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Abstract: A better understanding of circumstances contributing to the severity outcome of traffic
crashes is an important goal of road safety studies. An in-depth crash injury severity analysis is
vital for the proactive implementation of appropriate mitigation strategies. This study proposes an
improved feed-forward neural network (FFNN) model for predicting injury severity associated with
individual crashes using three years (2017–2019) of crash data collected along 15 rural highways
in the Kingdom of Saudi Arabia (KSA). A total of 12,566 crashes were recorded during the study
period with a binary injury severity outcome (fatal or non-fatal injury) for the variable to be predicted.
FFNN architecture with back-propagation (BP) as a training algorithm, logistic as activation function,
and six number of hidden neurons in the hidden layer yielded the best model performance. Results of
model prediction for the test data were analyzed using different evaluation metrics such as overall
accuracy, sensitivity, and specificity. Prediction results showed the adequacy and robust performance
of the proposed method. A detailed sensitivity analysis of the optimized NN was also performed to
show the impact and relative influence of different predictor variables on resulting crash injury severity.
The sensitivity analysis results indicated that factors such as traffic volume, average travel speeds,
weather conditions, on-site damage conditions, road and vehicle type, and involvement of pedestrians
are the most sensitive variables. The methods applied in this study could be used in big data analysis
of crash data, which can serve as a rapid-useful tool for policymakers to improve highway safety.

Keywords: road safety; crash injury severity prediction; machine learning; neural networks; sensitivity
analysis; Saudi Arabia

1. Introduction

Road safety has become a global public health threat in recent years. It is estimated that
about 1.35 million people are killed, and over 50 million others are injured every year in traffic
collisions worldwide [1]. As per the statistics from the World Health Organization (WHO) and
World Bank, road traffic crashes (RTCs), on average, account for approximately 3% of the nation’s gross
domestic product (GDP) worldwide, irrespective of their growth and rate of motorization [2]. A better
understanding of factors contributing to traffic crashes is fundamental in improving crash prediction.
However, RTCs are complex events involving many factors with multi-facet interactions, making it very
challenging to comprehend them fully. Globally, various strategies have been successfully implemented
to alleviate the burden of RTCs [3–8]. Intelligent traffic control and vehicle automation in urban areas
are also aimed to ensure safe and sustainable traffic operation [9,10].

The Kingdom of Saudi Arabia (KSA) is located in Southwestern Asia. It is the largest country in
the Arabian Peninsula, with an area of approximately 2.1 million square kilometers and a population
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of over 34 million. The entire area of the country is divided into 13 regions, having a mostly arid or
semi-arid climate. KSA has a vast cultural diversity, with a significant proportion of the population
belonging to expatriates from different parts of the world, particularly from South and East Asia
and the neighboring Arab countries. The rate of urbanization is on the rise, with almost three-fifths
of the population living in major cities that have integrated transportation services and access to
basic services [11]. Due to rapid economic growth, particularly after the oil boom, the country has
experienced an increased rate of motorization and congestion [12]. Vision 2030, announced in 2016,
outlines 24 ambitious and specific goals for the political, economic, and societal domains.

The enormous growth in motorization and road infrastructure has brought alarming road
safety concerns in recent years in KSA. A recent study conducted by Turki et al. indicated that,
on average, 19 persons are killed, and approximately four are injured in RTCs every day in the
KSA [13]. Average crash to injury ratios of 8:6 and 8:4 are reported for the entire country and
eastern region in the KSA, respectively, which are significantly high compared to the global ratio of
8:1 [14,15]. The economic losses due to RTCs in KSA are estimated to be around 4.3% of the national
GDP [2]. In the literature, few studies have focused on identifying crash contributing factors to guide
appropriate management strategies for mitigation [14,16–18]. Locally conducted studies suggest that
factors such as driver distractions, over speeding, and aggressive driving, especially among young
KSA adults, are the main factors that have contributed to an increase in crash occurrence and worsened
injury severity [15,19–21]. In recent years, few road safety measures (such as the installation of the
SAHER program, strict enforcement of traffic rules, the imposition of heavy fines on violators, etc.)
have been initiated; however, the road safety situation has only marginally improved.

As mentioned, the outcome of crash severity is significantly influenced by factors such as
driver attributes, roadway characteristics, vehicle features, weather conditions, crash characteristics,
and features of the built environment [22,23]. In the literature, various regression-based statistical
models have been proposed to establish the relationship between crash injury severity and
predictor variables. However, statistical models are built on several underlying observations and
pre-defined associations among variables [24,25]. The weaker prediction performance of these models
is another major concern that may be attributed to assumptions regarding linear link function and error
distribution terms, which yield biased results if flouted. In recent years, machine learning-based models
have emerged as a promising alternative to statistical methods in crash injury severity prediction.
However, most of these studies have focused on overall prediction accuracy that does not improve the
researcher’s understanding of the individual role of severity factors on injury severity outcome. To fill
this research gap, this study proposes a neural network-based model of traffic crash incidents to predict
the crash injury severity and evaluate the role of individual contributing factors on crash severity,
in the KSA. Crash injury severity is under researched in the KSA. The rural highway crash data used
in the analysis were obtained from the Ministry of Transport (MOT) at Riyadh. The findings of this
study provide key insights for a better understanding of the factors contributing to fatal crashes along
rural highways. The outcomes of this study are also expected to guide in identifying the critical
factors heavily impacting the severity of crash accidents and proactively taking appropriate actions to
mitigate them.

