality monitoring data from these stations provides a unique opportu-

nity to investigate the representativeness of FSMs regarding heterogeneity in their geographic

location and function.

Materials and methods

This section includes: (1) study area and FSMs that would be assessed in this study; (2) a

description of high-resolution air quality models, which provide fine-scale air quality data to

compare with the air quality reported by FSM; (3) heath-risk based evaluation method for

FSM representativeness evaluation; and (4) population-health based network index.

Study area and FSMs

Hong Kong is selected to demonstrate the proposed metrics due to its heterogeneity in geo-

graphical features, population density and land-use, which are common in modern cities.

Hong Kong’s territory is located at the south-eastern tip of China and encompasses 1111

km2 of land [32]. The territory can be divided into Hong Kong Island, which on a small slip on

its northern coastline is highly urbanized, the highly developed Kowloon Peninsula and the

relatively rural New Territories. Densely developed “New-Towns” are often central to the com-

mercial and residential life in the New Territories. Due to legislation, only 7% of Hong Kong

territory is used for human settlements [32], which makes Hong Kong one of the world’s most

densely populated cities. The total population accounts for roughly 7.5 million people [33].

Fig 1 displays the population-distribution in Hong Kong.

Outdoor air pollution has significant seasonal variations in Hong Kong due to the Asian

monsoon system (Table 1). The persistent northeast monsoon in winter brings pollution from

the Asian continent, whereas the summer monsoon shifts to south-westerly winds that bring

in cleaner marine air [34].

The Hong Kong Environmental Protection Department (HKEPD) runs an FSM network

comprising of 12 general stations, three roadside stations and one background station. Loca-

tions of FSM stations are shown in Fig 1. Hourly data of PM10, PM2.5, NO2 and O3 were

obtained from HKEPD for 2019.
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General stations are located on rooftops of public infrastructure such as schools, commu-

nity buildings, or libraries with a height between 13 to 28 metres [35]. The degree of urbaniza-

tion of surrounding areas varies strongly between stations. However, general stations are

typically located in centres of or urban districts and “New-Towns” (Fig 1). In contrast, the

three roadside stations are located next to busy roads, with inlets on a level of around 3 to 4.5

metres. All three roadside stations are concentrated in the highly developed part of the terri-

tory. The background station is located on a small and undeveloped island at Hong Kong’s

north-east at 11 metre height. It reflects the background concentration that was transported

into Hong Kong in winter due to its upwind location.

High resolution air quality models

This study takes advantage of a coupled regional and urban modelling system to provide fine-

scale air quality data down to street-level. The modelling system consists of a regional model,

Community Multiscale Air Quality Modelling System (CMAQ) [36], coupled with an urban

transport model, Atmospheric Dispersion Modelling System in the urban area (ADMS-urban)

[37].

Fig 1. Population density and fixed site monitor (FSM) locations in Hong Kong’s districts, with FSM abbreviated as:

Causeway Bay (CB), Central (CL), Central Western (CW). Eastern (EN), Kwai Chung (KC), Kwun Tong (KT), Tap Mun

(MB), Mong Kok (MK), Sham Shui Po (SP), Sha Tin (ST), Tung Chung (TC), Tseung Kwan O (TK), Tuen Mun (TM), Tai Po

(TP), Tsuen Wan (TW), Yuen Long (YL). Outlines of Hong Kong’s districts reprinted from Esri China (Hong Kong) under a

CC BY license, with permission from Esri China (Hong Kong), original copyright 2017.

https://doi.org/10.1371/journal.pone.0252290.g001

Table 1. Annual and seasonal means over all general FSM stations for selected air pollutants.

Unit Annual Spring Summer Autumn Winter

PM10 μg/m3 32.2 26.7 20.9 40.7 40.6

PM2.5 μg/m3 19.2 16.5 12.1 23.9 24.4

NO2 ppb 20.5 19.1 16.8 21.0 25.0

O3 ppb 30.4 29.7 21.1 44.8 26.0

https://doi.org/10.1371/journal.pone.0252290.t001
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CMAQ takes inputs from a numerical weather prediction model, Weather Research and

Forecasting model (WRF) [38], and a regional emissions model, Sparse Matrix Operator Ker-

nel Emissions (SMOKE) [39], and by taking account of both chemical and physical conver-

sions, produces a regional pollution forecast for nested domains at multiple grid spatial

resolution down to 1 km by 1 km. ADMS-Urban then adds spatial resolution for the study

area (Hong Kong’s territory) and produces hourly pollution values on a dynamic grid of down

to 2-metre resolution by including localized sources (e.g. road-emissions) and urban morphol-

ogy. A detailed description of the coupled system is available from Che et al [10].

