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Abstract

Fatty acid binding protein 1 (FABP1) is an intracellular protein responsible for transportation of 

long chain fatty acids. Aside from its functions in lipid metabolism and cellular differentiation, 

FABP1 also plays a role in inflammation through its interaction with peroxisome proliferator 

activated receptors. Previously, we compared expression of colonic epithelium genes in a subset of 

microsatellite instable (MSI) colorectal carcinomas (medullary carcinomas) to normal colonic 

mucosa and found that FABP1 expression was markedly decreased in the tumors. Further analysis 

of RNA expression in the colorectal subtypes and The Cancer Genome Atlas dataset found that 

FABP1 expression is decreased in the CMS1 subset of colorectal carcinomas, which is 

characterized by microsatellite instability. As microsatellite instable colorectal carcinomas are 

known for their robust immune response, we then aimed to link FABP1 to the immune 

microenvironment of microsatellite instable carcinomas. To confirm the gene expression results, 

we performed immunohistochemical analysis of a cohort of colorectal carcinomas. FABP1 was 

preferentially lost in microsatellite instable carcinomas (123/133, 93%) compared to microsatellite 

stable carcinomas (240/562, 43%, p <0.0001). In addition, higher numbers of tumor infiltrating 

lymphocytes were present in tumors with loss of FABP1 (p<0.0001). Decreased expression of the 

fatty acid storage and glucose regulator, peroxisome proliferator activated receptor γ (PPARγ), 

was associated with loss of FABP1 (p<0.0001). Colorectal cancer cell lines treated with interferon 

γ exhibited decreased expression of FABP1. FABP1 expression was partially recovered with 

treatment of the cell lines with rosiglitazone, a PPARγ agonist. This study demonstrated that loss 

of FABP1 expression is associated with microsatellite instable carcinomas and that interferon γ 
stimulation plays a role in this process via its interaction with PPARγ.

Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, 
subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms

Correspondence: Murray B Resnick, MD, PhD, Department of Pathology and Laboratory Medicine, Rhode Island Hospital and 
Alpert Medical School of Brown University, 593 Eddy Street, Providence, RI 02903, USA. mresnick@lifespan.org. 

Disclosure/conflict of interest
The authors declare no conflict of interest.

HHS Public Access
Author manuscript
Mod Pathol. Author manuscript; available in PMC 2017 March 30.

Published in final edited form as:
Mod Pathol. 2017 January ; 30(1): 123–133. doi:10.1038/modpathol.2016.170.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Introduction

Colorectal carcinoma is a heterogeneous disease with multiple molecular pathways leading 

to tumorigenesis, many of which have prognostic and predictive significance. In routine 

practice colorectal carcinomas are assessed for microsatellite instability, which is 

characterized by deficiency of mismatch repair proteins and a hypermutator phenotype. 

Microsatellite instable (MSI) carcinomas typically have a better prognosis than 

microsatellite stable (MSS) carcinomas and are characterized by a robust immune 

microenvironment with increased tumor infiltrating lymphocytes and increased 

inflammatory cytokines (including interferon γ) (1–3) New classification systems in which 

MSI status plays a prominent role have been proposed to classify colorectal carcinomas 

based on gene-expression analysis in order to better predict prognosis and select patients for 

adjuvant therapy (3–5).

We initially aimed to examine genes differentially expressed in a subset of MSI tumors 

(medullary carcinomas) and found expression of the fatty acid binding protein 1 gene 

(FABP1) to be significantly decreased as compared to adjacent normal mucosa (6). FABP1, 

also called liver fatty acid binding protein (L-FABP) is an intracellular protein important in 

the transport of long chain fatty acids. FABP1 is a normal component of hepatocytes, 

enterocytes of the colon and small bowel, and is present to a lesser degree in tubular cells of 

the kidney and alveolar cells in the lung (7). It has been shown to be a marker of 

differentiation of colon enterocytes (8). The FABP family is involved in lipid metabolism, 

but also plays a role in the regulation of inflammation and cellular metabolism via 

interaction with peroxisome proliferator-activated receptors (PPARs) (9–14). FABP1 has 

been shown to directly interact with PPARγ in the nucleus to activate its downstream 

transcriptional targets, many of which are involved in cellular differentiation, apoptosis, and 

anti-inflammatory response (15–16). In addition to activating PPARγ, FABP1 is also a 

downstream transcriptional target of PPARγ, suggesting a delicate feedback loop involving 

inflammation and cellular proliferation (7,13,15).