The rest of this paper is organized as follows. Section 2 provides a comprehensive literature review
of different approaches related to crash injury severity modeling. Section 3 presents the data collection
and descriptive statistics of the crash dataset. Section 4 highlights the methods utilized in this study.
Section 5 provides the model prediction results and sensitivity analysis for severity risk factors using the
proposed methods. Finally, Section 6 summarizes the main findings, study implications, and provide
an outlook for future studies.

2. Related Work

In the literature, crash injury severity analysis has been studied under two main headings
(i.e., via statistical regression approaches (mostly used) and methods based on Machine Learning (ML)).



Int. J. Environ. Res. Public Health 2020, 17, 7466 3 of 22

The following passages provide a brief description of previous studies focusing on different statistical
and ML approaches for crash injury severity prediction.

2.1. Statistical Approaches in Crash Injury Severity Prediction

Crash injury severity is usually represented by discrete categories such as fatal, incapacitating
injury, capacitating injury, possible injuries, and property damage only (PDO). Due to the discrete
nature of injury severity classes, it is often analyzed by discrete outcome statistical models such
as binary, multinomial, probit, and logit models [26–29]. It is widely agreed that crash data may
exhibit unobserved heterogeneity, which may be tackled by adopting other advanced statistical models
such as ordered logit models [26,30–32], bivariate/multivariate models [33–36], random parameter
model, [37,38], nested logit model [39,40], and Bayesian hierarchical models [41,42].

For example, Chen et al. employed probit models to identify factors contributing to crashes
involving trucks [43]. The researchers found that factors such as driver’s gender, age, time of
the crash, wet pavement surfaces, and adverse weather conditions were associated with higher
crash severity. Hu et al. proposed a logit model to examine factors affecting crash injury severity at
railroad junctions [22]. The study results showed that variables including the number of daily trips,
presence of obstacle detection devices, and markings at approach segments significantly affect crash
severity. Fan et al. compared the performance of ordered logit models and multinomial logit models for
injury severity predictions of crashes at highway-rail crossings [44]. In his study, Mohamed Abdel-Aty
analyzed the driver injury severity with ordered probit models and multinomial logit models [45].
The results showed that several factors contributing significantly to crash severity outcomes were
common in both models like driver’s gender, age, seat belt use, speed ratio, point of impact, vehicle type,
dark lighting conditions, presence of curves, etc. Comparing the modeling techniques, the ordered
probit approach was more promising than the multinomial logit modeling method.

Tulu et al. adopted a random-parameters logistic regression model for injury severity prediction of
traffic crashes in Ethiopia [46]. Factors contributing to severe and fatal crashes included over speeding,
night-time driving, collision with a heavy vehicle, and drivers with less educational background.
Similarly, random parameter models were also investigated for crash severity modeling in other
recent studies [38,47,48]. Kim et al. studied pedestrian injury severity in motor vehicle crashes with
mixed logit models [49] and found that the odds of fatal crashes were increased significantly in the
absence of street lights, collisions with trucks, speeding, drunk driving, and crashes occurring on
freeways. Logistic regression is another widely used parametric approach in crash severity modeling.
Jamal et al. used logistic regression to examine factors contributing to crash injury severity in the
eastern province, the KSA [15]. The study reported that factors like driver’s distraction, over speeding,
fatigue driving, sudden lane deviation, the involvement of pedestrians, and motorcyclists increased the
injury severity. In their study, Meng et al. also utilized bi-level logistic regression to explore influential
factors contributing to consecutive crash injury severity in Guizhou Province, China [50]. The study
results showed that several predictor variables, including speed limit, traffic volumes, adverse weather
conditions, and involvement of trucks, had a strong positive association with severe crashes.

As mentioned, previous studies have utilized a wide range of statistical models for crash severity
modeling. Though statistical models have a sound theoretical basis, they assume a pre-defined
association between the variables, which, if flouted, yield erroneous model estimation. Alternatively,
non-parametric methods of analysis have become popular in the road safety domain in recent years.

2.2. Machine Learning Approaches in Crash Injury Severity Prediction

To overcome the limitations of statistical models, ML approaches have been increasingly employed
to model the potentially nonlinear relationships between crash severity outcomes and the contributing
factors [51–57]. ML methods are more flexible with no or fewer model assumptions for input variables,
and also have better fitting characteristics. Some of the commonly used ML approaches used in crash
injury severity prediction include artificial neural networks (ANN) [58–60], random forest [54,61,62],
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support vector machines (SVM) [51,63,64], naïve Bayes [65–67], K-means clustering (KC) [68–70],
and decision trees (DT) [71–73].

Several studies have developed different artificial neural network (ANN)-based models for crash
severity prediction. For example, Delen et al. applied ANN to predict crash severity using eight binary
input variables through features-based sensitivity analysis [74]. Study results demonstrated the robust
predictive performance of proposed MLP networks for injury severity classification. Sensitivity analysis
results revealed that the driver’s age and gender, use of seat belt and alcohol, and vehicle characteristics
were found to have more influence on crash severity outcomes. Al-Kheder et al. applied ANN to
predict the injury severity of crashes based on 5973 traffic crash observations from Abu Dhabi collected
over a span of six years [75]. To enhance the prediction accuracy of ANN classifiers, data were split
into three clusters via k-means algorithms. The target severity column was categorized into four
severity groups (i.e., death, severe, moderate, and minor severity). The ANN classifier, with an average
prediction accuracy of 74.6%, outperformed the ordered probit model with the corresponding value at
around 59.5%.