Model verification was conducted by comparing model outputs against observational data

from FSMs on an hourly basis for the year of 2019. Here, the ADMS-Urban output point clos-

est to an FSM was compared to the actual FSM readings. Following past papers, we used the

Index of Agreement (IOA) and Root Mean Square Error (RMSE) as the necessary model veri-

fication [10, 13, 40]. Formulas for IOA and RMSE are given in Eqs 1 and 2 [41].

Eq 1: IOA formula

IOA ¼ 1 �

PN
i ¼ 1
ðPi � OiÞ

2

PN
i ¼ 1
ðPi þ � O þ Oi � � OÞ 2

ð1Þ

Eq 2: RMSE formula

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PN

i ¼ 1
ðPi � OiÞ

2

N

s

ð2Þ

, where P are predicted (modelled) values and O are observed values.

IOA is used to evaluate to which extent the deviations of hourly observations averaged over

all hours corresponds to the deviations of hourly model predictions averaged over all hours

[10]. A detailed discussion on IOA as a metric for air-pollution models is available from Kang

et al. [42].

ADMS-Urban produces a dynamic mesh of output points, with a higher resolution in prox-

imity to pollution sources (roads, industrial sources, etc). To be able to compare areas with a

different number of output points and at the same time maintaining a high spatial resolution,

we divided Hong Kong’s territory into 1000000 raster cells of each ~3000m2 (45 x 48 metres).

For every timestep, the concentration-value of a raster cell was set to the arithmetic mean of

the concentrations of all ADMS output points inside the respective raster cell. Fig 2 depicts the

rasterization of ADMS output points, while at the same time showing the clustering of output

points around road sources. The rasterization of the dynamic mesh was achieved using Eq 3.

Eq 3: Calculation of arithmetic means for all raster cells from model output

points

8i 2 1; . . . ; nf g: rcp;i;t ¼
Pki

j ¼ 1
mcp;j;t

ki
ð3Þ

where, n is the number of raster cells, rc is the concentration of raster cell for pollutant p at

timestamp t, mc is the model output concentration at model output point j, and k is the num-

ber of model output points located in cell i.
Further, using a simple intersection between the raster grid and each FSM location, we

derived the corresponding raster cell for each FSM station. The pollutant concentrations (after
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Eq 3) of this corresponding raster cell was set as a “pseudo-station” [19] for each FSM. The

representativeness calculation is based on the correlation of these “pseudo-stations” with all

other raster cells.

Health-risk based representativeness evaluation approach

This study introduces the additive health risk approach [23] in developing the metrics for FSM

representativeness evaluation, and used local health risks coefficients to calculate the %AR.

These coefficients were derived by Wong et al. [22, 43] based on the relationship between hos-

pital admissions and measured pollution concentrations in Hong Kong. The hospital admis-

sion risks for all age-groups increase 0.022%, 0.028%, 0.045% and 0.051% for every 10μg/m3

increase in concentrations of PM2.5, PM10, NO2, and O3, respectively. These values were used

to evaluate the short-term health risks from air pollutants. The long-term health risk is not

considered in this study due to a lack of proper health coefficients.

The %AR was calculated for the simulated air pollutants from CMAQ/ADMS models using

Eq 4.

Eq 4: Additional health risk (%AR)

%ARp;j;t ¼ ðe
ðbp � Cp;j;tÞ � 1Þ x 100% ð4Þ

Where,

%ARp,j,t = added health-risks in the hospitalization of pollutant p in cell j at timestamp t
(unitless);

Cp,j,t = the modelled pollutant concentration (in μg/m3);

βp = Hospital admission increase rates for pollutant p.

A major upside of an %AR based index is its ability to aggregate the health risks of different

air-pollutants. The total %ARtotal expresses the combined short-term hospitalisation risk from

multiple pollutants in a given area (Eq 5).

Fig 2. Conversion from dynamic mesh of ADMS model output (points) to raster, with streets (dashed lines).

https://doi.org/10.1371/journal.pone.0252290.g002
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Eq 5: Total additional health risk (%ARtotal)

%ARtotal;j;t ¼ %ARNO2 ;j;t
þ%ARO3 ;j;t

þmaxf%ARPM2:5 ;j;t
þ %ARPM10;j;t

g ð5Þ

Additional health risk of PM takes %AR from either PM2.5 or PM10, whichever is higher on

a given time-step and location (27).