FABP1 and PPARγ have been studied in various carcinomas including colorectal carcinoma. 

Loss of PPARγ in colorectal carcinoma has been described, with conflicting prognostic 

significance (17–19). FABP1 has been shown to be up-regulated in some carcinomas, such 

as carcinomas of the prostate and pancreas, while being lost in others (20,21). Loss of 

FABP1 has been described in colorectal carcinomas, though with conflicting prognostic data 

(5,20,22,23). However, FABP1 expression has not been evaluated with respect to MSI status. 

In this study we further characterize FABP1 expression in MSS vs MSI tumors and associate 

its expression with clinicopathologic features and PPARγ expression. We also performed in 

vitro studies to better clarify the relationship between FABP1 expression, immune pathways, 

and PPARγ.

Materials and Methods

Patients and samples

Archive formalin fixed paraffin embedded (FFPE) samples of colorectal carcinoma were 

collected by the Royal North Shore Hospital, St. Leonards Australia. Sample selection has 

Wood et al. Page 2

Mod Pathol. Author manuscript; available in PMC 2017 March 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



been described previously and is summarized here (24). Briefly, the computerized colorectal 

specimen database maintained by the Department of Anatomical Pathology at the Royal 

North Shore Hospital, Sydney, was searched to identify all cases of colorectal carcinomas 

that underwent non-endoluminal resection from 2007 to 2009. Cases other than colorectal 

adenocarcinoma and its variants were excluded, as were those carcinomas arising in the 

appendix. This database was current with all-cause survival data and all cases were staged 

according to the American Joint Committee on Cancer, 7th edition. A total of 722 colorectal 

carcinomas were analyzed: 576 MSS carcinomas and 133 MSI carcinomas (including 25 

medullary carcinomas).

All-cause survival data in the database were derived from examination of hospital medical 

and pathology records, medical records from the surgeons’ private rooms, and publically 

available death notices. Survival was calculated from the date of surgical resection to the last 

known date of contact or notification of death.

Tissue microarrays were constructed of two 1-mm cores from all colorectal carcinomas with 

available paraffin-embedded tissue from 2007–2009. Only adenocarcinomas were included 

in the study; neuroendocrine carcinomas and other malignancies were excluded.

Gene Expression Analysis

The medullary vs. normal tumor data was previously published (6) and the data are available 

in Gene Expression Omnibus (GSE76855). We evaluated the signals for the FABP family. 

Normalized HiSeq RNA-seq data for colorectal tumors from The Cancer Genome Atlas 

were downloaded from Firebrowse in September 2015 (6). Clinical data was downloaded 

from the The Cancer Genome Atlas data portal (https://tcga.data.nci.gov/tcga/

dataAccessMatrix.htm, download in September 2015). Molecular subtypes (microsatellite 

instable-H, microsatellite instable-L and microsatellite stable) were acquired in The Cancer 

Genome Atlas clinical data. The authors’ annotation for the proposed molecular subtypes by 

Guinney et al. was used (4). Functional analyses were performed using Gene Set Enrichment 

Analysis (25). Fold change, t-tests, and multiple hypothesis tests were calculated in R 

version3.1.1.

Immunohistochemistry

Table 1 contains a summary of the immunohistochemical stains used. Briefly, stains for each 

antigen were performed on 5 μm paraffin sections of each tissue microarray masterblock. 