Random Forests (RF), Support Vector Machine (SVM), and Decision Trees (DT) are a few widely
used ML techniques in crash severity analysis. Taamneh and Taamneh employed RF for predicting the
injury severity of crashes based on six years of crash data from Abu Dhabi [76]. The data imbalance
issue was tackled using SMOTE (Synthetic Minority Over-sampling Technique). For underrepresented
classes (Severe Injuries and Death) in the actual dataset, the model performed poorly. Using the
balanced dataset, the overall prediction accuracy of the model was around 78.5% indicating around
14% improvement. An ordered probit model was also used as a benchmark to validate the RF model.
Mokhtarimousav et al. compared the SVM and random parameter mixed logit models for the severity
prediction of work zone crashes [64]. Empirical findings revealed that prediction accuracy from SVM
outperformed the mixed logit model. Analyzing the sensitivity of the parameters, variables such as
the nature of termination areas in the work zones, type of activities, morning peaks, interstate highway
types, and left-rear crashes all had a positive impact on crash severity. Wang et al. compared SVM
with MLP and found that SVM achieved better prediction accuracy for crash injury severity [77].

Emhamed et al. implemented four ML algorithms, including RF, DT, Naive Bayes (NB), and
logistic regression (LR), to predict crash severity prediction [78]. Findings indicated that all the
algorithms yielded reasonable model performance. However, RF had the highest overall accuracy
(75.5%) compared to logistic regression (74.5%), Adaboost (74.5%), and NB (73.1%). In another study, a
researcher investigated the DT model for examining crash severity outcomes of motor vehicles using
ten years from Missouri State [79]. The results suggested that factors such as alcohol use among drivers,
over speeding, and failing to yield contribute significantly to fatal crashes. Delen et al., in their study,
also compared four different ML methods (logistic regression, decision trees, NN, and SVM) to predict
the injury severity of traffic crashes [80] and found that SVM achieved the highest prediction accuracy
while logistic regression was the least accurate. The researchers noted that factors like collision type,
non-compliance with seat belt, and drug involvement were the key contributors toward severe crashes.

3. Data Description

Crash data used in this study were obtained from the traffic safety department at the Ministry of
Transport (MOT), Riyadh, KSA, and covered three years (January 2017 to December 2019). The data
was collected along 15 major rural highways (shown in Figure 1). A large proportion of selected
highways runs through plain and desert terrain, having warm to high temperature during most part of
the year. The database was compiled and extracted from the crash report file prepared by the on-site
emergency response expert crew. The collected data were pre-processed and cleaned by removing the
observations with outliers, duplicate records, and missing information. The final dataset contained
a total of 12,566 valid crash observations resulting in 1320 fatalities and 7947 injuries. It included
six main predictor variables categories (i.e., temporal, environmental, roadway, vehicle, traffic, and
crash) with 59 sublevels (child features) for categorical variables and seven sublevels for continuous
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predictor variables. Table 1 summarizes the descriptive statistics of explanatory variables. Crash injury
severity was classified into two levels (either fatal or non-fatal), which was the dependent variable.
Table 2 provides the distribution by injury severity category across different years. Out of the total
12,566 crashes, 881 (7%) were classified as fatal crashes, and the remaining 11,685 were non-fatal
crashes. Data about traffic volumes, road inventory, and others were also collected from the MOT.
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Table 1. Descriptive statistics of variables.

Variable Description Variable Type Categories Frequency Percent (%)

Dependent Variable

Crash Injury Severity Nominal Fatal Injury 881 7
Nominal Non-Fatal Injury 11,685 93

Explanatory Variables
Temporal Features

Time of crash
Nominal Peak 7087 56.40
Nominal Off-peak 5479 43.60

Day Nominal Weekday 9011 71.71
Nominal Weekend 3555 28.29

Season

Nominal Winter 2754 21.92
Nominal Spring 1982 15.77
Nominal Summer 5313 42.28
Nominal Autumn 2517 20.03



Int. J. Environ. Res. Public Health 2020, 17, 7466 6 of 22

Table 1. Cont.

Variable Description Variable Type Categories Frequency Percent (%)

Environmental Features

Lighting Condition Nominal Day 7601 60.49
Nominal Night 4965 39.51

Weather

Nominal Clear 11,003 87.56
Nominal Rain 519 4.13
Nominal Cloudy 234 1.86
Nominal Sand storm 364 2.90
Nominal others 446 3.55

Roadway Features

Highway Type
Nominal Divided Highway 2815 22.40
Nominal Expressway 9500 75.60
Nominal Single Highway 251 2.0

Alignment Type

Nominal Tangent 8082 64.32
Nominal Horizontal curve 503 4.0
Nominal Vertical curve 205 1.63
Nominal Near intersection 132 1.05
Nominal others 3644 29.0

Surface Conditions

Nominal Good 7107 56.56
Nominal Cracks 1257 10.0
Nominal Debris 454 3.61
Nominal wet 266 2.12
Nominal others 3481 27.70