Subsequently, the similarity frequency (SF) method [44] was applied to %AR values

(%ARtotal, as well as individual pollutants) as the basis to calculate health-based representa-

tiveness areas. SF aims at calculating the ratio at which a pollutant concentration (may it be

measured or modelled) at point A does not differ more than X percent from a pollutant con-

centration at point B. The methodology of SF has been described before in greater detail

[15, 16]. In this work, it is used to compare the similarity in %AR between modelled pollut-

ants at raster cells and modelled pollutants at pseudo-stations. We follow the convention of

setting the threshold value for similarity as 20% difference in %AR [13, 19, 44]. SF then

equals to the ratio of timesteps that satisfy the similarity criterion against the number of

total timesteps. The SF scale ranges from 0 (no representation) to 1 (high representation).

A SF > 0.9 shows good representation [44]. We divided the SF scale into further bands,

with < 0.5 deemed as low representation, 0.5 < SF < 0.7 as medium representation,

0.7 < SF < 0.9 as medium to high, and SF > 0.9 as high representation. The representative-

ness of individual FSM was assessed by adding up the total area and population of cells with

SF > 0.9.

In the following, Eq 6 was used to derive each cell’s representativeness by the FSM network.

For a given cell, the %AR-based SF is calculated between the cell and all pseudo-stations, and

the highest value is taken as its representativeness by the FSM network.

Eq 6: Representativeness of a cell by the FSM network

8i 2 fPSg: Rp; j ¼ maxfSF%ARp; j %ARp; i
g ð6Þ

Where,

Rp,j = health-based representation at raster cell j;
p = pollutant of pollutant-set, or total pollutants aggregated under Eq 5;

PS = cells in which FSM are located (pseudo-stations)
SF%ARp; j %ARp; i

= SF of %ARp, j (raster-cell) and %ARp, i (pseudo-station)

Population-health network representation index (PHNI)

We defined the representativeness of the FSM network for a given pollutant, or for the sum of

the total short-term health effects of all pollutants (%ARtotal), as the population-weighted

health-based representativeness of the target domain, averaged by the total population in the

target domain. Eq 7 shows the calculation of the population-health network representation

index (PHNI).

The spatial distribution of Hong Kong’s population density was derived from the LandScan

dataset [45] with a spatial resolution of 1 km x 1 km, following Lin et al. [46]. The summed

population over the study domain is 7.1 million, which is equivalent to the total population of

Hong Kong in 2011 [47]. The nearest neighbour algorithm was used to resample the resolution

of the LandScan dataset to the resolution of the pollution raster [48]. The target domain can be

set to areas of interest, may it be the complete urban territory, or smaller units inside a city

(e.g. inner-city administrative boundaries). In the following, we calculated the PHNI for the
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whole of Hong Kong, as well as for each of the city’s 18 districts, in order to enable relevant

inter- and intra-city comparisons.

Seasonal (Summer: June–August, Autumn: September–November, Winter: December–

February, Spring: March–May) and annual network indices have been calculated for the year

of 2019.

Eq 7: Population-health network representation index

PHNIp;d ¼
Pnd

i ¼ 1
Rp;i � popi

Pn
i ¼ 1

popi
ð7Þ

Where, PHNIp,d is the population-health based network representation index for pollutant

p in domain d, nd is the number of cells in the target domain d, Rp,i is the health-based repre-

sentation of cell i for pollutant p and popi is the population count of cell i.

Results

The results include model verification summary, area- and population- based representative-

ness for aggregated health risks and each selected pollutant, and the annual and seasonal popu-

lation-health based network indices. We further show the population-health based

representation of Hong Kong on the district level.

CMAQ/ADMS model verification

The coupled CMAQ-ADMS-Urban model performed best at predicting particulates, with an

average IOA of 0.7 for PM2.5 and of 0.72 for PM10 between all stations, based on annual hourly

model results and concentration readings (Table 2). The highest IOA was found at TM, a

Table 2. Model result verification based on hourly values of the year 2019 for all FSM stations to their respective pseudo-station (raster-cell) for station-types

(B = background, R = roadside, G = general).