The panel included antibodies against CD3 (rabbit polyclonal, RTU, Dako, Carpinteria, CA), 

FABP1 (mouse monoclonal, 1:1000, Abcam, Cambridge, MA), and PPARγ (rabbit 

polyclonal, 1:50, Abcam). The stains were run on the Dako autostainer using the Envision 

Plus kit (Dako). Slides were counterstained with hematoxylin, dehydrated and coverslipped. 

Positive controls included normal colon (PPAR), normal tonsil (CD3), and normal liver 

(FABP).

Immunohistochemical assessment and scoring

Immunohistochemical stains for FABP1 and PPARγ were evaluated in tumor epithelium. 

CD3 was used to evaluate numbers of intratumoral infiltrating lymphocytes. For FABP1 and 
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PPARγ, epithelial staining was considered positive in cases with >10% moderate-to-intense 

staining in tumor epithelium. Staining was scored as negative for tumors with <10% 

moderate-to-intense staining. Tumors with less than moderate staining (including absence of 

staining) were included in the negative staining group. These cutoffs were determined and 

scored by a single observer (SW) to minimize interobserver variability. Intraepithelial 

lymphocytes positive for CD3 were manually counted and the counts per core were averaged 

for each tumor.

Cell culture

The human epithelial colorectal adenocarcinoma cell lines HT-29 (HTB-38) and Colo 205 

(CCL-222) were obtained from American Type Culture Collection (ATCC, Manassas, VA, 

USA). Cells were maintained in RPMI-1640 medium (Life Technologies) containing 2g/L 

D-Glucose and 2 mM glutamine and supplemented with 10% (v/v) fetal bovine serum, 100 

U/mL penicillin and 100 μg/mL streptomycin. All cells were grown at 37 °C and 5 % CO2. 

Cells were treated for 24 hours with 0.02% DMSO and 1% BSA, IFNγ (10ng/ml), 

rosiglitazone (10μM), or the combination of both. Interferon γ (IFNγ) and rosiglitazone 

were purchased from Sigma-Aldrich, Saint Louis, MO.

Quantitative real-time polymerase chain reaction

Total RNA was isolated from cells using RNeasy mini-kit (Qiagen, Valencia, CA) following 

the manufacturer’s instructions. The total RNA concentration and purity were determined 

using Nano drop spectrophotometer at 260 nm absorbance. Reverse transcription was 

conducted with Maxima First Strand cDNA Synthesis Kit for RT-qPCR (ThermoFisher 

Scientific, Houston, TX) on 1 μg of total RNA in a final reaction volume of 20 μL according 

to the manufacturer’s instructions. Quantitative real-time polymerase chain reaction (qRT-

PCR) was conducted in a final volume of 25 μL using SYBR Green/ROX qPCR Master Mix 

(2X) (ThermoFisher Scientific) for absolute gene quantification. All reactions were 

performed in duplicates. Values were normalized to actin and relative levels of mRNA 

expression were calculated by the 2−ΔΔCT method. The primer sequences used in this study 

are listed in Supplemental Table 1. Data are represented as mean or mean of log10 values ± 

standard deviation of 3 biological replicates.

Statistical Analysis

The chi-squared analysis was used to assess the immunohistochemical staining scores. One 

way variance analysis (ANOVA) and t-test were used for comparing lymphocyte counts 

among tumor types and between other characteristics. Cox proportional hazard analysis was 

used to evaluate the risk ratios in univariate and multivariate analysis. All tests were 2-sided 

with 0.05 as the threshold P value to be considered statistically significant. All analyses were 

performed using the SAS software, JMP Pro version 11.1 (SAS, Cary, NC, USA).

Results

Gene Expression Results

Of the 32 670 genes represented on the microarrays, 7429 were differentially expressed (p 

<0.05) between medullary carcinoma and adjacent histologically normal colonic mucosa in 
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all six cases. FABP1 was decreased in medullary carcinoma vs normal colonic epithelium by 

55 fold (p <0.001, FDR = 0.7). PPARγ was decreased by 2 fold (p = 0.03, FDR = 0.2).