Damage at Site

Nominal Fence damaged 2615 20.81
Nominal Barrier damaged 1272 10.12
Nominal Pole damaged 498 3.96
Nominal Signpost damaged 307 2.44
Nominal others 7875 62.67

Shoulder width (m)
Numeric Between 2.5–3.0 5312 42.27
Numeric Between 3.0–3.5 3402 27.07
Numeric Between 3.5–4.0 3853 30.66

Carriageway width (m)
Numeric <7.5 1974 15.71
Numeric between 7.5–11 5319 42.33
Numeric >11 5274 41.97

Median width (m)

Numeric <5 1177 9.37
Numeric Between 5–10 1061 8.44
Numeric Between10–15 1759 14.0
Numeric >15 8569 68.19

Road Markings Nominal Present 12,264 97.60
Nominal Absent 302 2.40

Road Cat eyes Nominal Present 12,398 98.66
Nominal Absent 168 1.34

Traffic Characteristics

AADT

Numeric <2000 (1) 476 3.79
Numeric Between 2000–5000 (2) 1282 10.20
Numeric Between 5000–10000 (3) 2983 23.74
Numeric Between 10000–20000 (4) 7136 56.79
Numeric >20000 (5) 687 5.47

Trucks % in ADDT

Numeric <2% 607 4.83
Numeric between 2–5% 993 7.90
Numeric between 5–10% 1073 8.54
Numeric between 10–20% 6559 52.20
Numeric between 20–30% 3335 26.54

Average Speed (kmph)

Numeric <90 (1) 529 4.21
Numeric between 90–100 (2) 2971 23.64
Numeric between 100–110 (3) 7467 59.42
Numeric between 110–120 (4) 1125 8.95
Numeric >120 (5) 474 3.78
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Table 1. Cont.

Variable Description Variable Type Categories Frequency Percent (%)

Vehicle Features

Type of Vehicle at Fault

Nominal Car 7516 59.81
Nominal Bus 940 7.49
Nominal Small truck 1250 9.95
Nominal Big truck 2104 16.74
Nominal others 756 6.02

No. of vehicles involved
Numeric 1 6612 52.62
Numeric 2 5518 43.91
Numeric >2 436 3.47

Crash Characteristics

Collision Type

Nominal Automobile Collision 6512 51.82
Nominal Hit Animal 174 1.39
Nominal Hit Pedestrian/ 58 0.46
Nominal Rollover 3158 25.13
Nominal Run-off the road 1400 11.14
Nominal Skidding 98 0.78
Nominal Vehicle Burnt 296 2.36
Nominal others 870 6.92

Contributing
Circumstance

Nominal

Driver (distractions,
fatigue driving,

disregard to traffic rules,
and TCD)

9245 73.57

Nominal Animal 202 1.61

Nominal Faulty vehicle
component 2120 16.87

Nominal Poor roadway 162 1.29
Nominal others 837 6.66

Table 2. Frequency and percentage distribution by injury severity category.

Year Crash Injury
Severity Frequency Percent (%)

2017
Fatal Injury 256 6.63%

Non-Fatal Injury 3603 93.37%
Total 3859 100%

2018
Fatal Injury 336 6.81%

Non-Fatal Injury 4597 93.19%
Total 4933 100%

2019
Fatal Injury 289 7.66%

Non-Fatal Injury 3485 92.34%
Total 3774 100%

4. Methods

Although a number of methods can be used to model crash severity for road data, this study
chose artificial neural network (ANN)-based modeling because of its ability to learn patterns from the
provided instances, with explicitly defining rules. ANNs try to mimic the way neurons in the human
brain work to solve the problems and learn from the happenings around them [81]. There are numerous
types of ANNs based on their architecture and internal working; however, this study entailed an
improved feed-forward neural network (FFNN), which was trained using a back-propagation (BP)
training algorithm. Generally, such networks comprise a single input layer, one or many hidden layers,
and an output layer with varying number of neurons. For each example from the dataset, the input
layer comprises of the input variables provided to the ANN. Before feeding the ANN, data for each
input variable is normalized so that the absolute values of the different variables do not affect the
performance of the ANN. Afterward, for a given ANN architecture, weights that define the relation
between neurons of various layers are randomly assigned. Then, in each iteration, these weights are
adjusted to minimize the error between the predicted output and the ground truth available from
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the training dataset. The adjustment of the weights is continued until a reduction in error is evident.
Neural Designer (Artificial Intelligence Techniques Ltd., Salamanca, Spain) was used in this study for
ANN implementation.

While looking for an optimum architecture for the current problem, considering the data available
and utilizing prior experience, the study limited the number of hidden layers to two with varying
numbers of neurons. Then, the architecture was finalized based on the performance metrics during hit
and trial runs. Accordingly, finally, the selected ANN comprises a single hidden layer with six neurons,
as shown in Figure 2. Furthermore, since the purpose of the model was to predict/model crash severity,
the activation function used in this study was the logistic function.
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Since the performance of an ANN is heavily dependent upon the features being used, feature
selection was conducted using correlation analysis between the available variables dataset and target
variable (i.e., crash severity). Only features with a logistic correlation value greater than or equal
to 0.04 were selected as the input features to the model. This resulted in a total of nine features to
be used as input features (Accident type (r = −0.13), Weather Status (r = −0.12), ADDT (r = −0.08),
Vehicle Type (r = 0.08), Number of Lanes (r = −0.05), Road Type (r = −0.05), Damage at Site (r =