Station ID Station Type PM10 PM2.5 NO2 O3

RMSE (μg/m3) IOA RMSE (μg/m3) IOA RMSE (ppb) IOA RMSE (ppb) IOA

MB B 16.5 0.74 11.5 0.75 9.1 0.46 0.6 0.54

CB R 24.2 0.66 17.8 0.66 23.6 0.67 0.3 0.32

CL R 21.4 0.67 15.5 0.69 26.9 0.58 0.3 0.36

MK R 20.1 0.74 18.0 0.67 41.2 0.53 0.4 0.52

CW G 18.9 0.74 16.2 0.70 33.1 0.43 0.5 0.65

EN G 18.2 0.74 16.6 0.66 37.7 0.37 0.5 0.64

KC G 16.0 0.74 13.9 0.70 31.9 0.53 0.5 0.57

KT G 21.0 0.69 13.9 0.72 22.1 0.63 0.5 0.55

ST G 17.2 0.71 15.9 0.63 44.0 0.36 0.4 0.64

SP G 18.5 0.73 16.2 0.64 33.8 0.50 0.5 0.60

TP G 19.0 0.72 14.8 0.72 15.8 0.61 0.5 0.53

TK G 15.8 0.75 12.4 0.75 16.8 0.63 0.5 0.57

TW G 18.3 0.72 15.2 0.71 34.8 0.47 0.5 0.57

TM G 25.5 0.69 16.1 0.74 21.8 0.63 0.5 0.56

TC G 20.4 0.68 15.0 0.71 27.1 0.51 0.4 0.58

YL G 23.2 0.72 15.9 0.70 18.8 0.67 0.5 0.53

Average 19.6 0.72 15.3 0.70 27.4 0.54 0.5 0.55

https://doi.org/10.1371/journal.pone.0252290.t002
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background site close to the neighbouring mainland city of Shenzhen, indicating regional

impact on particulates.

The model performed less well for gaseous pollutants (IOA averaged between all stations

NO2: 0.54; O3: 0.55). For NO2, the model performed better at roadside stations (mean = 0.59)

than general stations (mean = 0.53), indicating the influence of the traffic emission on urban

NO2 concentrations. For O3, the model performed better at general stations (mean = 0.58),

and less well at roadside stations (mean = 0.40). This is partly due to the complex interplay of

NOx and VOCs concentrations [49] and sunshine [50] acting on O3 concentrations at the

roadside.

Spatial map of health risk representativeness

Following our outlined approach, annual and seasonal health-risk representativeness maps for

Hong Kong’s territory were generated for %AR of PM10, PM2.5, NO2, O3, and combined health

risks (%ARtotal).
The current FSM network represents health risks for PM well. Most of the inhabited areas

are represented with a SF > 0.9 for PM10 (Fig 3) and SF> 0.7 for PM2.5 (Fig 4). In Hong

Kong, PM concentrations are greatly influenced by regional and super-regional transport [34,

51], accounting for 60–70% of PM10 mass [52], and around 40% of PM2.5 mass [34]. The good

results of PM %AR representation are partially because of the concentration homogeneity

resulting from predominantly regional sources, especially for PM10. The SF values were stron-

ger in Autumn and Winter due to the enhancement of the regional contribution to PM [52],

which leads to elevated concentrations in these two seasons as seen in Table 1. The aggregated

areas that were well represented (SF> 0.9) for PM vary substantially among sites. Larger well-

represented areas were observed at general stations for PM10 (mean = 9.22 km2) compared to

PM2.5 (mean = 4.00 km2) than those at road site (PM10: mean = 0.99 km2; and PM2.5:

mean = 0.63 km2). The sampling inlets for general stations are set well above the ground (13 to

28 metres), which makes them more useful to indicate area-wide air quality, where the sam-

pling heights at the roadside are prone to ground emission (3 to 4.5 meters). The largest well-

represented area for PM10 (88.39 km2) and PM2.5 (96.25 km2) was found at MB, a background

site indicating regional pollution.

The representativeness for health risks related to NO2 strongly follows the patterns of urban

development, leaving many rural areas underrepresented (Fig 5). There are only 13.4 km2 of

Hong Kong’s total area is well-represented (SF > 0.9), which are limited to the proximity of

stations. This reflects the heterogeneity of NO2 pollution which are closely related to urban

morphology and local traffic emissions as seen from the inset of Fig 5. For example, clear dis-

tinctions in SF values are observed between urban and rural areas in Hong Kong Island. High

SF values are concentrated on Nathan road, where a roadside monitor is located with heavy-

traffic loads. In rural areas and country parks, the SF values are often lower than 0.3. An excep-

tion is the background station, which has approximately 4 km2 well-represented (SF> 0.9)

areas. This station is surrounded by a large uninhabited area which is less affected by urban

morphology and traffic emissions. The spatial representation of %AR NO2 patterns are similar

throughout the seasons, with slightly higher representation during winter months related to

regional pollution.