Amongst all tumors, FABP1 expression was associated with PPARγ expression in the Hiseq 

The Cancer Genome Atlas dataset (Rho 0.47, p <0.0001). FABP1 and PPARγ expression 

were also associated in MSI and MSS subgroups (Rho 0.47 and 0.48, respectively, p 

<0.0001 for both subgroups). PPARα expression was not statistically associated with 

FABP1 expression in colon carcinomas in The Cancer Genome Atlas dataset (p = 0.2 for all 

tumors, p = 0.6 for MSS tumors, and p = 0.1 for MSI tumors).

Consensus Molecular Subtype comparison

Four consensus molecular subtypes of colorectal carcinomas were recently proposed (4). We 

assessed the expression of FABP1 and PPARγ in these subtypes in The Cancer Genome 

Atlas RNA-seq data. Two-hundred thirty three colorectal carcinomas with known CMS 

group classification were compared for FABP1 and PPARγ expression. The CMS1 

carcinomas had decreased FABP1 and PPARγ expression when compared to the other CMS 

groups (CMS2, CMS3, CMS4) and carcinomas of unknown CMS group (Figure 1). CMS1 

is enriched for MSI cases and high immune cell infiltration. These observations show that 

expression of FABP1 and PPARγ is decreased in tumors with MSI.

Clinicopathologic features

The clinicopathologic features of patients and their tumors included in the tissue microarray 

are summarized in Table 2. Tumor site and grade were unavailable for 2 and 3 patients, 

respectively. Tumor size was unavailable for two patients. The average age at time of surgery 

was 72 years (77 years for patients with MSI tumors and 71 year for MSS tumors). A 

majority of the patients with MSI tumors were female (72% female) compared to MSS 

tumors (48% female, p <0.0001), and MSI tumors were more often located in the right colon 

(69% right sided) when compared to MSS tumors (31% right sided, p <0.0001). MSI tumors 

presented at a lower stage (70% in stage I–II) than MSS tumors (47% stage I–II, p <0.0001), 

though on average MSI tumors were larger in size (5.1 cm vs 4.2 cm, p <0.0001). MSI 

tumors were less likely to have lymphovascular invasion (present in 37% of MSI vs 49% of 

MSS tumors, p 0.01). Lymph node metastasis was more common in MSS tumors (49% vs 

29%, p < 0.0001).

FABP1 protein expression and correlation with other clinicopathologic features

Based on the gene expression results which found FABP1 to be decreased in medullary 

carcinomas (a subset of microsatellite instable carcinomas), we decided to test a panel of 

colorectal carcinomas for protein FABP1 expression via immunohistochemistry. FABP1 

stained in a cytoplasmic and nuclear pattern in tumor and normal colorectal epithelial cells 

(Figure 2). Staining in normal epithelium was confined to the surface epithelial cells, similar 

to previously reported staining patterns (11). There was loss of expression of FABP1 in 52% 

of all tumors tested (Figure 3). The majority of MSI tumors showed loss of FABP1 (93%) 

while only 43% of MSS tumors had loss of FABP1 staining (p<0.0001, Figure 3). FABP1 

was lost in 96% of medullary carcinomas, compared to 59% of non-medullary carcinomas 

(including non-medullary MSI carcinomas and MSS carcinomas, p = 0.0003)
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Loss of FABP1 expression in all colorectal carcinomas associated significantly with older 

age (p<0.0001), right sided location of tumor (p<0.0001), and higher grade (p<0.0001, Table 

3). Within the MSI tumors, loss of FABP1 expression associated significantly with right 

sided location (p = 0.001). Within the MSS tumors, loss of FAPB1 expression associated 

significantly with older age (p = 0.003, Table 3).

PPARγ expression and correlation with other clinicopathologic features

We hypothesized that FABP1 loss may be linked to microsatellite instable tumors via 

inflammatory pathways that include the PPARγ protein (9–13). Therefore, we tested for 

PPARγ expression in our colorectal carcinoma cohort via immunohistochemistry. PPARγ 
stained in a nuclear pattern in tumor and normal colorectal epithelial cells. Loss of PPARγ 
was seen in 11% of all tumors and was more common in MSI over MSS tumors (22% and 

8.8% respectively, p <0.0001) (Figure 3).