0.04), Average Speed (r = 0.04), and Number of Vehicles Involved (r = 0.04)). These features were
scaled to ensure the standardization of independent features so that all features are given equal
importance initially. Training data for ANN comprised of 80% of the total dataset, whereas validation
and testing datasets were both 10% of the total data. An important point to note was a skewed dataset
(i.e., only 7% of the data represented fatal accidents). To handle this skewness, a weighted squared
error was employed to train the ANN. Specifically, the error resulting from the wrong prediction
of the fatal crash was penalized six times more than a non-fatal crash. The Quasi-Newton method
was used to minimize the weighted squared error and optimize the ANN. Although it is based on
Newton’s method, calculation of the Hessian matrix (second derivatives) is not required in this method,
which is otherwise computationally expensive. Instead, the Quasi-Newton method approximately
calculates the inverse of the Hessian matrix for each iteration using gradient information. In addition
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to mere prediction of crash severity, a mathematical model arising from ANN was further used to
perform the sensitivity analysis. For this purpose, the base mathematical model was built with the
following assumptions: (i) Road Type: Expressway; (ii) Weather Status: Shiny; (iii) Vehicle Type: Car;
(iv) AADT: 3.55; (v) Average Speed: 2.76; (vi) Number of Lanes: 2.78; (vii) Accident Type: Crash;
(viii) Number of Vehicles Involved: 1.44; and (ix) Damage at Site: No damage. Afterward, individual
independent features were varied one-by-one to explore in-depth the impact of each feature variable
on crash severity.

5. Results and Discussions

5.1. Model Performance Evaluation

An ANN-based mathematical model for crash severity can be represented by Equation (1).

Crash_Severity = Logistic (6.83811+ (y_1*5.79538) + (y_2*-2.85844) + (y_3*-2.70326) +

(y_4*-3.6051) + (y_5*-4.46448) + (y_6*-2.74106))
(1)

In the equation, Logistic refers to the application of a logistic function on the following mathematical
expression. y_1 til y_6 represents the first and the second neuron of the hidden layer, which can
be computed using the mathematical model given in Appendix A. Table 3 shows the confusion
matrix and model predictive performance using different classification evaluation metrics for the
test dataset. The confusion matrix shows the consistency between the actual and predicted observations
for individual severity classes in the dataset. In the contingency table, the rows denote the predicted
number of cases for each crash severity class, while the columns indicate the actual number of
observations for a given severity group. The cells along the diagonal of the confusion matrix provide
accurate severity predictions, while the off-diagonal values imitate misclassifications that result
in underestimation or overestimation of a specific severity class. As shown in Table 3, a total of
43 observations of fatal injury class were correctly classified as fatal injury, and 33 cases in this severity
category were misclassified as a non-fatal injury. Similarly, 731 observations of non-fatal severity
class were correctly classified as non-fatal, whereas 192 observations of non-fatal observations were
wrongly predicted under the fatal injury category. The overall prediction accuracy was around 77.5%,
indicating an acceptable model performance. The sensitivity and specificity values obtained from the
confusion matrix (given in Table 3) also showed that the proposed method is robust in predicting crash
injury severity.

Table 3. Confusion matrix for model performance evaluation.

Actual
Severity Class

Predicted Severity Class
Accuracy Sensitivity Specificity

Fatal Non-fatal

Fatal 43 (4.3%) 33 (3.3%)
77.5% 56.6% 79.2%Non-Fatal 192 (19.2%) 731 (73.2%)

5.2. Sensitivity Analysis for Variable Importance

The following sections describe the results of the sensitivity analysis. As discussed before, a base
model was used for this purpose, which was followed by changing the values of the variables of
interest in the model one by one, to comprehend the changes in severity due to each variable.

5.2.1. Sensitivity Analysis for Type of Highway

Figure 3 shows the impact of the highway type on crash severity with the x-axis representing
the absence/presence of a specific highway category, and the y-axis displaying the severity outcome.
Severity values close to “0” indicate that there are very low prospects of the crash being fatal, while a
severity value approaching “1” represents a higher probability of a fatal crash occurrence. It may be



Int. J. Environ. Res. Public Health 2020, 17, 7466 10 of 22

noted from Figure 3 that the presence of an expressway increases the probability of a fatal crash by
over 9%. For the current study, expressways were designated as the facilities with a minimum of three
lanes in each direction and travel speed above 120 Km/h. Although freeways facilities have a forgiving
design and are accompanied by protecting structures such as barriers, crash cushions, etc., the high
travel speeds aggravate the impact during a crash event. The low traffic volume and forgiving road
design along freeways sometimes also make the drivers more relaxed, which also intensifies the severity
of crashes. These observations are intuitive and consistent with several previous studies [36,82,83].
On the other hand, the presence of a divided highway increases the chances of non-fatal crashes.
A divided highway separates the traffic in the opposing direction by a median and has two lanes in
each direction with a travel speed lower than expressways. Having relatively low speeds and high
traffic volume could be the potential evidence for non-fatal crashes. Similarly, the majority of crashes
reported on divided highways are rear end, which is also an indicator of non-fatal crashes [84,85].
Crashes occurring along a single highway have the highest probability of being fatal since there is
no separating medium between the opposing traffic, and most of the crashes are head-on. It has
been established that head-on crashes are associated with high fatality [86,87]. Figure 4 shows the
relationships between the number of lanes in each direction versus observed crash severity. It is
evident from the figure that severity increases as the number of lanes in each direction increases. With
an increase in the number of lanes, drivers usually drive at high speed and are relatively relaxed,
which could be one possible argument for increased crash severity.
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5.2.2. Sensitivity Analysis for Weather Characteristics