Most land areas are represented with a SF higher than 0.7 for O3 (Fig 6). Compared to NO2,

there are large rural areas well-represented (SF> 0.9) for health risks related to O3 by the cur-

rent network. For example, the TC station, which is located in a largely undeveloped area, is

able to well represent over 20 km2 of %AR O3. In contrast, the representativeness in some of

the developed urban area is poor. For example, the heavily built-up eastern Kowloon peninsula
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Fig 3. Representativeness of hospital admission risks (%AR) from fixed site monitor (FSM) network over Hong Kong based on

annual and seasonal PM10 concentrations in 2019. Outlines of Hong Kong’s districts reprinted from Esri China (Hong Kong) under a

CC BY license, with permission from Esri China (Hong Kong), original copyright 2017.

https://doi.org/10.1371/journal.pone.0252290.g003
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Fig 4. Representativeness of hospital admission risks (%AR) from fixed site monitor (FSM) network over Hong Kong based on

annual and seasonal PM2.5 concentrations in 2019. Outlines of Hong Kong’s districts reprinted from Esri China (Hong Kong) under a

CC BY license, with permission from Esri China (Hong Kong), original copyright 2017.

https://doi.org/10.1371/journal.pone.0252290.g004
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Fig 5. Representativeness of hospital admission risks (%AR) from fixed site monitor (FSM) network over Hong Kong based on annual

and seasonal NO2 concentrations in 2019. Outlines of Hong Kong’s districts reprinted from Esri China (Hong Kong) under a CC BY license,

with permission from Esri China (Hong Kong), original copyright 2017.

https://doi.org/10.1371/journal.pone.0252290.g005
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Fig 6. Representativeness of hospital admission risks (%AR) from fixed site monitor (FSM) network over Hong Kong based on annual

and seasonal O3 concentrations in 2019. Outlines of Hong Kong’s districts reprinted from Esri China (Hong Kong) under a CC BY license,

with permission from Esri China (Hong Kong), original copyright 2017.

https://doi.org/10.1371/journal.pone.0252290.g006
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is notably less represented with most SF values smaller than 0.5. Roadside stations contribute

little to the spatial representation of O3 (mean = 0.19 km2 of the area represented with

SF > 0.9), which is related to the high heterogeneity in NO2 distribution surrounding roads

and its titration effect on O3. SF values are generally higher in autumn than other seasons,

which corresponds to the O3 formation peak in Hong Kong and its surrounding regions [53].

The current FSM network represents the combined health risks (%ARtotal) well, which is the

sum of %AR for all selected pollutants. Almost all land areas are represented with an SF> 0.9,

with small exceptions of tunnel exits (Fig 7). This is due to the additive nature of %AR (Eq 5: Pop-

ulation-health network representation index). In Hong Kong, short-term hospital admission risk

(%ARtotal) is highly dominated by NO2 and O3 (Table 3), which together accounts for approxi-

mately 85% to 90% of all short-term hospital admission risks of air-pollution. Although %AR of

NO2 and O3 exhibited substantial variations among FSMs, however, the added health risks are

almost homogeneous as listed in Table 3, indicating the homogeneity of oxidative capacity (Ox)

of air pollution throughout the whole domain. Under the influence of sunlight, NO2 and O3 are

chemically converted by a series of reactions without net loss of their combined oxidative capacity

[54]. The chemical interplay between NO2 and O3 leads to anti-correlated patterns for both pol-

lutants [55], but keeps %ARtotal values largely constant in space. Due to these effects, the FSM net-

work is achieving good representativeness of %ARtotal for both annual and seasons.

Population-based health risk representativeness

The aggregate population under well-represented (SF> 0.9) area was 2.7 million, 1.6 million,

1.0 million, and 0.5 million for PM10, PM2.5, O3, NO2, respectively, which account for 38%,

23%, 14% and 8% of the total population. The population-based health risk representativeness

presents quite different patterns among FSMs compared to the area-based representativeness,

as shown in Fig 8. For example, the SP station presents the largest well-represented population

for PM, but it only ranks the 6th and 7th in representing areas for PM2.5 and PM10, respectively.

The background station has the largest well-represented areas for all selected pollutants, but

least well-represented population among all FSMs. The discrepancies in the ranking between

area-based and population-based representativeness reflect the heterogeneity of population

distribution. For example, the SP station is located at a densely populated district with average

population density of over 40,000 persons/km2 while the background station is located on a

rural island which barely have no inhabitants.

