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Abstract
Background: Antibody-directed enzyme prodrug therapy (ADEPT) is a promising new approach
to deliver anticancer drugs selectively to tumor cells. In this approach, an enzyme is conjugated to
a tumor-specific antibody. The antibody selectively localizes the enzyme to the tumor cell surface.
Subsequent administration of a prodrug substrate of the enzyme leads to the enzyme-catalyzed
release of the free drug at the tumor site. The free drug will destroy the tumor cells selectively,
thus, reducing side effects.

Results: A CC-1065 analogue was conjugated to a cephalosporin affording prodrug 2. The
prodrug and its corresponding free drug, 1, have IC50 values of 0.9 and 0.09 nM, respectively,
against U937 leukemia cells in vitro.

Conclusions: For the first time, a prodrug comprised of a cephalosporin and a CC-1065 analogue
has been synthesized. The preliminary in vitro studies show that the prodrug was 10-fold less toxic
than the free drug. Prodrug 2 has the potential to be useful in cancer treatment using the ADEPT
approach.

Background 
Antibody-directed enzyme prodrug therapy (ADEPT)
[1–5] is one of the promising new approaches that selec-

tively target tumor cells, thus reducing toxic side effects

to patients. In this approach, an enzyme is conjugated to

a tumor-specific antibody. The antibody selectively local-

izes the enzyme to the tumor cell surface. Subsequent ad-

ministration of a prodrug substrate of the enzyme leads

to the enzyme-catalyzed release of the free drug at the tu-

mor site. This strategy addresses the stoichiometry, con-

trolled drug release and poor antibody penetration

problems associated with the use of monoclonal anti-

body-drug conjugates [6–8]. In addition, because the

process of drug release is enzymatic, a single enzyme can
generate a large amount of free drug. Consequently, a

small amount of antibody can be used to reduce immu-

nogenicity.

It is important that the free drug in the ADEPT approach

be highly toxic. Using highly toxic agents can reduce the

amount of the monoclonal antibody required, thereby

reducing side effects. CC-1065 (Figure 1) is among the

most potent antitumor agents discovered [9–13]. It

binds to double-stranded B-DNA within the minor
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groove with a sequence preference for 5'-d(A/GNTTA)-3'

and 5'-d(AAAAA)-3', and alkylates the N3 position of the

3'-adenine with its left-hand CPI segment [14,15]. CC-

1065 also inhibits gene transcription by interfering with

binding of the TATA box-binding protein to its target

DNA [16]. Despite its high potency and broad spectrum

of antitumor activity, CC-1065 cannot be used in humans

because it causes delayed death in experimental animals
[17]. To pursue compounds possessing the potent antitu-

mor activity but devoid of the toxic side effects of the par-

ent compound, many CC-1065 analogues have been

synthesized [18–26].

Beta-lactamases have been widely investigated for their

role in the metabolism of antibiotics including cepha-

losporins and penicillins. Because of the high catalytic ef-

ficiency and broad substrate specificity, β-lactamases

have been extensively used in the ADEPT approach to ac-

tivate prodrugs of vinca alkaloids [27], nitrogen mustard

[28–32], doxorubicin [33–36] and others [37]. To take

advantage of the potent antitumor activity of the CC-

1065 class of compounds and the ADEPT approach, we

have synthesized β-lactam prodrugs. Herein, we report

synthesis and preliminary cytotoxic effects of a prodrug

comprised of a cephalosporin and a CC-1065 analogue

(Figure 1).

Prodrug 2 is expected to be less toxic than its corre-

sponding free drug 1. However, it is expected that the

prodrug will be converted to the potent free drug by β-
lactamases localized on the tumor cell surface by an an-

tibody (Figure 2). This selective activation of prodrug 2

at the tumor site will lead to enhanced antitumor thera-

peutic efficacy.