Figure 5 portrays the effect of different weather conditions on crash severity output. It is worth
noting that shiny weather conditions are associated with non-fatal crashes. During clear weather,
drivers usually have a good sight of the roadway ahead during travel. Furthermore, they are more
aware of adjacent vehicles and can detect the danger from a long distance, which gives them ample
reaction time to control their vehicles. Thus, shiny weather reduces the prospects of severe crashes [88].
In contrast, the presence of adverse weather conditions such as rainy weather, fog, dusty conditions
(mostly due to sand storms) all increases the likelihood of fatal crashes. High probability of fatal
crashes during rainy weather conditions may be attributed to retarded visibility and loss of friction
and pavement skid resistance [89,90]. Similarly, during foggy weather conditions, the driver’s sight
is severely hampered, at times limiting the vision to only a few meters ahead. Drivers are unable
to detect the nearby threat, and chances of fatalities are very high, even if vehicles are maintaining
average traveling speeds since drivers do not have enough time to compensate. Sand storms are other
prominent causes of fatal crashes throughout the KSA as they occur at different times of the year.
During such weather conditions, the atmosphere is filled with dust and sand particles lasting from
a few days to weeks, imparting poor visibility. These observations are in agreement with existing
research. Several previous studies have reported that the presence of adverse weather conditions
increases the injury severity of traffic crashes [89,91,92].
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5.2.3. Sensitivity Analysis for Vehicle Characteristics

In Figure 6, sensitivity analysis for crash injury severity based on the type of vehicle involved
is shown. It is evident from the figure that the presence of a car and a small truck is associated with
an increased likelihood of fatal crashes. In particular, the probability of a fatal crash is increased by
approximately 40% in collisions involving small trucks. This observation may be attributed to a severe
impact due to the relatively high speeds of these vehicles. The literature suggests that high speed is
an undeniable factor for greater kinetic energy release during motor vehicle collisions [93,94]. It is
interesting to note that collisions involving buses and big trucks reduce the odds of fatal crashes.
This perception is reasonable first because the average travel speed for buses and big trucks are
relatively low, and second, these vehicles are structurally well-built and can absorb a significant amount
of energy during the impact. Therefore, the chances of severe injuries are relatively less. These findings
are consistent with the previous literature [95]. However, few studies have also reported that prospects
for severe injuries are aggravated in crashes involving buses and trucks [49,96,97]. Figure 7 presents
the relationship between crash injury severity and the total number of vehicles involved. It is clear
that as the number of vehicles involved increases, there is a greater probability of a crash, resulting in
a fatality. Earlier studies also suggest that multi-vehicle collisions are usually more prone to severe
crashes [95,98,99].
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5.2.4. Sensitivity Analysis for Crash Characteristics

Figure 8 shows the impact of crash characteristics on motor vehicle injury severity. As shown in
the figure, crash types such as collisions between motor vehicles, vehicle rollover, run-off the road,
crashes involving animals, and those due to skidding are associated with less severe crashes. While hit
pedestrian crashes and those with vehicles burnt during the crash are likely to increase the odds of
fatal crashes. In particular, crashes involving pedestrians increases the probability of fatal crashes
by around 70%. During the collisions due to vehicle impact, the engine sometimes may catch fire,
which can spread quickly to the entire vehicle, preventing quick rescue operations from evacuating
drivers and passengers, who succumb to death [100]. Pedestrians are classified among the vulnerable
road users’ group, are directly exposed to impact, which increases the chances of fatalities [101,102].
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The observation that collisions between motor vehicles lower the probability of severe injuries may
seem contradictory in light of existing research; however, it is worth mentioning that the majority
of crashes reported for the current study were rear-ended, which mainly occurred along divided
highways and expressways. The literature suggests that rear-end usually crashes, resulting in non-fatal
injury [103]. The low probability of skidding crashes may be attributed to high driver alertness and
lower speeds during inclement weather. Similarly, increased likelihood of minor injuries during run-off

crashes may be credited to plain and greater recovery area along most highways in the KSA. Finally,
there were only a few animals crashes in the dataset; this could be one of the potential reasons for a
crash being non-fatal.
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5.2.5. Sensitivity Analysis for On-Site Damage Conditions

Figure 9 presents the sensitivity analysis for crash injury severity with on-site damaged conditions
from crash locations. The presence of damage on the flexible barrier and fence is a hint of the slight
increase in the likelihood of fatal crashes. The presence of a fence and side barrier dissipates and absorbs
some of the energy of the errant vehicle and usually diverts it back to the highway. In comparison,
the damage on signposts and poles are significant indicators of fatal crashes. Signposts and poles are
usually located far from the main carriageway; thus, the presence of damage on them implies that
either the vehicles were traveling at very high speeds or the driver fell asleep due to fatigue. Second,
the structures of signposts and poles are very rigid and cannot absorb the kinetic energy upon impact,
unlike flexible roadside barriers and fences.
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5.2.6. Sensitivity Analysis for Traffic Characteristics

