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A B S T R A C T   

The YOUth cohort study is a unique longitudinal study on brain development in the general population. As part 
of the YOUth study, 2000 children will be included at 8, 9 or 10 years of age and planned to return every three 
years during adolescence. Magnetic resonance imaging (MRI) brain scans are collected, including structural T1- 
weighted imaging, diffusion-weighted imaging (DWI), resting-state functional MRI and task-based functional 
MRI. Here, we provide a comprehensive report of the MR acquisition in YOUth Child & Adolescent including the 
test-retest reliability of brain measures derived from each type of scan. To measure test-retest reliability, 17 
adults were scanned twice with a week between sessions using the full YOUth MRI protocol. Intraclass corre-
lation coefficients were calculated to quantify reliability. Global brain measures derived from structural T1- 
weighted and DWI scans were reliable. Resting-state functional connectivity was moderately reliable, as well 
as functional brain measures for both the inhibition task (stop versus go) and the emotion task (face versus 
house). Our results complement previous studies by presenting reliability results of regional brain measures 
collected with different MRI modalities. YOUth facilitates data sharing and aims for reliable and high-quality 
data. Here we show that using the state-of-the art YOUth MRI protocol brain measures can be estimated reliably.   

1. Introduction 

To quantify and understand atypical brain development, we need to 
first understand typical brain development. In the past two decades 
multiple longitudinal magnetic resonance imaging (MRI) studies 
investigating brain development have been initiated around the world 
(Bjork et al., 2017; Braams et al., 2015; Brown et al., 2015; Evans and 
Brain Development Cooperative, 2006; Giedd et al., 1999; Herting et al., 
2014; Schumann et al., 2010; Tamnes et al., 2013; van Soelen et al., 
2012; Wendelken et al., 2017; White et al., 2013; Yap et al., 2011). 

These cohorts provide rich datasets that can yield important insights on 
the concept of optimal brain development and individual developmental 
trajectories. 

Studying subtle inter-individual differences in the development of 
brain structure and function requires reliable brain measures. One way 
to assess reliability is by using a test-retest design, in which subjects are 
scanned repeatedly in a short time period. Although, a between-scan 
interval of a month or less seems appropriate, this data is rarely 
collected in children and the shortest time intervals found in fMRI test- 
retest literature are between 3–6 months (Herting et al., 2018). Short 
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time intervals ensure that changes related to plasticity or development 
are negligible and therefore intra-individual variation between these 
scan sessions can be regarded as noise. Test-retest reliability can be 
quantified with the intraclass correlation coefficient (ICC) (Bartko and 
Carpenter, 1976; McGraw and Wong, 1996; Shrout and Fleiss, 1979), a 
widely-used statistic in both structural and functional MRI studies. 

YOUth (Youth of Utrecht) is an ongoing longitudinal cohort study 
that comprises two independent cohorts: YOUth Baby & Child and 
YOUth Child & Adolescent. Together these cohorts should provide a 
complete overview of development from 20 weeks of gestational age to 
adolescence. The aim of the YOUth study is to map variation in typical 
neurocognitive development and investigate why some children develop 
problematic behavior and others show resilience. To this end, an 
extensive dataset is collected, including MRI, eye tracking, parent-child 
observations, computer tasks, cognitive measurements and question-
naires on behavior, personality, health, lifestyle, parenting, child 
development, use of (social) media and more. Furthermore, blood 
samples, buccal swabs, saliva and hair samples are collected. More in-
formation about the study design and a full overview of the collected 
data can be found at the website: www.uu.nl/en/research/youth-coh 
ort-study (see also: Onland-Moret et al., 2020 in this issue). The cur-
rent paper focuses on the MRI data collected in the YOUth Child & 
Adolescent cohort. 

The YOUth MRI protocol comprises different types of MRI scans, i.e. 
structural T1-weighted images, diffusion-weighted images (DWI), 
resting-state functional MRI (rs-fMRI) scans and task-based functional 
MRI (fMRI) scans. YOUth specifically focuses on self-regulation and 
social competence. Therefore, two fMRI tasks were chosen to match 
these themes: the inhibition task as a proxy of self-regulation and the 
emotion task as a proxy of social competence. 

YOUth is designed to facilitate data sharing with internal and 
external researchers guided by the FAIR (Findable, Accessible, Inter-
operable and Reusable) data principles (Wilkinson et al., 2016). In this 
paper we provide a transparent report of the collected MRI data. The aim 
of this paper is two-fold: First, to describe the full YOUth MRI protocol 
including its state-of-the-art MRI acquisition protocol. Second, to 
quantify the test-retest reliability of the included MRI acquisitions. To 
assess test-retest reliability of the YOUth MRI protocol, we included a 
sample of 17 healthy adult volunteers. 

2. Material and methods 

2.1. YOUth child & adolescent 

2.1.1. Sample and recruitment 
YOUth Child & Adolescent aims to include a total of 2000 children 

from the general population and their parents or caregivers. Children are 
recruited mostly at primary schools in the province of Utrecht, the 
Netherlands. At the first measurement children are 8, 9 or 10 years old. 
Follow-up measurements are planned every three years during 
adolescence. 

2.1.2. In- and exclusion criteria 
All children in the specified age categories can be included as long as 

they are physically and mentally capable to participate. Furthermore, 
we exclude children if they or their parents do not master the Dutch 
language enough to give informed consent or participate in the different 
subparts of the study. Atypically developing children are not excluded 
but also not specifically selected. Children that do not meet MR safety 
criteria (absence of specific metal implants including most braces) were 
still welcome to participate in the other parts of the study. 

2.2. The YOUth MRI protocol 

2.2.1. Mock procedure 
Prior to scanning, children undergo a practice session in a mock 

scanner. Implementing a mock procedure mimicking the actual experi-
ence in the scanner has been shown to decrease scanner-related distress 
in children (Durston et al., 2009). For YOUth, an older MR scanner 
model, no longer operational, is reconstructed to be used as a mock 
scanner to make the experience as authentic as possible. Print-outs of 
T1-weighted scans with severe motion artefacts and negligible motion 
artefacts are shown to explain the importance of not moving in the 
scanner at the level of the child. During the simulation, children are 
positioned in a mock scanner with headphones on. To familiarize them 
to the noise of the different MRI sequences sound recordings of these 
sequences are played, while they practice the inhibition task that they 
will perform in the real scanner. Following the scanner simulation, the 
child, the parent or guardian and the research assistant rate the level of 
excitement and anxiety of the child in anticipation of the MRI scans. This 
is done using a Visual Analogue Scale where the rater indicates on two 
questions how excited the child feels and how tensed the child feels. 
These measurements are used as a proxy of scanner-related distress. If 
any of the three raters estimate high scanner-related distress, the MRI 
visit may be canceled. This procedure is repeated just before 
commencing the MRI session. Furthermore, the MRI session can be 
canceled at any time if the child or the parent/guardian indicates that 
the child does not feel comfortable continuing. 

2.2.2. Acquisition 
Scans are acquired on a Philips Ingenia 3.0 T CX scanner with a 

60 cm bore (Philips Medical Systems, Best, The Netherlands), using a 32- 
channel SENSE head-coil and operated using software version R530. 
First, a structural T1-weighted 3D gradient echo scan is acquired, fol-
lowed by a diffusion-weighted multi-shell multi-band echo planar (EPI) 
acquisition including two short DWI scans with a reversed phase 
encoding readout to correct for susceptibility artefacts. Next, multi-band 
EPI acquisitions are acquired during resting-state, the inhibition task 
and the emotion task. During the acquisition, the structural T1-weighted 
scan is visually checked for motion artefacts. If the MR operator regards 
the scan as unusable due to severe motion artefact, the scan is repeated 
after emphasizing the instructions to lie still. Prior to the fMRI scans, a 
short EPI acquisition scan of one dynamic is acquired. MR operators use 
this scan to visually check the reconstruction for (shimming) artefacts or 
for placement of the head outside of the field of view. If rescanning is 
needed, this can come at the expense of the last acquisition as we always 
ensure that the ethically approved maximal time in the MR scanner is 
not exceeded. 

