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Acute lung injury/acute respiratory distress syndrome (ALI/ARDS) is a common condition
with high mortality. ALI/ARDS is caused by multiple etiologies, and the main clinical
manifestations are progressive dyspnea and intractable hypoxemia. Currently, supportive
therapy is the main ALI/ARDS treatment, and there remains a lack of targeted and effective
therapeutic strategies. Macrophages are important components of innate immunity. M1
macrophages are pro-inflammatory, while M2 macrophages are anti-inflammatory and
promote tissue repair. Mesenchymal stem cells (MSCs) are stem cells with broad
application prospects in tissue regeneration due to their multi-directional differentiation
potential along with their anti-inflammatory and paracrine properties. MSCs can regulate
the balance of M1/M2 macrophage polarization to improve the prognosis of ALI/ARDS. In
this paper, we review the mechanisms by which MSCs regulate macrophage polarization
and the signaling pathways associated with polarization. This review is expected to
provide new targets for the treatment of ALI/ARDS.

Keywords: macrophage polarization, mesenchymal stem cells, acute lung injury, acute respiratory distress
syndrome, treatment
1 INTRODUCTION

ALI/ARDS
Acute lung injury (ALI) and its more severe form, acute respiratory distress syndrome (ARDS), are
critical illnesses caused by excessive and uncontrolled systemic inflammatory responses to direct or
indirect lung injury. ALI is defined as the acute onset of diffuse bilateral pulmonary infiltrates by
chest radiograph, and with a PaO2/FiO2 ≤ 300mmHg or without clinical evidence of left atrial
hypertension (1). Those with more severe hypoxemia (PaO2/FiO2 ≤ 200mmHg) are considered to
have ARDS. While according to the Berlin definition, ARDS is divided into three categories in terms
of the degree of hypoxemia: mild (PaO2/FiO2 = 200–300 mmHg); moderate (PaO2/FiO2 = 100–200
mmHg); and severe (PaO2/FiO2 < 100 mmHg) (2). ALI and ARDS are characterized by severe
intractable hypoxemia, hypoxic respiratory failure, alveolar and interstitial pulmonary edema,
decreased pulmonary compliance, and increased pulmonary vascular permeability (3, 4). The main
pathological changes associated with ALI/ARDS include damage to alveolar epithelial cells and
org July 2022 | Volume 13 | Article 9281341

https://www.frontiersin.org/articles/10.3389/fimmu.2022.928134/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.928134/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.928134/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.928134/full
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:xiaok301@foxmail.com
mailto:xielx301@126.com
https://doi.org/10.3389/fimmu.2022.928134
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2022.928134
https://www.frontiersin.org/journals/immunology
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2022.928134&domain=pdf&date_stamp=2022-07-08


Liu et al. MSCs Regulate Macrophage Polarization
alveolar capillary endothelial cell barriers, the exudation of
protein-rich edema fluid from the alveolar lumen, and the
infiltration of inflammatory cells such as neutrophils and
macrophages (5).

ALI/ARDS may be caused by a variety of factors including
shock, severe sepsis, pulmonary contusion, gastroesophageal
reflux, aspiration of gastric contents, pneumonia, drug toxicity,
blood transfusion, acute pancreatitis, ischemia-reperfusion, and
drowning (6).

The pathogenesis of ALI/ARDS is complex, and the main
pathogenic mechanisms are excessive inflammatory response
caused by the massive release of pro-inflammatory cytokines
and damage to alveolar epithelial cells resulting from the
excessive activation of multiple immune cells. The lung tissue
can be stimulated by multiple factors to trigger infiltration of
various inflammatory cells such as macrophages and neutrophils,
thereby releasing large amounts of pro-inflammatory cytokines
and inflammatory mediators. This disrupts the integrity of
alveolar epithelial cells and the pulmonary capillary endothelial
cell barrier, leading to pulmonary edema and alveolar
hemorrhage (6, 7). ARDS can be classified into two subtypes,
hyperinflammatory and hypoinflammatory, based on clinical
features such as oxygenation index and inflammation-related
biomarkers such as the levels of IL-6, IL-8, IL-18, TNF-a, and
ACE2. The hyperinflammatory subtype of ARDS has poor
prognosis and high mortality (8).

Treatment of ALI/ARDS is supportive. The current clinical
treatment of ALI/ARDS is based on lung-protective mechanical
ventilation and fluid management therapy (9), supplemented by
glucocorticoids (10, 11), surfactants (12, 13), N-acetylcysteine (14,
15), statins (16, 17), b2 agonists (18), neuromuscular blockade (3,
19), extracorporeal membrane pulmonary oxygenation (20) and
prophylaxis for venous thromboembolism (21). In addition, for
infections such as sepsis-induced ARDS, antimicrobial drugs can
be used pertinently (22). Moreover, for ARDS caused by blood
transfusion, the dose-response relationship between the amount of
blood products transfused in patients and the risk of developing
ARDS suggested that restrictive transfusion policies may reduce
the incidence of ARDS in these patients (23, 24). Although these
supportive treatments can improve patients’ symptoms to a certain
extent, they do not significantly improve the prognosis, and the
associated mortality remains high. An international multicenter
prospective cohort study indicated that the intensive care unit
(ICU) admission of ARDS patients was 10.4%, with an overall
mortality rate of 35%–46% (25). Another large clinical trial found a
43% mortality rate at 90 days in patients with ARDS (26). Even
patients in recovery may face long-term cognitive impairment and
impaired quality of life (27). Moreover, although mechanical
ventilation is the basic and important methods for the treatment
of ALI/ARDS, long-term/excessive mechanical ventilation may
lead to ventilator-related lung injury (VILI) and even pulmonary
fibrosis (28–33). Therefore, there is an urgent need to explore more
effective and safe therapeutic measures for ALI/ARDS.