The relationship between area-based and population-based representativeness is further evalu-

ated using person correlation coefficients. Among the 16 FSMs, the correlations between these

two methods are low (r< 0.3) and insignificant for all selected pollutants. Considering that MB

station is a background station, which has quite a unique purpose and function than other sta-

tions, we re-conducted the correlation analysis by excluding the MB station. Among the 12 gen-

eral and 3 roadside stations (n = 15), the correlation between well-represented area and well-

represented population becomes significant only for NO2 (r = 0.86), and remains insignificant for

other pollutants. This indicates that the conventional evaluation methods, which are solely based

on area is inadequate to address the representativeness of FSMs for public health, especially in the

context of high population heterogeneity in urban areas. Although a high correlation is observed

for NO2, the overall well-represented population is small, less than 10% of the population.

The entire population (99.9%) is well-represented (SF > 0.9) by the FSMs for the combined

health risks %ARtotal. The correlation between well-represented area and well-represented

population is high and significant (r = 0.94, p< 0.01). There is a large overlap between FSMs

in their well-represented area or population for %ARtotal, which makes it less sensitive to the

heterogeneity in the population.
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Fig 7. Representativeness of total hospital admission risks (%AR total) from fixed site monitor (FSM) network over Hong Kong in

2019. Outlines of Hong Kong’s districts reprinted from Esri China (Hong Kong) under a CC BY license, with permission from Esri China

(Hong Kong), original copyright 2017.

https://doi.org/10.1371/journal.pone.0252290.g007
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Annual and seasonal PHNI

The annual and seasonal PHNI over the entire domain is presented in Table 4 for individual

and combined %AR. The PHNI provides an overall evaluation of the representativeness of the

FSM network for public health, with values from 0 to 1 representing bad to good quality.

Amongst the four pollutants, the FSM network is best able to represent the population’s

health risks for PM, with annual PHNI of 0.87 for PM10 and 0.82 for PM2.5, respectively. Inter-

seasonal variation in PHNI is 0.14 (0.77–0.91) for PM2.5 and 0.1 (0.83–0.93) for PM10, with the

highest PHNI found in winter for both PM, indicating a strong regional impacts on public

health risks to PM in Hong Kong.

The annual PHNI for NO2 is 0.59, which is lower compared to PM. This is major due to the

heterogeneity of NO2 distributions over Hong Kong which is related to traffic emissions and

urban morphology such as street canyons [10]. The inter-season variations in PHNI are rela-

tively small, ranging from 0.59 in spring to 0.65 in winter (Table 4). Under the Asian monsoon

system, the air plume in Hong Kong shifts from the south in summer, which will bring fresh

ocean air, to North in winter, which will bring continental air pollution from Pearl River Delta

region. However, the PHNI for NO2 is quite similar between summer (0.63) and winter (0.65),

indicating that NO2 pollution in Hong Kong is more related to local sources.

The annual PHNI for O3 is considerably higher compared to NO2, with an annual average

of PHNI of 0.78. The PHNI for O3 is much higher in autumn (0.87) than other seasons (0.77–

0.79), which is related to increase contribution from regional pollution and increased photo-

chemistry under sunlight in autumn.

The PHNI for %ARtotal is nearly 1 for both annual and seasonal scales, indicating the cur-

rent FSM network has a good capacity to represent short-term public health risks to air pollu-

tion in Hong Kong. As mentioned before, the short-term risks (%ARtotal) is dominated by %

AR NO2 and %AR O3, which are anti-correlated in the study domain. The homogeneity nature

of the %ARtotal makes it less sensitive to the location of FSMs and heterogeneity of the

population.

Table 3. Annual average %ARtotal at the location of each FSM (pseudo-station), and its contribution from different pollutants.