The main acquisition parameters are listed in Table 1. See Supple-
ment A.1, for the complete set of acquisition parameters. An illustration 
of the scan types collected in YOUth can be found in Fig. 1. 

2.2.3. Stimulus presentation 
During the scan session, stimuli for fMRI acquisitions are presented 

using an MRI-compatible 23-inch LCD screen with a resolution of 1080 
by 1920 pixels (BOLDscreen, Cambridge Research Systems). During the 
rs-fMRI acquisition, lights inside the scanner room are turned off and 
participants are instructed to look at a white fixation cross on a grey 
screen. 

2.2.4. Inhibition task 
The stop-signal anticipation task for functional MRI (Zandbelt and 

Vink, 2010) aims to measure performance and brain activation during 
actual stopping as well as during the anticipation of stopping. Subjects 
are presented with three parallel horizontal lines. On each trial, a bar 
moves at a constant speed from the lower line towards the upper line, 
reaching the middle line in 800 milliseconds. The main task is to stop the 
bar as close to the middle line as possible, by pressing a button with the 
right thumb (i.e. Go trial). Stop trials are identical to Go trials, except 
that the bar stops moving automatically before reaching the middle line, 
indicating that a response has to be suppressed (i.e. stop-signal). The 
probability that such a stop-signal will appear is manipulated across 
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trials and can be anticipated based on three different cues; ’0’ indicating 
0% chance, ’*’ 22 percent and ’**’ 33 percent chance the bar will stop on 
its own. Task difficulty is adjusted to performance in a stepwise fashion, 
with a varying delay between the stop-signal and the target (i.e. the 
stop-line) depending on the success of the previous trial, thereby keep-
ing the number of failed and successful trials comparable between 
subjects and sessions. 

2.2.5. Emotion task 
The emotion task is aimed at activating face processing areas in the 

brain. Participants are required to passively view pictures of faces 
(happy, fearful, or neutral expression) and pictures of houses. The pic-
tures are presented in a pseudorandom order with blocks of face images 
interspersed with blocks of house images. The stimuli are taken from the 
Radboud Faces Database (Langner et al., 2010). Stimuli are presented in 
blocks of 18 s, with four blocks for each of the four stimulus types. Rest 
periods are modeled as implicit baseline. Because of the short duration 
of the task, this block-design combined with passive viewing was chosen 
to ensure a strong contrast between conditions, without noise from 
behavioral responses. Behavioral data on emotion recognition in the 
children is measured in another part of YOUth (outside the scanner) 
during a computer task. To ensure that participants stay awake, they are 
instructed to press a button in between the block in response to a cue 
(red circle). 

For more information on both fMRI tasks and their usage in the 
YOUth cohort study, see: 

www.uu.nl/en/research/youth-cohort-study. 

2.3. The YOUth MRI protocol - quality control 

In the YOUth study, all children are scanned on the same scanner, 
with the acquisition parameters kept as stable as possible over the course 
of the study. Scanner soft- and firmware are only updated when it 
concerns essential updates with minimal impact on the acquisition. 
Scanner performance is monitored systematically throughout the YOUth 
study. 

2.3.1. Monitoring scanner performance using human data 
Collected MRI-scans of the children are processed immediately after 

data collection for quality control purposes, on a local server with 
scripted pipelines. Functional MRI scans are processed using SPM12 
(http://www.fil.ion.ucl.ac.uk/spm/). The structural T1-weighted scans 
are processed using the CAT toolbox (http://www.neuro.uni-jena. 

de/cat/). DWI scans are processed using the SQUAD-tool running on 
FSL (Andersson and Sotiropoulos, 2016; Bastiani et al., 2019). Quality 
control (QC) measures are generated automatically after each scanning 
session and results are accessible through a web-portal on the local 
intranet for in-house viewing purposes. These reports consist of different 
slices generated from the T1-weighted scans to allow for a visual check, 
with additional statistics like noise- and inhomogeneity-contrast ratios 
from the CAT toolbox. A single researcher, experienced in quality con-
trol, visually checks these reports and this results in a list of scans that 
are deemed unusable due to inhomogeneity and movement artefacts. In 
the future, we will also perform a QC on the outer surface reconstruction 
of the FreeSurfer output to have more information about which scans are 
unusable. We do not plan to provide quality information at the ROI-level 
as there is no golden standard for this type of QC yet and depending on 
the research question different processing software or parcellation 
atlases can be used. For DWI scans the reports are generated using QUAD 
(part of FSL’s EDDY QC) and include information on the amount of 
spatial distortion and artefacts in the scans (Bastiani et al., 2019). For 
fMRI-scans statistics on movement and signal-to-noise ratio (SNR) are 
generated, including signal maps for visual inspection. Reports are 
checked manually after each scanning session and a qualitative assess-
ment is saved as meta-data to the local XNAT storage server (Marcus 
et al., 2007) together with the raw data. An example of a QC report, 
generated for each participant, is added in Supplement B. 

2.3.2. Monitoring scanner performance using phantom data 
Every other week a proton (demi water) spherical phantom (Philips 

sphere A fluid, doped with CuSO4 1 mL þ SH2O 60 mg; acetate 2.5 mL; 
ethanol 5.0 mL; H3PO4 4.4 mL; total contents 524 mL) fixed in a stan-
dard placeholder is used to acquire a series of scans. These scans include 
a B0 map to determine the uniformity of the main magnetic field based 
on two gradient echo images with varying echo time; a B1 map to 
determine the uniformity of the excitation field based on two gradient 
echo images with varying repetition time; a 3D gradient echo scan with, 
and without, the use of gradients and RF excitation; and a dynamic fast 
field EPI scan (2000 dynamics and 30 dummy scans). After each mea-
surement, data is processed automatically. The output is accessible 
through a local server and results are inspected to monitor changes over 
time as well as temporary changes. 

2.3.3. Example of data on scanner stability in YOUth 
Signal-to-fluctuation-noise ratio (SFNR) is an important measure for 

estimating the presence of unwanted scanner-related variance in fMRI 

Table 1 
Acquisition parameters YOUth MRI protocol.  