In Figure 10, the influence of traffic characteristics (AADT, and average stream speed) on crash
injury severity is shown. The numeric values (1–5) for ADDT and average speeds shown on the x-axis
represent the respective categories given in Table 1 (descriptive statistics). It may be noted from the
figure that increasing AADT values are associated with non-fatal crashes. In contrast, high traveling
speeds are indicators of fatal injury. Both these observations are intuitive and are in-line with the
existing literature [86]. An increase in traffic reduces the drivers’ freedom to drive at free flow since their
movement is restrained by other vehicles, who are bound to adjust their vehicle speeds. Furthermore,
when ADDT is high, the drivers are more aware and alert to surrounding traffic. Many previous
studies have established the association between high traveling speed and fatal crashes [93,104,105].
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6. Conclusions

Traffic crashes represent a threat to public health worldwide. Predicting crash injury severity
is a promising research target in the highway safety domain. In recent years, ML-based methods
have emerged as favorable alternatives to statistical methods due to their exceptional abilities to
capture nonlinear relationships between variables, and fewer model assumptions, unlike the later ones.
However, mere accurate prediction from ML does not advance the researcher’s understanding of the
individual role of injury severity contributing factors, necessitating a thorough sensitivity analysis
for predictor variables. In this study, an improved FFNN model was developed for injury severity
prediction and variable sensitivity analysis using three years of crash data collected along rural
highways in the KSA. A total of 12,566 crashes were reported that resulted in 1320 deaths and
7947 injuries. The processed data had six main categories of explanatory variables in 59 sub-levels
for categorical variables. Injury severity, the target variable was classified into two severity groups
(i.e., fatal and non-fatal injury). The overall prediction accuracy was around 77.5%, indicating an
acceptable model performance given the extent and nature of the available input data. In addition,
the results for classification metrics sensitivity and specificity also demonstrated the favorable predictive
performance and efficacy of the proposed approach. Sensitivity analysis results via optimized NN
architecture showed that variables such as traffic volume, average travel speeds, weather conditions,
on-site damage conditions, road and vehicle type, and pedestrian involvement have a significant
association with crash injury severity outcome. The findings of this study are expected to provide
useful guidance to policymakers for adopting suitable countermeasures to enhance road safety.

This study does have a few potential limitations that must be acknowledged. For example,
this study was based on a limited three years of crash data with no detailed sociodemographic
attributes of drivers that may have considerable influence on crash severity investigation. In the
future, detailed datasets covering other road types, regions, and prolonged periods may be considered.
Furthermore, this study considered only two severity groups; however, studies based on multiple
injury severity classes may reveal interesting insights. Studies could also focus on the crash severity
analysis of specific road user groups and collision types. Similarly, previous studies have found
that crash data may involve many unobserved heterogeneity issues [106,107]. This problem may be
tackled by dividing the data into several subgroups to uncover the relationship between crash injury
severity and associated factors. Finally, severity prediction performance proposed methods could be
compared with other advanced machine learning techniques (like ensemble learning, deep learning,
Bayesian networks, etc.) and state-of-the-art statistical methods such as multivariate and random
parameter models.
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Appendix A

y_1 = Logistic (-0.995587 + (scaled_expressway*-0.354336) + (scaled_divided_highway*-0.29182) +

(scaled_single_highway*0.43358) + (scaled_shiny*-1.08956) + (scaled_rainy*-0.511944) + (scaled_fog*1.1712)
+ (scaled_dusty*0.894094) + (scaled_car*-0.418529) + (scaled_bus*-0.286795) + (scaled_smalltruck*-0.312071)
+ (scaled_bigtruck*0.687496) + (scaled_AverageAnnulaDailyTraffic_ADDT_*-0.782044) +

(scaled_Avg.Speed*0.556496) + (scaled_NumberofLanes*0.395474) + (scaled_crash*1.18782) +

(scaled_roll_over*-0.554596) + (scaled_Run_off_road*-2.23453) + (scaled_burning*0.222759)
+ (scaled_animal*1.35505) + (scaled_skidding*0.148185) + (scaled_pedestrian*0.359489) +
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(scaled_no_of_vehicles_involved*0.217981) + (scaled_no_damage*-0.0865889) + (scaled_fence*0.222342) +

(scaled_barrier*-0.511662) + (scaled_lighting_pole*-0.0275431) + (scaled_signboard*-0.758213));
y_2 = Logistic (1.76863+ (scaled_expressway*2.37842) + (scaled_divided_highway*-1.83973) +

(scaled_single_highway*0.14903) + (scaled_shiny*1.62146) + (scaled_rainy*0.576438) + (scaled_fog*1.33062)
+ (scaled_dusty*-2.01074) + (scaled_car*0.0929988) + (scaled_bus*-3.53022) + (scaled_smalltruck*0.398554)
+ (scaled_bigtruck*3.05684) + (scaled_AverageAnnulaDailyTraffic_ADDT_*-1.88497) +

(scaled_Avg.Speed*3.50026) + (scaled_NumberofLanes*2.12327) + (scaled_crash*-0.586664)
+ (scaled_roll_over*-0.467537) + (scaled_Run_off_road*2.40548) + (scaled_burning*1.1775)
+ (scaled_animal*-1.07728) + (scaled_skidding*-1.07976) + (scaled_pedestrian*-0.50781) +