Station Station Type %ARtotal Contribution from each pollutant (in %)

PM NO2 O3

MB Background 5.8 10.7 9.3 80.0

CB Roadside 6.4 15.2 44.5 40.3

CL Roadside 7.1 17.2 56.6 26.2

MK Roadside 6.9 16.7 55.1 28.2

CW General 6.0 13.4 38.1 48.4

EN General 5.8 11.6 19.9 68.5

KC General 5.9 12.9 42.6 44.5

KT General 6.3 14.5 39.0 46.6

ST General 5.9 12.6 34.7 52.7

SP General 6.0 13.7 43.0 43.3

TP General 6.0 12.1 26.9 61.0

TK General 5.9 12.2 22.2 65.7

TW General 5.9 12.7 39.9 47.4

TM General 5.9 12.0 33.7 54.3

TC General 5.8 10.7 19.4 69.9

YL General 5.9 12.1 30.4 57.5

https://doi.org/10.1371/journal.pone.0252290.t003
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Fig 8. Represented area and represented population (SF> 0.9) by fixed site monitor (FSM).

https://doi.org/10.1371/journal.pone.0252290.g008
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PHNI comparison among districts

Hong Kong’s territory is divided into 18 administrative districts. Smaller districts are located

in the densely populated city centre, and larger districts are predominantly located in the out-

lying and more rural areas. Annual PHNI was calculated for each district and %AR, as seen in

Fig 9.

The district-level PHNI values ranged from 0.74 to 0.9 for PM2.5 and from 0.78 to 0.92 for

PM10. Higher PHNI values were found in inner districts surrounding city centre, such as

Sham Shui Po, and lower PHNI values were found in outlying districts such as North and

Southern districts. The allocations of existing FSMs are sparser in remote areas than city cen-

tres, making it more challenging to reflect the public health risks given the heterogeneity in

pollution and population.

The district-level PHNI values ranged from 0.34 to 0.81 for NO2. Higher PHNIs are highly

concentrated in districts where roadside stations are located. As discussed in previous sections,

NO2 pollution is closely related to traffic emission. Roadside stations are situated in busy traffic

roads with sampling inlet much closer to the ground than general and background sites, which

make them more appropriate to reflect public health risks to NO2 in their located districts.

Table 4. Annual and seasonal health-based index of representation quality (PHNI) of the FSM network.

Base pollutant Annual Spring Summer Autumn Winter

%ARPM10 0.87 0.84 0.83 0.93 0.93

%ARPM2.5 0.82 0.79 0.77 0.92 0.91

%ARNO2 0.59 0.59 0.63 0.60 0.65

%ARO3 0.78 0.77 0.77 0.87 0.79

%ARtotal 1.00 1.00 1.00 1.00 1.00

https://doi.org/10.1371/journal.pone.0252290.t004

Fig 9. District-level population-based health representativeness for Hong Kong. Outlines of Hong Kong’s districts

reprinted from Esri China (Hong Kong) under a CC BY license, with permission from Esri China (Hong Kong), original

copyright 2017.

https://doi.org/10.1371/journal.pone.0252290.g009
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The district-level PHNI ranged from 0.71 to 0.88 for O3. Higher PHNIs are found in dis-

tricts near the background station, indicating impacts of background or regional O3 pollution

on public health risk.

Hospital admission risks of all pollutants combined (%ARtotal) are well-represented by the

current sensor network in all districts (PNHI > 0.99), resulting in a uniform high representa-

tion that contrasts the variations found for individual pollutants (Fig 9).

Discussion

This proposed population-based representation evaluation method is different from existing

methods that rely on spatial concentrations [19, 21, 56]. Based on our results, there is no

apparent correlation between the size of the represented area and the actually represented pop-

ulation among the FSMs for any of the selected pollutants. Therefore, it cannot be taken for

granted that an FSM network successful in spatially representing an urban area is also success-

ful in conveying its population. The proposed population-health based metric integrates popu-

lation distribution and risk factors with spatial pollutant concentrations in evaluating the

representativeness quality of an FSM network, which can better address the concerns on public

health risks to air pollution.

Compared to concentration representativeness based on single pollutants, a major advan-

tage of health-based representativeness is its ability to combine the health risks of various pol-

lutants into a single metric (Eq 5). We found high %ARtotal representation throughout the

whole study area. These results indicate that the current FSM network in Hong Kong can

reflect the combined effects of air pollution on short-term health risks well. Nevertheless, it

should be noted that the short term %ARtotal is more uniformly distributed in Hong Kong due

to the dominance and anti-correlation between NO2 and O3 under the VOC-limited regime.

The homogeneity nature of %ARtotal may not hold in other places and thus it should not be

taken for granted that the FSM network will always reflect well the combined effects.

The proposed PHNI index is not only useful to evaluate the quality of an existing FSM net-

work but also can help improve the network during design or in operation. A network with

much overlap is unnecessarily expensive, and a cost-effective solution always aims at reducing

station overlap [21, 57]. An optimization effort aimed at maximising PHNI removes the prob-

lem of overlap, as it is aimed at optimizing multi-pollutant based %ARtotal, with only the best

representation by any FSM station of a given cell counting into the metric (Eq 6). Therefore,

the decision of whether and where to add or remove an FSM sensor should always be driven

from a holistic network-perspective in the interface of existing stations, population exposure

and the health effects of the pollutant.