Parameters 
Structural 
T1-weighted DWI 

EPI 

resting-state inhibition task emotion task 

Acquisition time (m:s) 10:02 8:05 8:07 9:22 6:40 
Scan orientation sagittal transversal transversal transversal transversal 
TR (ms) 10 3500 1000 1000 1000 
TE (ms) 4.6 99 25 25 25 
Flip angle (degrees) 8 90 65 65 65 
Number of slices * 66 51 51 51 
Slice thickness (mm) * 2.0 2.5 2.5 2.5 
Field of view (mm) 240 � 240 � 200 224 � 224 220 � 220 220 � 220 220 � 220 
Acquisition matrix 304 � 304 112 � 112 88 � 88 88 � 88 88 � 88 
Reconstructed voxel size (mm3) 0.75 � 0.75 � 0.80 2.0 � 2.0 � 2.0 2.5 � 2.5 � 2.5 2.5 � 2.5 � 2.5 2.5 � 2.5 � 2.5 
Multiband acceleration factor Off 3 3 3 3 

Parallel imaging factor 1.70 (AP) 1.30 (AP) 1.80 (AP) 1.80 (AP) 1.80 (AP) 
1.40 (RL) 

Diffusion directions  105    
b-values (s/mm2) [directions]  500 [15]      

1000 [30]      
2000 [60]      
every 10th scan is a B0-scan    

Abbreviations: m ¼minutes; s ¼ seconds; TR ¼ repetition time; TE ¼ echo time; ms ¼milliseconds; mm ¼millimeter; AP ¼ anterior-posterior axis; RL ¼ right-left axis; 
*3D acquisition. 
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data (Bennett and Miller, 2010; Murphy et al., 2007) that can e.g. be 
used as covariate to calibrate multicenter studies (Friedman et al., 
2006). A stable scanner would have a high and stable SNR and SFNR. 
Fig. 2 shows the SFNR calculated from resting-state human data (top 
row). The human data is derived from the rs-fMRI data collected in the 
YOUth cohort. The average human data is smoothed by filtering it with a 
100-point gaussian window. Fig. 2 also shows the SFNR (middle row) 

and the SNR (bottom row) derived from the dynamic fast field EPI scan 
in the phantom data (Friedman and Glover, 2006; Weisskoff, 1996). 

2.4. The reliability study – Sample and recruitment of adults 

To assess the test-retest reliability of the YOUth MRI protocol, we 
recruited healthy adult volunteers under the premise of MRI protocol 

Fig. 1. Scan types collected in YOUth in order 
of acquisition. 
1) Original T1-weighted scan (left), with 
subcortical and cortical brain tissue segmenta-
tion (middle) and the cortical regions of interest 
(right). 2) Diffusion unweighted volume after 
preprocessing (left); the intersection of the 
white matter regions (colored) and the skeleton 
plotted on the FA map (middle); the recon-
structed fiber tracts used to create the connec-
tivity maps (right). 3) One dynamic volume of 
the fMRI scan (left) and a schematic represen-
tation of how functional connectivity is 
computed (right). 4) One dynamic volume of 
the fMRI scan (left) and task-related activity 
during the face-processing in the emotion task 
(right).   
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development approved by the Medical Ethical Committee. All partici-
pants gave written informed consent prior to participation. Test-retest 
data was collected in adults, in the absence of ethical approval to 
include YOUth participants for this purpose. Participants were scanned 
twice with the MRI protocol used in the YOUth children’s cohort study 
described above. The scan-rescan interval was between 6 and 8 days. 
The test-retest sample consisted of 17 volunteers (7 male and 10 female) 
with a mean age of 23 years old (range: 19–31 years old). The partici-
pants, most of which were university students, were not given any re-
strictions regarding food or drink intake. 

2.5. The reliability study - MRI processing 

All scans were visually checked before starting the analyses. If a scan 
was excluded from analysis, both test and retest scans of the subject were 
excluded. Only those scans were excluded that had such obvious arte-
facts or anatomical anomalies that they would have been removed in 
regular practice. This resulted in sample sizes of 15 or 16 subjects 
depending on the type of scan. For the reliability-analyses of the T1- 
weighted scans, one male was excluded due to a structural anomaly. 
For the analyses of the DWI scans, one female was excluded due to 
motion artefacts and one female due to extensive spatial distortions. For 

the analysis of the resting-state MRI data, one female was excluded due 
to motion artefacts and one male due to an anatomical anomaly. For the 
task-based fMRI analyses, one male was excluded due to a local artefact 
and one female was excluded due to missing data. 

2.5.1. Processing of structural T1-weighted scans 
The T1-weighted test-retest scans were processed using FreeSurfer 

version 6.0 (freesurfer.net) for automatic brain segmentation and par-
cellation (Fischl et al., 2002). Global and regional brain measures of 
subcortical volume, cortical volume, cortical thickness and cortical 
surface area were extracted. The ROIs established according to the 
Desikan-Killiany atlas were used for further analysis (Desikan et al., 
2006). Besides atlas-based measures of cortical thickness, vertex-wise 
cortical thickness measures were extracted to include a measure that 
is independent of a parcellation atlas. For the vertex-wise analysis, 
cortical thickness of each scan was resampled to an average brain 
created with FreeSurfer by averaging the first scan of each participant in 
the test-retest dataset. After resampling, the cortical surface was 
smoothed with a 3D Gaussian kernel (FWHM ¼10 mm). 

2.5.2. Processing of DWI scans 
FSL (version 6.01) in combination with MRtrix (version 3.0) was 

Fig. 2. Monitoring scanner performance with human and phantom data using dynamic EPI scans. Data on scanner stability over the course of the study. The solid 
horizontal line indicates the mean of the signal and the dotted line indicates a threshold of �3 standard deviations from the mean. 
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used to preprocess the DWI scans as described in detail here: B.A.T.M.A. 
N.: https://osf.io/fkyht/). Preprocessing included gradient direction 
correction (Leemans and Jones, 2009), eddy current (Andersson and 
Sotiropoulos, 2016) and susceptibility corrections (Andersson et al., 
2003) as well as a correction for Gibbs ringing (Perrone et al., 2015). No 
correction for signal drift was needed because dynamic stabilization was 
applied in the acquisition. The results were visually checked and a QC 
check was performed (using squad, part of FSL). Tract-Based Spatial 
Statistics (TBSS) were used with the default settings to create a skele-
tonized version of the fractional anisotropy (FA) and mean diffusivity 
(MD) values computed from the single tensors (computed using FSL’s 
DTIFit) that were fitted to the preprocessed multi-shell diffusion data. 
Global FA and MD values were computed for all skeleton voxels. In 
addition, average FA and MD values were computed over skeleton 
voxels from 48 regions of interest (ROIs) selected from the ICBM-DTI-81 
white matter (WM) labels atlas (Mori and van Zijl, 2007) similar to 
(Svatkova et al., 2015). 

Connectivity maps were constructed using MRtrix to perform test- 
retest analysis of the structural network analysis. Here the gray matter 
(GM) ROIs of the Desikan-Killiany atlas from the FreeSurfer output 
(generated while processing the T1-weighted scans) were used to define 
the nodes of the network. Fiber orientation distributions were estimated 
by deconvolution of the diffusion signal using 8th order spherical har-
monics. The response function was obtained using the multi-shell-multi- 
tissue constrained spherical deconvolution algorithm. For each dataset 
5,000,000 streamlines were generated within a seeding area covering 
the whole brain using deterministic tracking and a FOD-amplitude 
threshold of 0.05. The number of streamlines was then filtered down 
to 1,000,000 so that streamline densities better matched the fiber 
orientation distributions. Connectivity maps were generated by assign-
ing streamlines to the closest node (ROI) found within a 2 mm radius of 
the streamlines’ endpoints. Streamlines were stored only if they con-
nected two different nodes. Connectivity maps were created based on 
the number of streamlines and their mean FA for each edge (connection 
between nodes). Only edges with at least four streamlines in 60 % of the 
subjects were included in the analysis (de Reus and van den Heuvel, 
2013). For these connectivity maps characteristic path length, global 
efficiency, mean local efficiency and mean strength were calculated 
(Dimitriadis et al., 2017). 