Mesenchymal Stem Cells (MSCs)
MSCs are pluripotent, self-renewing stem cells with multi-
directional differentiation potential and migration ability.
fimmu.2022.928134.3d 2
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MSCs originate from a variety of organs and tissues such as
bone marrow, adipose, muscle, umbilical cord, and placenta
tissues. Based on these characteristics, MSCs are widely used in
the field of tissue regeneration (34, 35). MSCs can regulate
immune homeostasis, reduce lung inflammation, repair tissue
damage, and promote tissue regeneration, making them
promising for the treatment of ALI/ARDS (36–39).

Macrophages
The presence of macrophages in lung tissue plays a critical role in
the inflammatory response to ALI/ARDS. Macrophages in lung
tissue mainly include two subpopulations: alveolar macrophages
and interstitial macrophages. Alveolar macrophages, which are
more abundant than interstitial macrophages, are the first line of
defense against foreign invading factors and play an important
role in host defense and the maintenance of immune
homeostasis in the local microenvironment of lung tissue (40–
42). In response to stimulation by foreign pathogens, alveolar
macrophages can release a variety of inflammatory factors and
chemokines to initiate a cascade of amplified inflammatory
responses within lung tissue and mediate lung tissue injury.

Macrophages have good plasticity and can polarize into
different phenotypes under different environmental conditions,
including classically activated M1 macrophages and alternatively
activated M2 macrophages (Figure 1). M1 macrophages produce
a large amount of pro-inflammatory cytokines, which cause
tissue damage while facilitating the host immune clearance of
pathogens. M2 macrophages mainly secrete anti-inflammatory
cytokines, which facilitate wound healing and the repair of tissue
damage (43–45).

The M1 and M2 phenotypes of macrophages can be
interconverted under certain conditions. M1 and M2
macrophages can effectively avoid excessive inflammatory
responses that cause tissue damage by maintaining the immune
homeostasis of the lung microenvironment. In the progression of
ALI/ARDS, the balance of M1 and M2 macrophages can
effectively remove harmful substances and over-produced pro-
inflammatory cytokines from the body to promote the repair of
lung tissue damage. However, the loss of balance may exacerbate
lung injury and worsen ALI/ARDS. MSCs can modulate
macrophage function by regulating the polarization of
macrophages; thus, MSCs show promise for the treatment of
ALI/ARDS and the improvement of ALI/ARDS patient prognosis
(46–50).
2 MACROPHAGE PHENOTYPES AND
ALI/ARDS

M1 Macrophages and ALI/ARDS
Macrophages are usually polarized to the M1 phenotype in
response to microbial stimuli including lipopolysaccharide
(LPS) and Th1-related cytokines such as IFN-g and TNF-a
(44) (Figure 1). M1 macrophages highly express CD86, CD80,
and other surface markers. M1 macrophages also secrete
numerous inflammatory mediators and cytokines such as
07/08/2022 08:18:32pm
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TNF-a, IL-1, IL-6, IL-12, iNOS, reactive oxygen species (ROS),
monocyte chemotactic protein 1 (MCP-1), and macrophage
inflammatory protein 2 (MIP-2). These compounds lead to a
strong inflammatory response and Th1 immune response and
cause tissue damage while participating in pathogen clearance
(51). In the early stage of ALI/ARDS, alveolar macrophages are
M1-polarized and release various pro-inflammatory factors and
harmful mediators while clearing pathogenic microorganisms
and recruiting neutrophils and other inflammatory cells.
Eventually, the excessive accumulation of pro-inflammatory
cytokines and inflammatory cells lead to lung tissue injury (52).

M2 Macrophages and ALI/ARDS
M2 macrophages are usually induced by IL-4, IL-13, TGF-b, and
macrophage colony-stimulating factor (M-CSF; Figure 1).
Activated M2 macrophages highly express arginase 1 (Arg-1)
and specific surface markers such as CD206, CD163, chitinase 3-
like 3 (Ym-1) and found in inflammatory zone 1 (Fizz1). M2
macrophages also secrete large amounts of the anti-
inflammatory cytokine IL-10, which inhibits inflammatory cell
aggregation and negatively regulates the production of anti-
inflammatory factors (53).