Loss of PPARγ in all colorectal carcinomas was associated with right sided location (p = 

0.03) and lower stage (p = 0.04, Table 3). Within the MSI and MSS tumors, PPARγ did not 

significantly associate with clinicopathologic features.

CD3 tumor infiltrating lymphocytes and correlation with other clinicopathologic features

Because our hypothesis linked FABP1 loss to MSI carcinomas via immune pathways, we 

decided to evaluate the number of tumor infiltrating lymphocytes in our cohort. CD3 

immunohistochemistry was utilized to count intratumoral lymphocytes. As expected, MSI 

tumors demonstrated higher average tumor infiltrating lymphocytes than MSS tumors (151 

and 35 respectively, p <0.0001) (Figure 5).

Among all colorectal carcinomas, higher numbers of tumor infiltrating lymphocytes 

associated significantly with right-sided location (p<0.0001), absence of lymphovascular 

invasion (p = 0.04), lower stage (p<0.0001), and high grade (p<0.0001, Table 4).

Within MSI tumors, higher tumor infiltrating lymphocytes associated significantly with high 

grade (p = 0.02). In MSS tumors, higher numbers of tumor infiltrating lymphocytes 

associated significantly with absence of lymphovascular invasion (p = 0.0005), and lower 

stage (p<0.0001).

Correlation of FABP1 with PPARγ and tumor infiltrating lymphocytes

We hypothesized that loss of FABP1 was due to increased inflammation associated with 

MSI tumors. We therefore expected FABP1 to be decreased in tumors with increased tumor 

infiltrating lymphocytes. As a part of the proposed pathway, we expected decreased FABP1 

to be associated with decreased PPARγ. Our data showed that in all colorectal carcinomas, 

loss of expression of FABP1 significantly associated with loss of PPARγ (p<0.0001) and 

increased tumor infiltrating lymphocytes (p<0.0001, Figures 4, 5).

Within MSI colorectal carcinomas, loss of FABP1 expression significantly associated with 

loss of PPARγ (p = 0.03). Though not statistically significant, MSI tumors with loss of 

FABP1 showed increased tumor infiltrating lymphocytes (74 in FABP positive MSI tumors 

vs 157 in FABP negative MSI tumors, p = 0.2). Likely, the lack of statistical significance is 
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due to the low numbers of MSI tumors that are also FABP positive. Within MSS colorectal 

carcinomas, loss of FABP1 expression significantly associated with loss of PPARγ (p = 

0.02) expression.

IFNγ down-regulates and stimulation of PPARγ up-regulates FABP1 Expression

Increased tumor infiltrating lymphocytes in MSI tumors is associated with the IFNγ 
pathway (2). In addition, interferon gamma response was significantly associated with 

FABP1 expression in The Cancer Genome Atlas database colorectal tumor data (6). To test 

if interferon gamma could repress FABP1 expression, two colorectal cancer cell lines were 

treated with IFNγ. RT-qPCR analysis of the RNA demonstrated a significant decrease in 

FABP1 mRNA expression in both lines. Rosiglitazone, a PPARγ agonist, reversed this 

inhibition and up-regulated FABP1 expression. IDO and FAS, known targets of IFNγ, 

served as positive controls (26,27) (Figure 6). IFNγ did not consistently induce an 

expression change in PPARγ in either cell line.

Survival data

FABP1 and PPARγ expression did not correlate with survival. In a multivariate analysis, 

higher stage (HR = 2.1, 95% CI 1.6–2.9, p = <0.0001) and high grade (HR = 1.8, 95% CI 

1.2–2.4, p = 0.002) were associated with worse survival while the presence of microsatellite 

instability was associated with improved survival (HR = 0.5, 95% CI 0.3–0.8, p = 0.005), 

consistent with past findings (28).