2.5.3. Processing of rs-fMRI scans 
Processing of rs-fMRI scans was performed using the CONN toolbox 

version 18a (Whitfield-Gabrieli and Nieto-Castanon, 2012) and SPM12 
(http://www.fil.ion.ucl.ac.uk/spm/) in MATLAB 2015b (The Math-
Works Inc., Massachusetts, United States). The structural T1-weighted 
MRI scans were segmented into cerebrospinal fluid (CSF), GM and 
WM tissue maps, and registered to MNI-152 space using unified seg-
mentation. The WM and CSF tissue maps were threshold at >50 % and 
binarized to create tissue masks. The WM masks were eroded by two 
voxels to reduce the number of voxels at the white-gray matter tissue 
interface. The CSF tissue masks were constrained to contain only voxels 
inside the lateral ventricles. Motion correction was performed by 
realigning the volumes of the rs-fMRI scans to the mean functional 
volume using a rigid-body transformation in a two-stage approach. The 
transformation parameters were used to compute frame-wise displace-
ment as an approximation of in-scanner head motion (Power et al., 
2012). No slice-timing correction was performed to avoid temporal 
interpolation of the BOLD signal. Slice-timing correction provides little 
benefit with fast/short TR or multiband EPI sequences such as used in 
the current study (TR ¼1 s, multiband factor ¼ 3), and has no effect on 
the reliability of functional connectivity estimates (Parker et al., 2016, 
2019). The realigned rs-fMRI scans were co-registered with the struc-
tural scans using a rigid-body transformation. The structural scans, tis-
sue maps, and rs-fMRI scans were transformed into MNI-152 space and 
resampled to a 2.0 mm isotropic resolution in a single concatenated 
transformation step to minimize data-loss as a result of resampling. No 

spatial smoothing was applied. 
Correction for confounding effects was performed using linear 

regression of the top ten principal components from the BOLD signal of 
WM and (ventricular) CSF maps (Behzadi et al., 2007; Chai et al., 2012), 
24 head motion parameters (Friston et al., 1996; Yan et al., 2013), and 
scrubbing of a subject-dependent number of frames (Power et al., 2012). 
Scrubbing of frames with high motion (FD > 0.30 mm) or unusually 
large whole-brain BOLD signal changes (DVARS Z-score > 3.0) was 
performed by including a regressor for each of the flagged frames, the 
preceding frame, and the two following frames (Power et al., 2012). 
Linear regression was performed on the individual voxels of the brain 
after quadratic detrending of the BOLD time series to reduce the effects 
of scanner drift, followed by temporal bandpass filtering at the fre-
quency range of 0.008 to 0.080 Hz (Waheed et al., 2016). All 
resting-state functional MRI scans were processed independently from 
each other. 

2.5.4. Processing of task-based fMRI scans 
Functional MRI scans were processed using SPM12 (http://www.fil. 

ion.ucl.ac.uk/spm/) in MATLAB 2015b (The MathWorks Inc., Massa-
chusetts, United States). Preprocessing involved realignment, slice 
timing correction, spatial normalization to MNI-152 space, and 
smoothing (8 mm full width at half maximum) to correct for inter-in-
dividual differences. Functional images were then submitted to a gen-
eral linear model. 

For both tasks two contrasts were created. For the inhibition task 
these were: 1) successful stops versus go trials with a stop-signal prob-
ability of zero percent, 2) successful stops versus go trials with a stop- 
signal probability of 20 and 33 percent (from here on referred to as 
>0% stop-signal probability). For the face processing task, we also 
created two contrasts: 1) images of faces versus rest, 2) images of faces 
versus images of houses. Six realignment parameters were added as 
regressors of no interest to correct for head motion. All data were high- 
pass filtered with a cut-off of 128 s to control for low-frequency drifts. 
These analyses produced four (two contrasts per task) t-maps for each 
participant. 

2.6. The reliability study – Statistical analysis 

Test-retest reliability was quantified with ICCs and their 95 % con-
fidence intervals calculated with the irr package version 0.84.1 in R 
(https://www.r-project.org/). ICCs were computed using a single mea-
sure, absolute-agreement, 2-way random-effects model. Average ICCs 
were always computed after Fisher’s Z transformation of the individual 
correlations. Percentage difference (PD) was calculated for each indi-
vidual and the subsequent mean was calculated from the absolute values 
of the individual PDs. 

2.6.1. Reliability of structural T1-weighted MRI 
Global brain measures of cortical and cerebellar volume, cortical 

thickness and cortical surface area were used to compute mean absolute 
PDs and ICCs. Next, ICCs were calculated on atlas-based brain measures 
of subcortical volume, cortical volume, cortical surface area and cortical 
thickness. Additionally, ICCs were calculated for vertex-wise cortical 
thickness measures after resampling and smoothing. 

2.6.2. Reliability of DWI 
For each of the 48 WM ROIs, mean absolute PDs were computed for 

FA and MD. To determine if there is a relation between certain QC 
characteristics and reliability of FA and MD, the mean absolute PDs were 
correlated with SNR (part of the QUAD results), average motion and 
mean displacement obtained from the QC data. For network analysis, 
ICCs for FA and the number of streamlines were calculated for each 
included edge. In addition, ICCs were calculated for the mean charac-
teristic path length, global efficiency, mean local efficiency and mean 
strength (Dimitriadis et al., 2017). 
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2.6.3. Reliability of resting-state fMRI 
The spatially-averaged BOLD signal was obtained from the un-

smoothed and denoised time series for components of major resting- 
state networks defined in the networks atlas provided by the CONN 
toolbox (Whitfield-Gabrieli and Nieto-Castanon, 2012; https://web.co 
nn-toolbox.org/; Supplement C, Fig. S1). Functional connectivity esti-
mates were computed using full Pearson correlation between the BOLD 
signal of two regions. Fisher r-to-Z transformation of the functional 
connectivity estimates was performed prior to statistical analysis. 
Test-retest reliability of the Z-transformed functional connectivity esti-
mates was assessed using the ICC as described before. For mean func-
tional connectivity within and between resting-state networks, the ICCs 
were computed for the averaged Z-transformed functional connectivity 
estimates across all connections within or between the resting-state 
network(s). 

2.6.4. Reliability of task-based fMRI 

2.6.4.1. Behavioral reliability. For the stop-signal task behavioral ICCs 
were calculated for response times and accuracy. During the emotion 
task no behavioral data was collected. 

2.6.4.2. Imaging reliability. ICCs were computed for each voxel of the 
brain using the unthresholded t-maps resulting from the statistical 
analysis in the processing phase. This voxel-wise analysis yielded a 3D 
matrix of Fisher transformed ICC values. An ROI-analysis was subse-
quently conducted using the automated anatomical labelling (AAL) 
template (Tzourio-Mazoyer et al., 2002), generating mean activation 
levels per AAL region. As these tasks were designed to elicit activation in 
specific regions of the brain, statistics for selected regions are reported. 
For the inhibition task, these are bilateral ROIs based on previous 
research (Vink et al., 2014; Zandbelt et al., 2013), spanning the puta-
men, motor cortex, and frontal and parietal lobe. As the face/house task 
is aimed at activating face processing areas in the brain, we report the 
reliability of occipital, parietal and temporal regions of interest (Pas-
sarotti et al., 2003). In addition to statistics for specific ROIs, the mean of 
ICC values for all voxels across the whole brain are also reported per 
contrast. 

2.7. The reliability study - post-hoc analysis: sample size estimations 

To better understand the implications of our results for future 
studies, we did a post-hoc analysis, modelling samples size as a function 
of effect size Cohen’s D. Power was set at 80 % (beta ¼ 0.2) and the 
alpha level was set at 0.05. We assumed normally distributed brain 
measures. Cohen’s D was varied between 0 and 0.5. For each scan type 
we used the main ICC findings as estimates of reliability, and computed 
sample size as (z(1-alpha/2) þ z(1-beta))2/(ICC*Cohen’s D)2. 