M2 macrophages can be further divided into four subtypes:
M2a, M2b, M2c, and M2d (Figure 1). The activation of M2a
macrophages is induced by IL-4 and IL-13, which can be
involved in allergic reactions, wrapping and killing parasites.
M2b macrophages are induced by immune complexes (ICs),
Frontiers in Immunology | www.frontiersin.org 3
Toll-like receptor (TLR) ligands, and IL-1R agonists. M2b
macrophages, which secret high levels of IL-10 and low levels
of IL-12, which is conductive to the Th2 immune responses.
Glucocorticoids, IL-10, and TGF-b are involved in the induction
of M2c macrophages. Activated M2c macrophages negatively
regulate the production of anti-inflammatory cytokines involved
in tissue remodeling and matrix deposition (43, 44, 54–56). M2d
macrophages are synergistically induced by TLRs and adenosine
A2a receptor agonists or by IL-6. M2d macrophages have the
characteristics of tumor-like macrophages and can participate in
tumor-related immune regulation, tumor growth, and tumor
angiogenesis (57–59). In addition, some investigators also
described a new subpopulation of pro-resolving macrophages,
namely CD11blow macrophages that emerge during the
resolution of zymosan-induced peritonitis in mice. These
macrophages secrete pro-resolving mediators and are
generated by M2-like macrophages in vivo and in vitro after
phagocytosis of apoptotic leukocytes (60). Another study
suggested that pro-resolving macrophages could produce
antiangiogenic mediators such as endostatin, which could halt
angiogenesis and restore tissue structure (61). In summary,
macrophages are highly plastic cells. They may exert a vast
“spectrum” of functions characterized by an array of different
macrophage phenotypes/subtypes (62).

M2 macrophages are key regulators of tissue repair during
ALI/ARDS recovery (63, 64). M2 macrophages can release
anti-inflammatory cytokines, inhibit the production of pro-
FIGURE 1 | Macrophage phenotype and polarization. Macrophages have good plasticity and can differentiate into two phenotypes, classically activated M1
macrophages or alternatively activated M2 macrophages under different environmental conditions. Stimulated by LPS or Th1 related cytokines such as IFN-g and
TNF-a, macrophages can polarize into the M1 phenotype with high expression of surface markers such as CD86 and CD80. M1 macrophages can secrete a variety
of pro-inflammatory cytokines and inflammatory mediators that can cause a strong inflammatory response and cause tissue damage. M2 macrophages are usually
induced by IL-4, IL-13, TGF-b and M-CSF. M2 macrophages highly express specific surface markers such as CD206, CD163, Arg-1, Ym-1 and Fizz 1. M2
macrophage also secrete a large amount of the anti-inflammatory cytokine IL-10, which inhibits inflammatory responses and participates in tissue repair. M2
macrophages can be divided into four subtypes (M2a, M2b, M2c, M2d). Activation of M2a macrophages is induced by IL-4 and IL-13 and may be involved in allergic
reactions. M2b macrophages are induced by immune complexes (ICs), Toll-like receptor (TLR) ligands and IL-1R agonists. Glucocorticoids, IL-10 and TGF-b are
involved in the induction of M2c macrophages and may be involved in tissue remodeling and stromal deposition. M2d macrophages are induced synergistically by
TLR and adenosine A2a receptor agonists or IL-6. With the characteristics of tumor-like macrophages, they can be involved in tumor-associated immune regulation
and tumor angiogenesis.
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inflammatory mediators, and remove apoptotic neutrophils from
inflammatory sites to promote lung injury repair. M2
macrophages can also suppress the expression of iNOS and
prevent the production of ROS, thereby reducing damage to
alveolar epithelial cells and promoting the recovery of host
tissues (52, 65–67).

In summary, M2 macrophages can suppress inflammation,
promote tissue remodeling, and participate in angiogenesis and
immune regulation. M2 macrophages are also thought to promote
fibrosis. The TGF-b1 secreted by M2 macrophages can trigger
fibroblast activation and extracellular matrix-producing
myofibroblast development while promoting the resolution of
inflammatory response to drive fibrosis (68, 69). Maintaining
the appropriate balance of M1 and M2 macrophages in vivo
thus provides a target for the treatment of ALI/ARDS.
3 MSCS MODULATE MACROPHAGE
POLARIZATION TO ATTENUATE
ALI/ARDS

MSCs can regulate the transition of macrophages to play an
important role in ALI/ARDS. In a model of ALI caused by
sulfur mustard, treatment with adipose-derived MSCs decreased
the expression of CD86 markers by macrophages, suggesting that
MSCs inhibited macrophage polarization to the pro-inflammatory
phenotype and promoted polarization to the anti-inflammatory
phenotype (70). A study found that heat shock-pretreated
umbilical cord-derived MSCs (UC-MSCs) exhibited enhanced
immunomodulatory effects by inducing anti-inflammatory
macrophage polarization (49). Moreover, the levels of M1
markers were significantly elevated after LPS precondition, while
co-culturing with heat shock-pretreated UC-MSCs reversed this
effect. This may be because heat shock pretreatment enhanced the
protein levels of HSP70 in UC-MSCs and negatively regulated the
activation of inflammasomes in macrophages (49). Another study
found that a stress response protein with anti-oxidant capacity was
highly expressed in MSCs; the knocking down of this protein
decreased IL-10 secretion and diminished anti-inflammatory
macrophage polarization (71).