Discussion

Colorectal carcinomas are a biologically diverse group of carcinomas with microsatellite 

instability playing an important prognostic and predictive role. MSI tumors exhibit improved 

survival over MSS carcinomas, which is thought to be related to the increased inflammatory 

response to these tumors (2,28). Recently, gene-expression studies have proposed molecular 

classifications of colorectal carcinomas in order to better predict prognosis and response to 

adjuvant therapy. However, these multi-gene classification systems are currently not well 

suited for clinical practice (3,4). Single biomarkers or small panels of biomarkers are better 

suited for clinical utility, if they exist.

In a previous study, we examined a subset of microsatellite instable colorectal carcinomas 

(medullary carcinomas) to identify genes that were differentially expressed when compared 

to normal colon epithelium. Many immmunoregulatory genes activated by IFNγ were 

upregulated in medullary colorectal carcinomas (6). Of the genes that were differentially 

expressed or lost in medullary carcinoma, FABP1 was shown to be decreased by 55 fold 

when compared to normal colon epithelium of the same patient. In this study, we examined a 

larger cohort of colorectal carcinomas and showed a correlation between decreased FABP1 

expression (via immunohistochemistry) and MSI tumors. This finding was supported by the 

finding decreased FABP1 expression in the CMS1 subgroup of colorectal carcinomas, which 

is characterized by microsatellite instability. Since loss of FABP1 is associated with MSI 

colorectal carcinomas, it is not surprising that we also demonstrated decreased FABP1 to be 

associated with increased tumor infiltrating lymphocytes in all cases (30–32). A similar 
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trend was noted amongst MSI tumors, though this result was not statistically significant, 

likely due to the low numbers of FABP1 positive MSI cases. Interestingly, there was no 

correlation between increased tumor lymphocytes with FABP1 loss in the MSS cases. 

Although it is not clear whether the increase in tumor infiltrating lymphocytes are directly 

associated with decreased FABP1 expression in the MSI population, one possible 

mechanism involves interferon gamma (IFNγ) and the PPARγ pathway as it is well 

described that tumor infiltrating lymphocytes in MSI colorectal carcinomas are associated 

with upregulation of the IFNγ pathway (2,6). IFNγ expression is increased in MSI tumors 

when compared to MSS tumors (2). The loss of FABP1 in the MSS tumors likely does not 

share the same inflammatory pathway.

FABP1 has been linked to the regulation of inflammatory states via its interaction with 

PPARs, including PPARα and PPARγ (9–13). PPARs are nuclear transcription factors 

whose downstream effects manage lipid metabolism, inflammation, and cellular metabolism 

(13,16,32–35). While FABP1 has been shown to interact with both PPARα and PPARγ in 

colorectal epithelium, PPARα expression was not statistically associated with FABP1 
expression in colon carcinomas in The Cancer Genome Atlas dataset, whereas PPARγ 
expression was associated with FABP1 expression. Also, prior studies have linked 

inactivation of PPARγ with high inflammatory states (34). Therefore, we concentrated on 

the association of FABP1 and PPARγ.

Because of its role in cellular metabolism including apoptosis, cellular proliferation, and 

angiogenesis, PPARγ has been of interest in many carcinomas (17–19,22). Activation of 

PPARγ appears to promote apoptosis and cellular differentiation, inhibit angiogenesis, and 

decrease cellular proliferation (17). Based on these properties it would seem that increased 

PPARγ and/or PPARγ agonists would have anti-tumor effects. However, multiple studies 

have shown the opposite: increased PPARγ/activation of PPARγ actually promote 

carcinogenesis. Two studies involving mice with germ-line APC mutations have shown that 

mice treated with PPARγ agonists develop more colorectal carcinomas than those without 

PPARγ agonists. Similarly, mice modified with high levels of PPARγ in breast tissue are 

more likely to develop breast carcinoma (15,18,36,37). There have been conflicting results 

in retrospective studies of PPARγ in human colorectal carcinoma. At least one study has 

shown an improved survival in patients with PPARγ positive colorectal carcinomas in 

multivariate analysis (18), while others have shown no association with prognosis (36,37). 