The %AR for each individual pollutant is also important for provide health risk informa-

tion. Some subgroups of the population are especially vulnerable a single pollutant, e.g.

through an allergic pathway [58, 59]. For these groups, the representation of a specific pollut-

ant is critical. Besides, current metrics are not integrating long-term health risks due to the

lack of health-coefficients. Pollutants such as PM2.5 and PM10 heavily affects long-term health.

Thus, the representativeness evaluation of PM may serve as an indicator of long-term health

risks. Another critical step is to enable the public to identify their best-representing FSM sta-

tion by more than rough guidance based on administrative boundaries or proximity to the

next station [35]. We suggest more research into effective and empowering use of FSM net-

work data.

The representativeness of current FSM in Hong Kong is still challenging for individual pol-

lutants, especially for local pollutants such as NO2. The majority of stations represent less than

1 km2 area for NO2. This is in line with previous findings from general stations in the city-
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centre of Paris [19]. Our results further show that most of the stations well represents less than

20,000 people. Apart from the sometimes suggested [60], but in reality arguably difficult reallo-

cation of sensors, smart city infrastructure opens a promising avenue to increase representa-

tion of the population [61]. For example, low-cost sensors can be deployed at a multitude of

locations with a relatively cheap price tag for set-up and maintenance. However, such sensors

suffer from issues of drift, interference and low lifetime [9]. An integration of smart-city infra-

structure into existing FSM networks is thus a challenging task. Here, the proposed network

index can consider both traditional and new approaches towards measuring air quality. A

higher score of the network index can be achieved both by adding high-grade traditional sen-

sors (limited to few locations, but with a high measurement quality) and low-cost sensors (at

many locations, but with more observation error). The observation error of low-cost sensors

as sensor drift [62] can be accommodated by the addition of an error-term during SF-calcula-

tion. Further research is warranted to show the cost-effectiveness of both approaches, as well

as their optimal locations based on an optimization for population-health representativeness.

As global cities are increasingly interwoven, data driven [63] and in competition, managing

environmental pollution becomes an essential criterion for the success of a city [27]. Here, due

to its grounding in health and population, the proposed metrics make management infrastruc-

tures of environmental pollution (FSM networks) comparable between cities of different sizes

and characteristics. Thus, it would be of great interest to expand the proposed methodology to

several of cities, consequently enabling the addition of FSM network quality as a factor of sus-

tainability indices and city rankings.

Conclusions

Existing methodologies judge the representativeness of urban air quality monitoring networks

by spatial representativeness of a single pollutant. This paper demonstrates shortcomings of

this approach. Firstly, the representativeness of multiple pollutants cannot be combined into a

single metric. Secondly, we show that in Hong Kong, spatial representatives areas sizes are not

correlated with actual represented population (p> 0.05 for all pollutants, n = 16). To over-

come these challenges, we derived a health -and population-based metric (PHNI) for the rep-

resentativeness of urban air quality monitoring networks. By basing the metric not on

represented pollution concentration, but on represented additive short-term health impacts of

the pollutants (%AR), an overarching %ARtotal can be calculated. Results show that in our

study area, representativeness values varied with pollutants, with regionally influenced PM bet-

ter represented (PHNIPM10 = 0.87, PHNIPM2.5 = 0.82) than more locally gaseous pollutants

(PHNINO2 = 0.59, PHNIO3 = 0.78). Due to the dominance of these gaseous pollutants on %

ARtotal as well as their anticorrelated chemical interplay in Hong Kong’s VOC-limited regime,

total short-term health effects of the large majority of the population (99.9% of 7.5 million resi-

dents) was found to be well represented by the current sensor network (SF > 0.9). In contrast

to that, the well-represented population was 2.7 million, 1.6 million, 1.0 million, and 0.5 mil-

lion for PM10, PM2.5, O3, NO2, respectively. District-level difference in representation quality

were especially large for NO2, with rural districts being less-well represented than urban dis-

tricts. We explain this by the relative abundance of monitors in smaller, urban districts and

dedicated roadside stations capturing spatially and temporally varying traffic emissions. The

adoption of a population-health based framework makes monitoring efforts comparable and

can lead to improved inter-city competition for sustainable development.
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