Dental follicle stem cells, a unique population of MSCs, were
found to attenuate histopathological damage and lung
permeability, downregulate pro-inflammatory cytokines such as
MCP-1, IL-6, and TNF-a, upregulate the anti-inflammatory
cytokine IL-10, increase the expression of the anti-inflammatory
macrophage marker Arg-1, and decrease the production of the
pro-inflammatory macrophage polarization markers iNOS and
CD86 (72). Morrison et al. found that co-culturing macrophages
stimulated with bronchoalveolar lavage fluid (BALF) from ARDS
patients with human bone marrow MSCs (BMSCs) increased the
expressions of anti-inflammatory macrophage markers (73). The
above studies demonstrate that MSCs can attenuate lung
histopathological changes and the inflammatory response in the
ARDS inflammatory microenvironment by regulating the balance
between pro-inflammatory and anti-inflammatory macrophages.
Frontiers in Immunology | www.frontiersin.org 4
4 HOW MSCS REGULATE MACROPHAGE
POLARIZATION

MSCs Regulate Macrophage Polarization
Through the Paracrine Effects of
Soluble Factors
MSCs can home to injured sites to reduce inflammatory
response. MSCs differentiate toward type II alveolar epithelial
cells, which participate in the tissue repair process (74). However,
some studies suggested MSCs retained a low number and had a
short duration in the injured tissue after transplantation (75–79).
Therefore, MSCs homing and differentiation are not the key
mechanisms of their effects in ALI/ARDS. Rather, paracrine
action may be the primary mechanism of MSCs involvement
in tissue injury and repair (Figure 2).

MSCs secret soluble factors such as chemokines, cytokines,
and growth factors, which exert paracrine effects to promote
tissue repair and regeneration (80, 81). The paracrine action of
MSCs plays a crucial anti-inflammatory and immunosuppressive
role in immune cells. Wakayama et al. reported that MSCs
promoted macrophage polarization to the anti-inflammatory
phenotype via a paracrine mechanism, expressed high levels of
CD206 and Arg-1, attenuated pro-inflammatory responses, and
reduced bleomyclin-induced ALI in mice (82).

MSCs from dental capsules promoted anti-inflammatory
polarization via the paracrine secretion of TGF-b3 and
thrombospondin-1 to upregulate the level of anti-inflammatory
factors, thereby reducing the pulmonary inflammatory response
(72). Kwon et al. suggested that UC-MSCs could regulate the
anti-inflammatory response by secreting decorin, a key regulator
that polarizes inflammatory macrophages into anti-
inflammatory macrophages (83). Kim et al. reported that the
paracrine secretion of Pentraxin 3 from UC-MSCs enhanced the
levels of anti-inflammatory macrophage markers and anti-
inflammatory cytokines to improve hyperoxic lung injury (84).
MSCs also attenuated lung inflammation by promoting the anti-
inflammatory macrophage phenotype via the paracrine secretion
of insulin-like growth factor (85). Prostaglandin (PGE2) secreted
by MSCs induced an immunosuppressive anti-inflammatory
phenotype in alveolar macrophages, increased the ability to
produce IL-10, and inhibited the production of TNF-a (86).
Other soluble factors such as Galectin-9 (87), tumor necrosis
factor-stimulated gene 6 (TSG-6) (88), indoleamine 2,3-
dioxygenase (89), and IL-6 (90) may also be involved in the
regulation of macrophage polarization to combat inflammation.