PPARγ has been studied in other carcinomas, also with conflicting results (15). It may be 

that there is a balance between PPARγ’s anti-proliferative effects and its anti-inflammatory 

effects, and the tumor microenvironment may play a role in establishing PPARγ in a tumor 

suppressor or oncogenic role.

Not only does activation of PPARγ have downstream effects on inflammation, but it is also 

negatively regulated by pro-inflammatory cytokines (specifically IFNγ and TNFα). PPARγ 
is bound to RXR in the nucleus in the absence of ligand. The PPARγ-RXR heterodimer is 

not transcriptionally active, and instead acts as an inhibitor when bound to DNA. In the 

presence of IFNγ and TNFα, PPARγ’s effects are inhibited both by decreased expression of 

PPARγ and by stabilization of the PPARγ-RXR heterodimer (33). FABP1 is an important 

part of the PPARγ pathway. FABP1 (with attached fatty acid ligand) has been localized to 
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the nucleus, where it has been shown to directly interact with PPARs (including PPARγ) 

(14,16). This in turn activates PPARγ and results in expression of downstream transcription 

targets (including anti-proliferation and anti-inflammatory genes). Not only can FABP1 

activate PPARγ, there is also evidence that one of the downstream targets of PPARγ is 

actually FABP1 itself, forming a feedback loop (7,13). In vivo, this feedback loop is thought 

to decrease transcription of FABP1 when its ligands (long chain fatty acids) are scarce, and 

increase FABP1 during an abundance of ligand. Disruption of this balance (via a robust 

immune response/increased IFNγ) may lead constitutively inactive PPARγ and decreased 

FABP1.

We proposed that the high immune response environment of MSI colorectal carcinomas may 

inhibit PPARγ via production of IFNγ which leads to decreased transcription of FABP1. 

The decreased FABP1 further decreases activation of PPARγ through the feedback loop 

described above. Via immunohistochemistry, we showed that PPARγ expression is more 

likely to be decreased in colorectal carcinomas with decreased FABP1. Interestingly, PPARγ 
loss did not appear to associate with increased tumor infiltrating lymphocytes. However, 

IFNγ inhibits PPARγ’s transcriptional function via multiple mechanisms, including 

inactivation (33); therefore it is possible that the PPARγ present in the tumors is inactive. To 

further corroborate the link between IFNγ, PPARγ, and FABP1 we performed in-vitro 

studies using FABP1-expressing colorectal carcinoma cell lines. Cells treated with IFNγ had 

decreased FABP1 expression when compared to the control. Though this suggests decreased 

FABP1 is due to the presence of IFNγ, this does not prove that the pathway involves 

PPARγ. In fact, PPARγ was not decreased in the colorectal carcinoma cell lines when 

treated with IFNγ. However, PPARγ has been shown to be present but inactive in the 

presence of IFNγ in macrophages (33). To test our hypothesis that PPARγ plays a role in 

this pathway, we treated the colorectal cell line with a PPARγ antagonist, rosiglitazone. In 

the cells treated with IFNγ and rosiglitazone, there was a modest recovery of FABP1 
expression (as compared to cells treated with IFNγ alone). These results support the 

hypothesis that the immune microenvironment of MSI tumors disrupts the PPARγ/FABP1 

feedback loop, leading to decreased PPARγ function and loss of FABP1 expression.

Based on FABP1’s downstream effects including cellular differentiation and anti-

proliferation (via its interaction with PPARγ), loss of FABP1 in colorectal carcinomas 

would be expected to result in de-differentiated tumors and worse prognosis. On the other 

hand, FABP1 has also been shown to have antioxidant properties by reducing reactive 

oxygen species (7,38). Thus, decreased FABP1 could lead to increased reactive oxygen 

species and increased tumor cell death. Prior studies have searched for a link between 

FABP1 and prognosis, though results have been conflicting. Yamazaki et al showed loss of 