(scaled_no_of_vehicles_involved*0.549078) + (scaled_no_damage*0.732242) + (scaled_fence*-2.44596)
+ (scaled_barrier*1.87162) + (scaled_lighting_pole*-2.40242) + (scaled_signboard*2.01491));
y_3 = Logistic (-0.150089 + (scaled_expressway*-0.779422) + (scaled_divided_highway*0.961344)
+ (scaled_single_highway*-0.396142) + (scaled_shiny*-0.803468) + (scaled_rainy*0.811967) +

(scaled_fog*0.0198535) + (scaled_dusty*1.61784) + (scaled_car*-5.79697) + (scaled_bus*0.207224) +

(scaled_smalltruck*4.38719) + (scaled_bigtruck*4.0538) + (scaled_AverageAnnulaDailyTraffic_ADDT_*1.1388)
+ (scaled_Avg.Speed*2.86474) + (scaled_NumberofLanes*3.69685) + (scaled_crash*2.13024)
+ (scaled_roll_over*-1.62119) + (scaled_Run_off_road*-1.87732) + (scaled_burning*-1.57074)
+ (scaled_animal*2.69996) + (scaled_skidding*0.659162) + (scaled_pedestrian*1.14106) +

(scaled_no_of_vehicles_involved*0.678435) + (scaled_no_damage*2.04318) + (scaled_fence*2.63091) +

(scaled_barrier*-4.31338) + (scaled_lighting_pole*0.515242) + (scaled_signboard*-1.34195));
y_4 = Logistic (1.09247 + (scaled_expressway*-0.987669) + (scaled_divided_highway*1.32038) +

(scaled_single_highway*1.36756) + (scaled_shiny*-0.342812) + (scaled_rainy*1.35944) + (scaled_fog*1.7014)
+ (scaled_dusty*2.42403) + (scaled_car*3.65992) + (scaled_bus*-1.98591) + (scaled_smalltruck*-3.07896)
+ (scaled_bigtruck*-0.44773) + (scaled_AverageAnnulaDailyTraffic_ADDT_*5.01135) +

(scaled_Avg.Speed*-0.581382) + (scaled_NumberofLanes*-5.97399) + (scaled_crash*0.469865) +

(scaled_roll_over*2.85539) + (scaled_Run_off_road*-3.96823) + (scaled_burning*-0.851219) +

(scaled_animal*-0.0944983) + (scaled_skidding*-0.150613) + (scaled_pedestrian*-0.655078) +

(scaled_no_of_vehicles_involved*-0.534065) + (scaled_no_damage*-0.874981) + (scaled_fence*2.07124) +

(scaled_barrier*-1.10295) + (scaled_lighting_pole*2.01337) + (scaled_signboard*4.01189));
y_5 = Logistic (1.31223 + (scaled_expressway*-0.460841) + (scaled_divided_highway*1.1601)
+ (scaled_single_highway*0.368057) + (scaled_shiny*1.20106) + (scaled_rainy*-0.342102)
+ (scaled_fog*-0.368233) + (scaled_dusty*0.648587) + (scaled_car*-0.168535) +

(scaled_bus*0.903567) + (scaled_smalltruck*-0.972495) + (scaled_bigtruck*0.743239) +

(scaled_AverageAnnulaDailyTraffic_ADDT_*-0.602835) + (scaled_Avg.Speed*-0.433562) +

(scaled_NumberofLanes*0.184835) + (scaled_crash*0.163512) + (scaled_roll_over*-1.55079)
+ (scaled_Run_off_road*1.83793) + (scaled_burning*0.811734) + (scaled_animal*0.33973) +

(scaled_skidding*0.640188) + (scaled_pedestrian*-0.217664) + (scaled_no_of_vehicles_involved*0.0232666)
+ (scaled_no_damage*0.129678) + (scaled_fence*0.923295) + (scaled_barrier*0.235469) +

(scaled_lighting_pole*1.06563) + (scaled_signboard*-0.993238));
y_6 = Logistic (-1.73732 + (scaled_expressway*1.20981) + (scaled_divided_highway*-2.89906) +

(scaled_single_highway*1.50868) + (scaled_shiny*-1.07576) + (scaled_rainy*-2.4256) + (scaled_fog*1.32154)
+ (scaled_dusty*0.900551) + (scaled_car*-5.39265) + (scaled_bus*2.01437) + (scaled_smalltruck*2.85767)
+ (scaled_bigtruck*2.69811) + (scaled_AverageAnnulaDailyTraffic_ADDT_*1.04841) +

(scaled_Avg.Speed*-5.20317) + (scaled_NumberofLanes*3.78315) + (scaled_crash*0.463222)
+ (scaled_roll_over*-1.87714) + (scaled_Run_off_road*-0.591788) + (scaled_burning*0.80389)
+ (scaled_animal*3.39016) + (scaled_skidding*2.39256) + (scaled_pedestrian*-0.466654) +

(scaled_no_of_vehicles_involved*-3.11739) + (scaled_no_damage*-0.414976) + (scaled_fence*0.38915)
+ (scaled_barrier*-0.164475) + (scaled_lighting_pole*-1.18927) + (scaled_signboard*-1.48262)).
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