MSCs Regulate Macrophage Polarization
via Their Derived Exosomes
MSC-derived extracellular vesicles can be divided into three
main subtypes based on their biological properties and
diameters: exosomes (30–150 nm), microvesicles (100–1000
nm), and apoptotic vesicles (50–5000 nm) (91–94) (Figure 3).
Exosomes are produced through the intracellular body pathway
as follows. The cell membrane is invaginated to form early
endosomes, which interact with vesicles formed by Golgi
apparatus budding to form late endosomes. The late
July 2022 | Volume 13 | Article 928134
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endosomes further develop into multivesicular bodies (MVBs)
that contain intracellular vesicles. The MVBs fuse with the
lysosomal membrane or cell membrane and degrade, releasing
the contents (i.e., exosomes) into the extracellular environment
through exocytosis (95, 96). The process of exosome formation is
Frontiers in Immunology | www.frontiersin.org 5
shown in Figure 3. The endosomal sorting complex required for
transport plays a key role in exosome biogenesis (97). The
density of exosomes is approximately 1.13–1.19 g/ml, and
exosomes are widely found in plasma, serum, urine, BALF,
breast milk, saliva, tears, ascites, and other body fluids (98–
FIGURE 2 | MSCs attenuate ALI/ARDS through paracrine soluble factors. In the phase of ALI/ARDS, immune cells (e.g., macrophages and neutrophils) accumulate
in the alveolar space and produce large amounts of cytokines, leading to a cytokine storm that will eventually cause decreased surfactant from alveolar epithelial cells
and fluid accumulation in the alveolar space and interstitium, resulting in alveolar and pulmonary interstitial edema, and MSCs can play a key role in mitigating ALI/
ARDS through the immunomodulatory effects of paracrine soluble factors.
FIGURE 3 | Classification of extracellular vesicles and structural characteristics of exosomes. Extracellular vesicles can be classified into three main subtypes based
on biological properties and diameter size: exosomes (30-150nm), microvesicles (100-1000nm) and apoptotic bodies (50-5000nm). The surface of exosomes
contains specific protein markers such as tetraspanins (CD9, CD81, CD63), HSP60, HSP70, TSG101 and Alix. Exosomes carry proteins, lipids and miRNA that are
involved in mediating intercellular communication and regulating cellular activities, performing a variety of biological functions.
July 2022 | Volume 13 | Article 928134
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104). Exosomes express tetraspanins (CD9, CD81, CD63, and
CD82), TSG10, heat-shock proteins, and apoptosis-linked gene
2-interacting protein X (Alix) (105–107). Exosomes carry
proteins, lipids, and RNAs that mediate intercellular
communication between different cell types, participate in the
regulation of cellular activity, and perform a variety of biological
functions (Figure 3) (108–111). Moreover, exosomes derived
from MSCs can act as carriers of transported miRNA, enabling
communication with recipient cells; thus, MSC-derived
exosomes can affect disease pathogenesis along with tissue
repair and regeneration (112, 113).

MSC-derived exosomes can attenuate ALI/ARDS by
regulating macrophage polarization. Tian et al. found that
adipose MSC-derived exosomes inhibited TLR4 expression to
promote macrophage polarization and attenuate septic lung
injury in mice (114). Song et al. reported that miR-146a
expression was upregulated in MSC-derived exosomes after
IL-1b stimulation, leading to macrophage polarization into the
anti-inflammatory phenotype and increased survival in mice
with sepsis-induced lung injury (115). Bao et al. demonstrated
that MSC-derived exosomes can regulate alveolar macrophage
pro-inflammatory polarization and block the pro-inflammatory
pathway of macrophages, thereby reducing radiation-induced
lung injury in mice (116). Lastly, Li et al. reported that the
intratracheal administration of MSC-derived exosomes
decreased pro-inflammatory polarization in alveolar
macrophages while increasing anti-inflammatory polarization,
leading to reduced pulmonary edema and pulmonary
dysfunction along with decreased secretion of inflammatory
factors such as IL-1b, IL-6, and TNF-a (117).

MSCs Regulate Macrophage Polarization
Through Metabolic Reprogramming
Macrophage polarization is closely related to metabolic status.
Pro-inflammatory macrophage polarization is characterized by
enhanced glycolysis and pentose phosphate pathways and
decreased oxidat ive phosphoryla t ion . In contras t ,
anti-inflammatory macrophage polarization is characterized by
enhanced oxidative phosphorylation, and anti-inflammatory
macrophages rely on oxidative phosphorylation for energy
production (118–121). MSCs can induce anti-inflammatory
macrophage polarization and promote tissue repair through
metabolic reprogramming (122). Deng et al. found that BMSC-
derived exosomes inhibited pro-inflammatory polarization and
promoted anti-inflammatory polarization in mice alveolar
macrophages (63). The authors further demonstrated that
BMSC-derived exosomes reduced LPS-induced lung
pathological injury by inhibiting the expression of hypoxia-
inducible factor 1-a and downregulating the expressions of key
proteins of macrophage glycolysis, thereby regulating
macrophage polarization and inflammatory response.

MSCs Regulate Macrophage Polarization
Through Mitochondrial Transfer
In addition to increased lung epithelial and endothelial barrier
permeability, the inflammatory response of ALI/ARDS can also
Frontiers in Immunology | www.frontiersin.org 6
cause mitochondrial dysfunction in lung tissue (123). MSCs may
provide mitochondria to damaged cells, thereby enhancing
cellular bioenergetics and improving organ dysfunction in
ALI/ARDS and other inflammatory diseases. MSCs have been
shown to restore mitochondrial function and alveolar
bioenergetics through functional mitochondrial transfer,
promote pulmonary epithelial injury repair, and improve
alveolar capillary barrier permeability (124, 125).

Jackson et al. found that the extensive mitochondrial transfer
of MSCs to macrophages enhanced macrophage phagocytosis
and played an antibacterial role in a model of lung injury caused
by E. coli-induced pneumonia (126). The mitochondrial transfer
of MSCs plays a key role in regulating macrophage phenotype;
Morrison et al. found that MSCs promoted macrophage
oxidative phosphorylation through extracellular vesicle-
mediated mitochondrial transfer and increased the expression
of the anti-inflammatory macrophage marker CD206, thereby
converting macrophages into the anti-inflammatory phenotype
and ameliorating lung injury (73). Moreover, MSCs-derived
exosomes can donate mitochondria components, improve
macrophage mitochondria l integri ty and oxidat ive
phosphorylation levels, transform macrophages into an anti-
inflammatory phenotype, and restore the metabolic and immune
homeostasis of alveolar macrophages and reduce lung
inflammation (127).