FABP1 in liver metastasis from colorectal carcinomas to be associated with decreased 

survival (23) while Lyall et al found that decreased FABP1 yielded better survival. However, 

in their same data set, their “very poor prognosis” subgroup of colorectal carcinomas was 

characterized by low FABP1 expression (5). In another study, loss of FABP1 in colorectal 

carcinomas was associated with increased lymph node metastasis (22). FABP1 expression is 

particularly low in the CMS1 group in the recently proposed molecular subtypes, and CMS1 

is among the better prognostic groups, compared to the clearly poor prognostic group 

CMS4. The link between FABP1 and microsatellite instability (through inflammatory 
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cytokines and PPARγ) may help explain the improved prognosis of MSI colorectal 

carcinomas via FABP1’s antioxidant properties.

FABP1 expression in colorectal carcinomas did not appear to correlate with survival in our 

cohort, however, there were some limitations of our survival data. Many patients had only a 

short length of follow-up after surgery, and patient disease status (alive without disease, alive 

with disease, deceased) was unavailable for many. We therefore used date of last follow up 

as an end point for patients with unknown data. This likely inhibited the strength of our 

survival data.

In conclusion, we found that FABP1 is decreased in MSI colorectal carcinomas opposed to 

MSS colorectal carcinomas. We provide evidence that FAPB1 loss is tied to inhibition of 

PPARγ by the immune microenvironment of MSI colorectal carcinomas. Though we were 

unable to relate FABP1 expression to prognostic significance in our cohort, we present a 

possible link between FABP1 expression and MSI colon cancers via a robust immune 

response and PPARγ. This study provides additional evidence to the complex relationship 

between metabolic and immune pathways in carcinogenesis.
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Figure 1. 
FABP1 and PPARγ expression in The Cancer Genome Atlas HiSeq colorectal carcinoma 

data was distributed across the pre-assigned classification of colorectal carcinoma subtypes 

according to Guinney et al (3). FABP1 and PPARγ show decreased expression in the 

microsatellite instability immune subgroup (CMS1) when compared to the other categories. 

UNK = unknown subtype
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Figure 2. 
Representative immunohistochemistry staining of normal colonic epithelium, positive 

staining colorectal carcinomas, and negative staining colorectal carcinomas for FABP1 and 

PPARγ. Left column, normal colonic epithelium; middle column, negative staining pattern; 

right column, positive staining pattern.
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Figure 3. 
FABP1 expression is decreased in MSI colorectal carcinomas over MSS colorectal 

carcinomas. Overall expression and paired data for immunohistochemistry expression results 

in MSI compared to MSS colorectal carcinomas. **statistically highly significant as p < 

0.001.
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Figure 4. 
Comparison of staining patterns in colorectal carcinomas. Percentage of PPARγ negative 

(PPARg −) and PPARγ positive (PPARg +) staining in tumors as compared to their FABP 

staining (in all cases, MSI cases, and MSS cases). **statistically highly significant as p < 

0.05.
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Figure 5. 
Average number of tumor infiltrating lymphocytes in colorectal carcinomas compared to 

their staining pattern in all cases, MSS cases, and MSI cases. **statistically significant as p 

< 0.05.
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Figure 6. 
Interferon γ inhibits FABP1 expression in colorectal cancer cell lines. HT-29 and Colo205 

cells were treated for 24 hours with vehicle or IFNγ (10ng/ml), or rosiglitazone (10μM), or 

with the combination of both as indicated. (A): FABP1 mRNA expression is negatively 

correlated with interferon gamma response. A rank list of the Pearson correlated transcripts 

in the colorectal carcinoma data from The Cancer Genome Atlas was submitted to Gene Set 

Enrichment Analysis as a pre-rank file. The Interferon Gamma Response Hallmark was the 

top ranked negatively associated gene set. The FABP1 (B) and controls (C,D) mRNA 

expression level were determined by qRT-PCR upon treatment. The results are expressed as 

a fold change relative to vehicle treated cells. *, statistically significant p < 0.05 and 
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**statistically highly significant as p < 0.001. Error bars represent standard deviation. 

Columns represent mean of three experiments.
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