3. Results 

3.1. Reliability of structural T1-weighted MRI 

The test-retest reliability of global structural brain measures was 
high (Table 2). Especially cortical and cerebellar GM volume, intracra-
nial volume and total cortical surface area were highly replicable as 
indicated by a comparable mean and standard deviation between the 
two scan sessions, a small mean absolute PD (< 1.43 %) and an excellent 
ICC (> 0.98). Global measures of cerebellar WM were highly reliable 
(mean absolute PD < 3.35 %; ICC > 0.90). Average cortical thickness 
could be reliably measured as well (mean absolute PD < 1.25 %; 
ICC > 0.74) 

Fig. 3 shows regional test-retest ICCs for subcortical and cortical 
brain measures. The ICCs for each region are also listed in Supplement C, 
Table S1. Regional test-retest ICCs of subcortical volumes were high 

with an average of 0.95 (ICCs ranging from 0.84 to 0.99) over all regions 
in both hemispheres. Regional test-retest ICCs for cortical volumes were 
high with an average of 0.96 (ICCs ranging from 0.65 to 1). Regional 
test-retest ICCs for cortical surface area were high with an average of 
0.98 (ICCs ranging from 0.53 to 1) with the lowest ICC in the left frontal 
pole. Regional test-retest ICCs for cortical thickness were good with an 
average of 0.84 (ICCs ranging from 0.07 to 0.97) with the lowest values 
in the right hemisphere for the rostral middle frontal gyrus (ICC ¼ 0.07), 
frontal pole (ICC ¼ 0.48) and medial orbitofrontal gyrus (ICC ¼ 0.51). 
Vertex-wise cortical thickness ICCs were high with an average ICC over 
all vertices of 0.88. 

Taking a closer look at the low ICC in the right rostral middle frontal 
gyrus, we identified three participants with a large change in cortical 
thickness between the two scan sessions (0.16, � 0.10 and � 0.25 mm). 
We did not find artefacts in the raw scan nor segmentation errors. The 
vertex-wise analysis confirmed lower reliability in this region suggesting 
a regional effect unrelated to the parcellation atlas. We did not find 
evidence for an anterior-posterior gradient in vertex-wise reliability and 
did not find a pattern when looking at scan date or time. Focusing on the 
participant with the biggest change between sessions (� 0.25 mm), 
recalculating the ICC without this participant increased the ICC in this 
region to 0.37 suggesting that the low ICC cannot be explained by a 
single outlier. 

3.2. Reliability of DWI 

3.2.1. FA and MD 
The test-retest reliability and 95 % confidence interval of global 

skeleton FA and MD was 0.94 (ICCs ranging from 0.83 to 0.98) and 0.87 
(ICCs ranging from 0.65 to 0.95), respectively. The mean absolute PD for 
global FA was 0.86 % and for global MD 1.33 %. For the ROI-based test- 

Table 2 
Test-retest statistics of global brain measures.  

Global brain measure 
(mm, mm2 or mm3) 

Mean 
(SD) 
Test 

Mean 
(SD) 
Retest 

Mean 
absolute PD 

ICC [95 % CI]  

ml ml %  
Intracranial volume 1484 

(258) 
1494 
(262) 

1.11 (1.82) 0.99 
[0.98–1.00] 

Brain volume 
without ventricles 

1159 
(124) 

1158 
(126) 

0.67 (0.31) 1.00 
[0.99–1.00] 

Left cortical GM 250.6 
(21.4) 

249.9 
(22.6) 

1.09 (1.08) 0.98 
[0.96–0.99] 

Right cortical GM 252.6 
(22.3) 

251.9 
(22.9) 

1.43 (1.37) 0.98 
[0.93–0.99] 

Left cortical WM 227.4 
(34.2) 

227.8 
(35.1) 

0.73 (0.69) 1.00 
[0.99–1.00] 

Right cortical WM 228.4 
(35.5) 

228.8 
(36.2) 

0.79 (0.72) 1.00 
[0.99–1.00] 

Left cerebellum GM 55.82 
(5.28) 

55.82 
(5.20) 

0.94 (0.72) 0.99 
[0.98–1.00] 

Right cerebellum GM 54.79 
(5.44) 

54.78 
(5.44) 

0.72 (0.55) 1.00 
[0.99–1.00] 

Left cerebellum WM 15.25 
(1.48) 

15.15 
(1.66) 

3.28 (3.20) 0.90 
[0.74–0.96] 

Right cerebellum 
WM 

14.48 
(1.58) 

14.42 
(1.85) 

3.35 (3.12) 0.93 
[0.80–0.97]  

cm2 cm2 %  
Left total surface 

area 
894.2 
(95.3) 

893.6 
(95.6) 

0.45 (0.43) 1.00 
[0.99–1.00] 

Right total surface 
area 

895.3 
(96.5) 

894.9 
(97.1) 

0.42 (0.27) 1.00 
[1.00–1.00]  

mm mm %  
Left average 

thickness 
2.493 
(0.056) 

2.487 
(0.062) 

0.88 (0.75) 0.89 
[0.72–0.96] 

Right average 
thickness 

2.521 
(0.052) 

2.514 
(0.620) 

1.25 (1.10) 0.74 
[0.41–0.90] 

Abbreviations: ml ¼milliliter; cm ¼ centimeter; mm ¼millimeter; SD ¼ stan-
dard deviation; PD ¼ percentage difference; ICC ¼ intraclass correlation; 
CI ¼ confidence interval; GM ¼ gray matter; WM ¼white matter. 
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Fig. 3. Test-retest ICCs of subcortical and cortical brain measures. The first row shows the ICCs of subcortical volumes on two coronal slices. The slice on the left cuts 
through the caudate nucleus, thalamus, putamen, pallidum, amygdala and hippocampus. The slice on the right cuts more anterior through the caudate nucleus, 
putamen and nucleus accumbens. The second, third and fourth row show ICCs of cortical volume, cortical surface area and cortical thickness respectively. The last 
row shows vertex-wise cortical thickness ICCs. The ICCs of cortical measures are shown on the surface from an outer and medial view with the left hemisphere on the 
left and the right hemisphere on the right. To visualize the regional test-retest reliability, a model brain was created using the first scan of each participant (Peper 
et al., 2009; supporting information) and segmented and parcellated with FreeSurfer. For each region or vertex, the ICC was recoded to an RGB color-code using 
colormap jet in MATLAB. 
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retest analysis, the mean ICC for FA was 0.84 with values ranging from 
0.51 (found in the pontine crossing tract, a part of the middle cerebellar 
peduncle) to 0.97 (left anterior corona radiata). The mean ICC for MD 
found in the test-retest analysis was 0.74, ranging from 0.09 (right ce-
rebral peduncle) to 0.95 (fornix - column and body of fornix). See 
Supplement C, Table S2 for details. 

3.2.2. Relation between scan quality and FA/MD 
A significant Pearson correlation (0.60, p ¼ 0.02) was found between 

the PD computed for SNR and the PD computed for global FA. For global 
MD the association was not significant (� 0.35, p ¼ 0.19). For relative 
motion, a significant negative correlation was found between the PD for 
relative motion and the PD for global FA (� 0.51, p ¼ 0.05) but not for 
MD (0.15, p ¼ 0.59). No correlation was found between the PD 
computed for mean voxel displacement and the PD for FA (� 0.12, 
p ¼ 0.67) or MD (� 0.33, p ¼ 0.23). See Supplement C, Table S2 for test- 
retest results of ROIs from the JHU Atlas. 