MSCs Regulate Macrophage Polarization
Through Apoptotic and
Efferocytosis Effects
MSCs undergo necessary apoptosis and releases apoptotic
vesicles during therapeutic application, apoptotic MSCs have
unique anti-inflammatory properties and immunomodulatory
effects (128). Apoptotic umbilical cord MSCs were able to reduce
inflammatory exudates and vascular permeability in ALI rat
lungs more effectively than normal umbilical MSCs. It could
also more effectively reduce the level of pro-inflammatory factors
and could more effectively increase the expression of anti-
inflammatory cytokine IL-4, which was able to reduce the
degree of pathological damage in rats with ALI (129). In
addition, apoptotic MSCs could also exert a beneficial role in
sepsis and allergic airway inflammation (130, 131).

Macrophages and monocytes that phagocytose apoptotic cells
are capable of producing anti-inflammatory mediators (132, 133).
When graft-versus-host disease patients were infused with in
vitro-generated apoptotic MSCs, it was observed that recipient
phagocytes engulfed the apoptotic MSCs and produced
indoleamine 2,3-dioxygenase, thereby achieving an
immunosuppressive effect (134).

In an animal model of ovalibumin-induced allergic asthma,
the investigators showed that apoptotic MSCs exerted
immunosuppressive effects in the lungs and inhibited allergic
asthma to a similar extent as administration with viable MSCs
(135). Besides, apoptotic MSCs inhibited the inward flow of
eosinophils in BALF and the production of specific IL-5 and IL-
13 in ovalbumin-induced allergic asthma to a similar extent as
surviving MSCs, which indicated that the immunosuppressive
July 2022 | Volume 13 | Article 928134
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effects of MSCs in the lungs did not require MSCs to retain
survival (135). Moreover, in myelin oligodendrocyte
glycoprotein-induced experimental autoimmune encephalitis
models, BKX-MSCs (depletion of the apoptotic effectors BAK
and BAX) could not reduce circulating inflammatory monocytes
that infiltrated the central nervous system to cause tissue injury,
compared to untreated MSCs, which suggested that apoptotic
MSCs were necessary for efficient in vivo immunosuppression
and therapeutic effect (135).

The apoptotic and efferocytosis effects of MSCs could regulate
macrophage phenotype polarization. For example, a study
showed that efferocytosis of adipose-derived MSCs could alter
the macrophages phenotype toward regulatory and anti-
inflammatory phenotype (136). Another study suggested that
MSC‐derived apoptotic vesicles exerted extensive regulatory
effects on macrophages at the transcription level, which
contributed to macrophage polarization towards the anti‐
inflammation phenotype in type 2 diabetes treatment (137).
Moreover, the apoptosis and efferocytosis of MSCs could
induce the alterations of metabolic and inflammatory pathway
in alveolar macrophages, thus affecting immunosuppression and
reducing disease severity (135). Therefore, the apoptotic and
efferocytosis effects of MSCs may play a beneficial role in the
treatment of ALI/ARDS by modulating the polarization of
macrophage phenotype, and more preclinical and clinical
studies are still needed to confirm this idea in the future.

In summary, MSCs may regulate macrophage polarization
through mechanisms such as paracrine soluble factors,
exosomes, modulation of metabolic reprogramming and
mitochondrial transfer, apoptotic and efferocytosis effects
(Table 1). The regulation of macrophage polarization by MSCs
may be a potential and promising therapy for the treatment of
ALI/ARDS.
5 SIGNALING PATHWAYS ASSOCIATED
WITH THE REGULATION OF
MACROPHAGE POLARIZATION BY MSCS

Nuclear Factor-Kappa B (NF-kB)
Signaling Pathway
The NF-kB pathway is widely recognized as a pro-inflammatory
signaling pathway that participates in host immune response.
The activation of inflammatory stimuli such as LPSs leads to the
release and nuclear translocation of NF-kB (138, 139). The NF-
kB signaling pathway plays an important role in the regulation of
macrophage polarization (140, 141).

MSCs can regulate macrophage polarization through NF-kB
signaling. Gao et al. demonstrated that co-culturing LPS-induced
mice macrophages with MSCs decreased TNF-a expression and
enhanced IL-10 and Arg-1 expression; the authors also found
that the activity of the NF-kB pathway was inhibited in MSC-
treated mice macrophages (142). Wang et al. reported that MSC-
derived extracellular vesicles regulated macrophage polarization,
attenuated lung injury, and improved pulmonary function by
Frontiers in Immunology | www.frontiersin.org 7
inhibiting the activation of the NF-kB pathway (143). MSCs also
attenuated burn-induced ALI by inhibiting the activation of the
TLR4/NF-kB signaling pathway via paracrine TSG-6 and
transforming macrophages from the pro-inflammatory
phenotype to the anti-inflammatory phenotype (144). In a
multidrug-resistant Pseudomonas aeruginosa-induced ALI mice
model, MSC-derived extracellular vesicles modulated the balance
between pro-inflammatory and anti-inflammatory macrophages
by inhibiting the activity of the NF-kB signaling pathway, leading
to the downregulation of the pro-inflammatory macrophage
markers iNOS and IL-12 and the upregulation of the anti-
inflammatory macrophage markers Arg-1 and IL-10; these
effects reduced the bacterial load and inflammatory response,
resulting in decreased mice mortality (145).