3.2.3. DWI network analysis 
The ICCs computed on global network metrics with the connection- 

weight based on the number of streamlines and for connections 
weighted using FA are shown in Table 3. A total of 1053 edges were 
included in the connectivity maps. The mean ICC across edges was 0.52 
for the number of streamlines, and 0.39 for the mean FA. Fig. 4 shows 
the distribution of ICC’s of the 1053 edges. Fig. 5 shows the ICCs for the 
mean FA (upper-left triangle) and for the number of streamlines (lower- 
right triangle) for each individual edge. 

3.3. Reliability of resting-state fMRI 

Group-mean functional connectivity was highly consistent between 
scan sessions as indicated by a high correlation between average con-
nectivity at the first and second time point (Pearson’s r ¼ 0.95) with 
typical higher functional connectivity within resting-state networks and 
highest functional connectivity between contralateral homotopic re-
gions (Fig. 6A; Supplement C, Table S3). Test-retest reliability of func-
tional connectivity between regions of cortical resting-state networks 
was moderate (mean ICC ¼ 0.36; ICCs ranging from � 0.41 to 0.85; 
Fig. 6B; Supplement C, Table S4), with moderate to high test-retest 
reliability of average functional connectivity within cerebral cortical 
resting-state networks (ICCs ranging from 0.38 to 0.61; Table 4). 

3.4. Reliability of task-based fMRI 

3.4.1. Behavioral reliability inhibition task 
Only the inhibition task had behavioral measurements in addition to 

the fMRI data. The ICC for the reaction time, accuracy and response 
slowing measurements had an average ICC of 0.85 (Table 5). A paired- 
samples t-test was performed on each measure to test for possible 
learning effects between the two sessions. At the second session, subjects 
were slower in their incorrect responses, and an increase of the stop 
probability slope indicates that they slowed down more with increasing 
stop-signal probability. 

3.4.2. Imaging reliability inhibition task 
Overall ICCs for the first contrast – stop versus go-trials with 0% stop- 

signal probability – averaged at 0.52. ICCs for the second contrast - stop 
versus go-trials with >0 % stop-signal probability - were slightly lower, 
with an average of 0.44. The mean ICC of all voxels across the brain was 
0.39 (range � 0.76 to 0.92, median 0.47) for the first contrast, 0.37 
(range � 0.77 to 0.89, median 0.42) for the second. ROI ICCs can be 
found in Table 6. 

3.4.3. Imaging reliability face processing task 
For the contrast of face versus rest, the average ICC in the selected 

AAL regions was 0.54. For the contrast of face versus house, the average 
ICC in the selected AAL regions was 0.64. The mean ICC of all voxels 
across the brain was 0.34 (range � 0.76 to 0.91, median 0.38) for the first 
contrast, 0.38 (range � 0.55 to 0.96, median 0.43) for the second. ROI 
ICCs can be found in Table 7. 

3.5. Post-hoc analysis: sample size estimations 

Fig. S2 in Supplement C shows the relationship between the reported 
ICCs and the sample size needed in future studies to detect an effect of 
interest with 80 % power and an alpha level of 0.05. 

4. Discussion 

The YOUth MRI protocol was designed to study typical brain 
development longitudinally in children from 8 years and up. In this 
paper we provide a detailed description of the MRI acquisition in YOUth 
and include the test-retest reliability of data collected with this protocol. 
Global structural brain measures could be estimated with high reli-
ability. Regional structural and functional brain measures in ROIs or 
specific networks were within the ranges found in literature (outlined 
below per scan type). 

Table 3 
Test-retest ICCs for global network metrics.  

Network metric 
Mean (SD) 

ICC [95 % CI] 
Test Retest 

# Streamlines 

CPL 1238 (215) 1195 (289) 0.39 [� 0.11 to 0.73] 

GE 
0.0515 
(0.007) 

0.0528 
(0.009) 

0.88 [0.71–0.96] 

MLE 0.0662 
(0.009) 

0.0686 
(0.012) 

0.81 [0.56–0.93] 

MS 1.023 (0.130) 1.047 (0.164) 0.91 [0.76–0.97] 

FA 

CPL 2669 (471) 2745 (527) 0.64 [0.24–0.86] 

GE 
0.0679 
(0.008) 

0.0680 
(0.007) 0.58 [0.14–0.83] 

MLE 
0.0799 
(0.009) 

0.0796 
(0.009) 

0.60 [0.18–0.84] 

MS 1.494 (0.177) 0.1498 
(0.163) 

0.69 [0.33–0.88] 

Abbreviations: CPL ¼ characteristic path length; GE ¼ global efficiency; 
MLE ¼mean local efficiency; MS ¼mean strength; SD ¼ standard deviation; 
ICC ¼ intraclass correlation; CI ¼ confidence interval; FA ¼ fractional 
anisotropy. 

Fig. 4. Histogram of the test-retest ICC’s of the 1053 included edges. The bin 
size of the histogram is 0.05. 
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4.1. Structural T1-weighted MRI 

Regional test-retest ICCs had an average of 0.95 for subcortical vol-
ume, 0.96 for cortical volume and 0.98 for cortical surface area. 
Regional test-retest ICCs for cortical thickness were lower with an 
average of 0.84 including lower ICCs for some specific regions, mostly in 
the right hemisphere. Vertex-wise cortical thickness ICCs were, on 
average, higher with an average ICC over all vertices of 0.88. For most 
regions, vertex-wise ICCs are comparable to those based on the parcel-
lated region. However, in some regions the vertex-wise ICCs are on 
average higher than the atlas-based ICC. This difference can be 
explained by the fact that the between-subject variation for vertex-wise 
cortical thickness measures is higher than for atlas-based cortical 
thickness measures in these regions. Our results are in line with other 
studies that found higher reliability for cortical volume, compared to 
cortical thickness (Iscan et al., 2015; Liem et al., 2015; Wonderlick et al., 
2009). One study also found lower reliability for vertex-wise cortical 

thickness in the right rostral middle frontal area (Wonderlick et al., 
2009). In this study we wanted to have an honest and unbiased estimate 
of the noise in our brain measures. Therefore, we processed the 
T1-weighted scans and rescans separately using FreeSurfer’s 
cross-sectional pipeline. This way, the reliability measures are valid for 
data obtained from only one measurement too. However, when pro-
cessing YOUth data, using FreeSurfer’s longitudinal pipeline (Reuter 
et al., 2012) can improve reliability (Jovicich et al., 2013; Morey et al., 
2010). 

4.2. DWI 

Reliable measures of global FA and MD were found. For the ROI- 
based analysis, the average ICC for FA was 0.84. The average ROI- 
based ICC for MD was 0.74. Another study also found FA to be more 
reliable than MD (Duan et al., 2015). At the network level, global 
network metrics were on average more reliable than metrics at the nodal 

Fig. 5. Test-retest ICCs for each individual edge. The upper-left triangle shows the results for the connections weighted with mean FA while the lower-right triangle 
shows the results for the connections weighted with the number of streamlines. Edges that are colored black were excluded for containing too few streamlines in too 
many subjects. 
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level, as has been reported before (Dimitriadis et al., 2017). Global 
network metrics (characteristic path length, global efficiency, mean 
local efficiency and mean strength) were moderately reliable when 
weighted by FA, with ICCs between 0.58 and 0.69. The same network 
metrics were highly reliable when weighted by the number of stream-
lines, with ICCs between 0.81 and 0.91, with the exception of charac-
teristic path length that was unreliable, ICC ¼ 0.39, comparable to what 

Fig. 6. Group-mean functional connectivity (A) and test-retest reliability (B) of functional connectivity for connections between regions of cortical resting-state 
networks. Abbreviations: DMN ¼ default mode network; SMN ¼ sensorimotor network; VN ¼ visual network; SN ¼ salience network; DAN ¼ dorsal attention 
network; FPN ¼ frontoparietal network; LN ¼ language network; CBN ¼ cerebellar network; TP1 ¼ estimates from test session; TP2 ¼ estimates from retest session. 