Notch Signaling Pathway
Notch signaling is a conserved and important signal transduction
pathway that mediates intercellular communication and plays a
role in many cell types and different stages of development (146).
The Notch signaling pathway is closely associated with
inflammation and immune function (147). The Notch
signaling pathway also plays a key role in the activation of
macrophage polarization. The activation of the Notch signaling
pathway promotes pro-inflammatory macrophage polarization
and increases the expressions of pro-inflammatory macrophage
markers (148–150). Bai et al. found that adipose MSC-derived
extracellular vesicles regulated LPS-induced pro-inflammatory
polarization by inhibiting the Notch signaling pathway and
attenuating sepsis-induced lung injury and inflammatory cell
infiltration in lung tissue (151).

Nuclear Factor Erythroid 2-Related Factor
2 (Nrf2)/heme Oxygenase-1 (Ho-1)
Signaling Pathway
Nrf2 is a transcription factor that regulates oxidation and
inflammation to prevent oxidative damage and modulate
apoptosis. Several anti-inflammatory factors can promote the
nuclear translocation of Nrf2 and increase the expression of
downstream HO-1 protein (152). The activation of the Nrf2/Ho-
1 signaling pathway inhibits oxidative stress and inflammatory
responses in sepsis-induced organ injury (153). The Nrf2/HO-1
signaling pathway plays a crucial role in regulating macrophage
polarization (141, 154, 155). MSCs exert anti-inflammatory
effects by activating the Nrf2/HO-1 signaling pathway,
promoting anti-inflammatory macrophage polarization,
inhibiting oxidative stress, and facilitating lung injury repair,
which may be related to the expression of stanniocalcin-2, which
has antioxidant properties, in MSCs (71).

JAK/STAT Signaling Pathway
The Janus family of kinases (JAK) is composed of four main
members, JAK1, JAK2, JAK3 and Tyk2, which is non-receptor
protein tyrosine kinase by nature (156, 157). JAK family kinases
can phosphorylate signal transducers and activators of
transcription (STATs) to regulate the expression of related
genes; this pathway is called the JAK-STAT signaling pathway,
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The JAK-STAT signaling pathway can modulate cell proliferation,
differentiation, apoptosis, and immune function (158). The STAT
family includes seven members (STAT1, STAT2, STAT3, STAT4,
STAT5A, STAT5B, and STAT6) that play crucial roles in many
cellular functions (159, 160). STAT1 is the most important
mediator of the IFN-g-induced polarization of pro-inflammatory
macrophages (44, 161, 162). The inhibition of JAK/STAT1
signaling can attenuate the activation of pro-inflammatory
macrophages (163–165). STAT3 is an important transcription
factor that activates macrophages and increases inflammation
(166–168). STAT6 is a major transcription factor for IL-4- or
Frontiers in Immunology | www.frontiersin.org 8
IL-13-mediated signaling and plays an important role in anti-
inflammatory macrophage polarization (169). MSCs can
modulate macrophage polarization by regulating the JAK/STAT
pathway to reduce ulcerative colitis and obesity-associated
metabolic disorders (170, 171). MSCs also play an important
role in improving ALI/ARDS by regulating macrophage
polarization through STAT signaling. Xu et al. found that UC-
MSCs promoted anti-inflammatory polarization and T-regulatory
cell differentiation to suppress inflammatory responses and reduce
LPS-stimulated lung injury (50). Meanwhile, the authors found
that transfection with surfactant protein B enhanced the repair of
TABLE 1 | The ways MSCs regulate macrophage polarization.

Authors Publication
time

Sources
of MSCs

Regulation of
macrophage
polarization

Results Reference

Wakayama
H et al.

2015 Dental
pulp

Paracrine
soluble factors

Dental pulp stem cells-secreted factors could attenuate bleomycin-induced pro-inflammatory
response and induce anti-inflammatory M2-like lung macrophage.

(82)

Chen et al. 2018 Dental
follicle

Paracrine
soluble factors:
TGF-b3 and
TSP-1

Dental follicle stem cells-secreted TGF-b3 and TSP-1 could not only attenuate histopathological
damage and pulmonary permeability, but also downregulate pro-inflammatory cytokines,
upregulate anti-inflammatory cytokine, and reprogram macrophages into the anti-inflammatory
phenotype.

(72)

Kwon J H
et al.

2019 Umbilical
cord
blood

Paracrine
soluble factors:
decorin

Decorin secreted by MSCs is a key modulator of macrophage polarization to regulate anti-
inflammatory reactions, thus playing a protective effect on hyperoxia induced lung injury.

(83)

Kim M et al. 2020 Umbilical
cord
blood

Paracrine
soluble factors:
PTX3

MSCs-secreted PTX3 could reinforce the anti-inflammatory macrophage marker, and exert
therapeutic effects in a neonatal hyperoxic lung injury

(84)

Ionescu L
et al.

2012 Bone
marrow

Paracrine
soluble factors:
insulin-like
growth factor.

MSCs-secreted soluble factors could promote the resolution of LPS-induced lung injury by
attenuating lung inflammation and promoting an anti-inflammatory macrophage phenotype

(85)

Németh K
et al.

2009 Bone
marrow

Paracrine
soluble factors:
Prostaglandin
E2

MSCs could reprogram macrophages by releasing prostaglandin E2 and may be effective in
treating sepsis

(86)

Tian et al. 2021 Adipose MSCs-derived
exosomal miR-
16-5p

Exosomal miR-16-5p from adipose MSCs could promote macrophage polarization and
attenuate septic lung injury in mice via suppressing TLR4

(114)

Song et al. 2017 Umbilical
cord

MSCs-derived
exosomal miR-
146a

IL-1b pretreatment effectively enhanced the immunomodulatory properties of MSCs and
promoted alternative macrophage polarization through exosome-mediated transfer of miR-146a

(115)

Bao et al. 2020 Bone
marrow

MSCs-derived
exosomal miR-
21

MSCs could block pro-inflammatory pathway of macrophage through miR-21 overexpression,
thus could be a potential therapeutic strategy for radiation-induced lung injury.

(116)

Li et al. 2019 Bone
marrow

MSCs-derived
exosomal miR-
21-5p

MSCs-exosomal miR-21-5p potently reduced oxidative stress-induced apoptosis while partially
reducing the pro-inflammatory, “M1” polarization of alveolar macrophage induced by hypoxia/
reoxygenation.

(117)

Deng et al. 2020 Bone
marrow

Metabolic
reprogramming

Exosomes secreted by MSCs modulated LPS-treated macrophage polarization by inhibiting
cellular glycolysis and provided novel strategies for the prevention and treatment of LPS-
induced ARDS.

(63)

Morrison TJ
et al.

2017 Bone
marrow

Mitochondrial
transfer

MSCs promoted an anti-inflammatory and highly phagocytic macrophage phenotype through
EV-mediated mitochondrial transfer, thus protecting against endotoxin induced lung injury.

(73)

Xia et al. 2022 Adipose Mitochondrial
transfer

MSCs-exosomes can effectively donate mitochondria component improved macrophages
mitochondrial integrity and oxidative phosphorylation level, leading to the resumption of
metabolic and immune homeostasis of macrophages and mitigating lung inflammatory
pathology

(127)

Ghahremani
Piraghaj M
et al.

2018 Adipose Efferocytosis of
MSCs

Efferocytosis of AD-MSCs can alter the macrophages phenotype toward regulatory and anti-
inflammatory phenotype.

(136)

Zheng et al. 2021 Bone
marrow

MSCs-derived
apoptotic
vesicles

MSCs-derived apoptotic vesicles could induce macrophage reprogramming at the transcription
level in an efferocytosis-dependent manner, leading to inhibition of macrophage accumulation
and transformation of macrophages towards an anti-inflammation phenotype, thus alleviating
type 2 diabetes phenotypes including glucose intolerance and insulin resistance.

(137)
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ALI/ARDS by MSCs, which may be related to the regulation of
STAT3 signaling (50).
6 CONCLUSIONS

In summary, MSCs can regulate macrophage polarization via the
paracrine secretion of soluble factors, exosomes, metabolic
reprogramming, and mitochondrial transfer to reduce lung
inflammation and promote the repair of damaged lung tissue in
ALI/ARDS. The regulation of macrophage polarization may
become a therapeutic target for ALI/ARDS, thereby providing a
new research direction for ALI/ARDS treatment. However, there
are still some unresolved issues. For example, the signaling
pathways involved in the modulation of macrophage polarization
by MSCs are not fully understood, and it is not clear how to
prevent lung fibrosis caused by excessive M2 macrophage
polarization. Therefore, the treatment of lung injury via the
regulation of macrophage polarization requires further study to
lay the foundation for clinical application.

In addition, at present, severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) infection has led to a global
pandemic, MSCs therapy seems to be an alternative option to
improve inflammation, repair lung tissue damage and prevent
long-term pulmonary dysfunction in patients with COVID-19,
and cell therapy with reprogrammed macrophages for
COVID-19-induced-ARDS may be successful. For example,
Frontiers in Immunology | www.frontiersin.org 9
shifting macrophage polarization from a pro-inflammatory
phenotype to an anti-inflammatory phenotype could attenuate
the production of pro-inflammatory cytokines, thereby
preventing cytokine storm and reducing mortality in patients
with COVID-19.
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