Table 4 
Test-retest reliability of functional connectivity estimates within cortical resting- 
state networks.  

Resting-state 
network 

Mean FC- 
Z (SD) 
Test 

Mean FC- 
Z (SD) 
Retest 

Mean change 
FC-Z (SD) 

ICC [95 % CI] 

Default mode þ0.66 
(0.23) 

þ0.67 
(0.25) 

þ0.01 (0.23) 0.61 
[0.16–0.85] 

Sensorimotor þ1.02 
(0.39) 

þ0.95 
(0.37) 

–0.06 (0.27) 0.38 [–0.15 to 
0.74] 

Visual þ0.76 
(0.41) 

þ0.79 
(0.38) 

þ0.03 (0.29) 0.51 
[0.02–0.80] 

Salience þ0.55 
(0.29) 

þ0.46 
(0.30) 

–0.09 (0.24) 0.57 
[0.10–0.83] 

Dorsal attention þ0.39 
(0.29) 

þ0.43 
(0.29) 

þ0.04 (0.25) 0.48 [–0.03 to 
0.79] 

Frontoparietal þ0.58 
(0.26) 

þ0.65 
(0.26) 

þ0.07 (0.24) 0.41 [–0.11 to 
0.76] 

Language þ0.70 
(0.29) 

þ0.59 
(0.27) 

–0.10 (0.23) 0.52 
[0.02–0.81] 

Cerebellar þ0.65 
(0.26) 

þ0.60 
(0.12) 

–0.05 (0.28) –0.01þþ [–0.50 
to 0.49] 

Abbreviations: FC-Z ¼ r-to-Z-transformed functional connectivity; SD ¼ stan-
dard deviation; ICC ¼ intraclass correlation; CI ¼ confidence interval, þþ ¼
lowest ICC. 

Table 5 
ICC values for behavioral measurements.  

Contrast ICC [95 % CI] M1 M2 SD1 SD2 t sig 

RT correct Go 0.95 
[0.85–0.98] 

851 856 36 35 � 1.91 0.76 

RT incorrect 
Stop 

0.92 
[0.77–0.97] 

829 836 38 34 � 2.39 0.03 

Stop accuracy 0.71þþ

[0.31–0.90] 
0.59 0.59 0.4 0.3 0.77 0.46 

Stop signal 
delay 

0.82 
[0.53–0.94] 

211 209 28 26 0.56 0.58 

Stop 
probability 
slope 

0.91 
[0.74–0.97] 

91 119 61 64 � 2.56 0.02 

Abbreviations: ICC ¼ intraclass correlation; CI ¼ confidence interval, þþ ¼
lowest ICC. 

Table 6 
AAL ROI ICC statistics for the inhibition task.  

AAL ROI Stops versus go trials 
Stop-signal 
probability ¼ 0 

Stops versus go trials 
Stop-signal probability >
0  

ICC [95 % CI] ICC [95 % CI] 

Precentral gyrus 0.50 [� 0.02 to 0.81] 0.49 [� 0.03 to 0.80] 
Superior frontal gyrus 0.54 [0.04–0.82] 0.48 [� 0.04 to 0.80] 
Middle frontal gyrus 0.60 [0.13–0.85] 0.48 [� 0.04 to 0.80] 
Inferior frontal gyrus 0.60 [0.13–0.85] 0.46 [� 0.07 to 0.79] 
Superior Temporal lobe 0.51 [0.00–0.81] 0.48 [� 0.04 to 0.80] 
Supplementary motor 

area 
0.55 [0.05–0.83] 0.51 [0.00–0.81] 

Paracentral Lobule 0.56 [0.07–0.83] 0.33 [� 0.22 to 0.72] 
Rolandic Operculum 0.50 [� 0.02 to 0.81] 0.47 [� 0.06 to 0.79] 
Putamen 0.31þþ [� 0.24 to 0.71] 0.23þþ [� 0.32 to 0.66] 

Abbreviations: ICC ¼ intraclass correlation; CI ¼ confidence interval, þþ ¼
lowest ICC for each contrast. 

Table 7 
AAL ROI ICC statistics for faces task.  

AAL ROI 
Faces versus rest Faces versus houses 
ICC [95 % CI] ICC [95 % CI] 

Occipital (superior) 0.41þþ [� 0.13 to 0.76] 0.65 [0.21–0.87] 
Occipital (middle) 0.53 [0.02–0.82] 0.63 [0.17–0.86] 
Occipital (inferior) 0.65 [0.21–0.87] 0.77 [0.42–0.92] 
Fusiform gyrus 0.47 [� 0.06 to 0.79] 0.68 [0.26–0.88] 
Inferior temporal gyrus 0.55 [0.05–0.83] 0.61 [0.14–0.85] 
Superior parietal lobe 0.54 [0.04–0.82] 0.65 [0.21–0.87] 
Inferior parietal lobe 0.58 [0.10–0.84] 0.43þþ [� 0.11 to 0.77] 

Abbreviations: ICC ¼ intraclass correlation; CI ¼ confidence interval, þþ ¼
lowest ICC for each contrast. 
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was found in another study (Cheng et al., 2012). Reliability was lower at 
the nodal level, with a mean ICC across edges of 0.52 for the number of 
streamlines, and 0.39 for the mean FA. Numerous methodological 
choices exist for DWI data, which makes it difficult to directly compare 
our findings to literature (for an extensive review see: Welton et al., 
2015). 

4.3. Resting-state fMRI 

Group-mean functional connectivity was consistent between scan 
sessions with higher functional connectivity within resting-state net-
works and highest functional connectivity between contralateral 
homotopic regions typically observed for cortical resting-state networks. 
Test-retest reliability of functional connectivity between regions of 
cortical resting-state networks was moderate with an average ICC over 
all networks of 0.36, partially due to poor reliability within the cere-
bellar network. When looking at only cerebral cortical resting-state 
networks, ICCs were in the range of 0.38 to 0.61. A recent meta- 
analysis reported an average reliability of 0.29 for functional connec-
tivity on edge-level based on 25 studies (Noble et al., 2019). 

4.4. Task-based fMRI 

The inhibition task had highly reliable behavioral measurements 
with an average ICC of 0.85. MRI measures during this task had an 
average ICC over the ROIs of 0.44 and 0.52 for the two task contrasts. 
MRI measures during the emotion task had an average ICC over the ROIs 
of 0.54 or 0.64. The contrast between faces and houses generated a more 
reliable response than the contrast of faces versus rest. These results are 
in line with ICC values of pre-defined ROIs in other task-based fMRI 
studies. A meta-analysis of 13 fMRI studies between 2001 and 2009 
reported ICCs values in a range from 0.16 to 0.88, with an average 
reliability of 0.50 (Bennett and Miller, 2010). Similar to our results, 
reliability generally tends to be best for occipital regions (Koolschijn 
et al., 2011; Vetter et al., 2015, 2017) and fair to poor for frontal and 
subcortical regions (Herting et al., 2018). Whole-brain average ICCs 
were lower than ROI ICCs for both tasks, suggesting that the task con-
trasts more accurately modulate activity in the targeted ROIs than in 
other areas. Voxel-wise calculations are a stringent measure of reliability 
and indicate whether the level of activity in all voxels is consistent be-
tween test and retest (Bennett and Miller, 2010). 

4.5. Factors that determine reliability 

In literature, ICCs for functional MRI measures are generally deemed 
lower compared to structural MRI measures. Our findings are in line 
with other studies that show that structural MRI brain measures can be 
measured more reliably than fMRI brain measures. ICC is related to 
statistical power and therefore the threshold of an acceptable ICC de-
pends on the included sample size and the size of the effect of interest. In 
MRI research, noise may arise from subject- and MRI-related factors, and 
their interaction. Effective processing methods can ensure that the effect 
of noise on the brain measures are kept to a minimum. The impact of 
methodological choices is reviewed for studies on structural (Mills and 
Tamnes, 2014; Vijayakumar et al., 2018) and functional brain devel-
opment (Bennett and Miller, 2010; Herting et al., 2018; Telzer et al., 
2018). In-depth investigation of the origin of the noise in our data is 
beyond the scope of this paper. However, based on the literature we can 
speculate on possible sources of the noise. 

Our acquisition parameters were chosen to create an optimal 
tradeoff between acquisition duration and SNR/SFNR (e.g. high field 
strength, isotropic voxels, multiband, scan duration, validated fMRI 
tasks) and scans were processed using widely-used software. Still, MRI 
remains a very sensitive measurement technique that inherently has 
some degree of instability, which may vary per MRI scanner. Conse-
quently, scanner performance is monitored using human and phantom 

data throughout the YOUth study. Variation is amongst others intro-
duced by scanner drift due to gradient heating and differences between 
scan sessions with regard to the positioning of participants and varia-
tions in shimming (i.e. correcting inhomogeneities of main magnetic 
field). Therefore, reported results are specific to our scanner, acquisi-
tion, processing software and study sample. 

Subject movement remains the foremost cause of low reliability of 
fMRI signals (Gorgolewski et al., 2013b). It has been shown before that 
residual movement contamination is left in the fMRI BOLD signal even 
after motion correction (Power et al., 2012). Similarly, our reliability 
study shows residual variation in DWI scans related to SNR even after 
correcting for motion. Motion can be a problematic source of variation 
in longitudinal research as it can be age-related and heritable (Achter-
berg and van der Meulen, 2019; Savalia et al., 2017; Teeuw et al., 2019; 
Van Dijk et al., 2012). Therefore, it is important to implement a stringent 
motion correction technique and QC. Additionally, QC measures, like 
SNR and SFNR may be included as covariates in DWI and fMRI studies, 
respectively (Farrell et al., 2007; Friedman and Glover, 2006; Friedman 
et al., 2006). 

For task-based fMRI, additional sources of variation may be intro-
duced by practice effects and compliance to the scanner procedure. 
Variation induced by the latter can be reduced by familiarizing partic-
ipants with the MRI environment before the scanning session using a 
mock scanner as is done within the YOUth cohort. Other subject-related 
noise can occur due to dehydration (Duning et al., 2005; Kempton et al., 
2009; Nakamura et al., 2014; Streitburger et al., 2012), or caffeine 
intake (Laurienti et al., 2002). Finally, the type and complexity of the 
task used with an fMRI measurement can greatly affect reliability, with 
simple motor-movement tasks generally being more reliable than tasks 
requiring complex cognitive strategies (Gorgolewski et al., 2013a, b). 

Scan duration can also greatly affect reliability in fMRI (Birn et al., 
2013; Shah et al., 2016; Termenon et al., 2016). A resting-state acqui-
sition duration of approximately 8 min used in the YOUth cohort study is 
at the minimum recommended duration (Birn et al., 2013). However, 
the high temporal resolution (TR of 1 s) provides additional sampling 
points to still achieve a robust measurement within the limited time 
window. The quality assurance protocol of the YOUth cohort study en-
sures high temporal SNR (Fig. 1), and might be further improved by 
early-stage denoising strategies (Adhikari et al., 2018). Denoising stra-
tegies to combat the influence of random fluctuations due to physio-
logical noise can result in cleaner estimates of functional connectivity 
(Caballero-Gaudes and Reynolds, 2017; Parkes et al., 2018), although no 
optimal strategy currently exists. In some cases, denoising procedures 
may decrease reliability statistics as reproducible artefacts are also 
removed (Noble et al., 2019). On a whole, fMRI measurements, such as 
functional connectivity, are dynamic and state-dependent (Poldrack 
et al., 2015). As such, longitudinal changes might be due to develop-
mental changes intrinsic to the brain or due to extrinsic factors such as 
mood, sleep quality, or substance use (Poldrack et al., 2015). 

4.6. Relevance of reliability results and the relation to power 

First, the ICCs reported in this study can be useful to researchers that 
want to adopt our acquisition parameters (listed in Supplement A). 
Secondly, it shows how different modalities and processing methods 
relate to each other in terms of reliability (e.g. FA in ROIs versus FA on 
edge-level). Lastly, the results can inform researchers that want to apply 
for data collected in YOUth. Because researchers with all types of 
research questions can apply for data, in this study we aimed to show 
reliability measures for each scan using methods that are well-known 
and widely-used in the field. Our reliability results should not be used 
to refrain from studying certain brain measures as all of them can be 
relevant when studying brain development. However, the reliability 
results can provide guidance when making methodological choices. 
Accounting for exclusions due to MR safety criteria, scanner-related 
distress or artefacts, a sample size of 1500 for each type of scan seems 
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sufficient to detect an effect size of 0.2 (Supplement C, Fig. S2). 
Furthermore, the power analysis shows that it is not advised to apply for 
small subsamples of the MR data in YOUth, particularly when one is 
interested in regional measures of DWI on network-level and (rs-)fMRI 
data. 

4.7. Limitations 

This test-retest study has several limitations. First, the test-retest 
sample consists of adults, while the YOUth study focuses on develop-
ment in children. Therefore, the reliability of brain measures found in 
this study may be considered an overestimation since it does not reflect 
pediatric data. Consequently, the number of good quality pediatrics 
scans needed to obtain enough power to detect a certain effect is likely 
higher than estimated in Fig. S2. In general, more in-scanner head mo-
tion is seen in children compared to adults (Thomas et al., 1999; Pol-
drack et al., 2002; Satterthwaite et al., 2013), but not in all studies 
(Koolschijn et al., 2011; Alexander -Bloch et al., 2016). Furthermore, 
processing pediatric data comes with challenges. For example, the 
processing pipelines used in this study use adult templates as reference 
for spatial normalization, registration and segmentation. Studies show 
that using adult templates for pediatric data rather than age-appropriate 
templates introduces bias in brain measures (Poldrack et al., 2002; 
Wilke et al., 2002, 2008; Yoon et al., 2009; Fonov et al., 2011). A second 
limitation can be that the practice effect (for task-fMRI) and compliance 
effect in this short test-retest period cannot be compared to the 
three-year scan interval in YOUth. A third limitation is that the 
test-retest sample size, although in conformance with common practice, 
is not big enough to mitigate the effect of regional outliers. 

4.8. Conclusion 

It has been shown that neuroimaging studies are often underpowered 
with the risk of false positive results (Button et al., 2013). Statistical 
power can be boosted by increasing reliability and sample size. In 
YOUth, the large sample size together with reasonable to good test-retest 
reliability increases the probability of finding subtle developmental ef-
fects. This paper provides a transparent report of the methodology used 
in YOUth from MRI acquisition to monitoring quality and reliability. The 
reliability study shows promising results for the studies that will be done 
using MRI data collected within the YOUth cohort. 
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