Results and discussion 
Prodrug 2 was synthesized as shown in Figure 3. The key
intermediate, 7, was made using methods developed by

Jungheim et al. [33], and Rodrigues, et al. [35,36] with

modifications. The spectra data including NMR and MS

of compounds 4–7 were identical to those as reported.

Compound 1 was treated with 7 in DMF to afford the pro-

tected prodrug 8. Removal of the t-butyl protection

group from 8 generated the targeted prodrug 2 with

good yield.

The cytotoxicity of prodrug 2 and its corresponding free

drug 1 was tested against U937 leukemia cells, and the

results are presented in Table 1. When the drugs were in-

cubated with U937 cells for a period of 48-h, prodrug 2

(IC50: 0.9 nM) is 10-fold less toxic than its corresponding

free drug 1 (IC50: 0.09 nM). As observed for other com-

pounds of the CC-1065 class [25,37,38], both prodrug 2

and the free drug 1 caused DNA fragmentation, and the

cells died by apoptosis (data not shown).

Conclusion 
This is the first report demonstrating synthesis of a pro-

drug comprised of a cephalosporin and a CC-1065 ana-

logue. The preliminary in vitro studies show the prodrug

to be less toxic than the free drug. Due to the slow non-

enzymatic degradation of the cephalosporins in solution
[39], the ratio of toxicity of cephalosporin-containing

Figure 1
Structures of CC-1065 and related Compounds

Figure 2
Activation of prodrug to free drug
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Figure 3
Synthesis of prodrug 2
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prodrugs to their corresponding free drugs is generally

not very high. However, some of the prodrugs are very ef-

fective against tumors in mouse models. For example, a

cephalosporin-doxorubicin prodrug was 9-fold less toxic

than free doxrubicin against tumor cells in vitro, but

caused tumor regression when tested in tumor xenograft

models [40]. A cephalosporin-vinca alkaloid prodrug

was 5-fold less toxic than the free drug against tumor

cells in vitro, but was highly effective in tumor xenograft

models in vivo [41]. When taxol was conjugated to a ce-

phalosporin, the resulting prodrug was approximately

10-fold less toxic than free taxol against tumor cells in

vitro [36]. Thus, prodrug 2 has the potential to be useful

in cancer treatment using the ADEPT approach. We will
report more biological data in due course.

Materials and methods 
Cephalothin sodium, 3, (2.5 g, 5.98 mmol) was suspend-

ed in dichloromethane (150 mL). Anhydrous hydrogen

chloride (4 N in dioxane, 2 mL, 8 mmol) was added, and

the reaction mixture was stirred for 30 min at room tem-

perature. tert-Butyl trichloroacetimidate (3.2 mL, 17.84

mmol) was added, and the reaction mixture was stirred

overnight at room temperature. The reaction mixture

was washed consecutively with water (150 mL), saturat-

ed sodium hydrogen carbonate solution (150 mL) and

water (150 mL). The organic solution was dried using so-

dium sulfate. The solvent was removed, and the product

was purified by flash column chromatography eluting

with a solvent consisting of dichloromethane, ethyl ace-

tate and hexane (1/1/3, v/v) affording 1.2 g of 4 (44%

yield).

Compound 4 (1 g, 2.21 mmol) was dissolved in methanol

(70 mL), and solid potassium carbonate (120 mg) was

added. The mixture was stirred for 2 h at room tempera-

ture, and acetic acid (200 µL) was added to quench the
reaction. The solvent was removed, and the product was

purified by flash column chromatography eluting with

8% acetone in dichloromethane to afford 220 mg of 5

(24% yield).

Compound 5 (280 mg, 0.68 mmol) was dissolved in an-
hydrous THF (40 mL), and dimethylaminopyridine (1

mg), p-nitrophenylchloroformate (0.2 g, 1 mmol) and 2,

6-lutidine (120 µL), 1 mmol) were added sequentially.

The reaction mixture was stirred overnight at room tem-

perature. The solvent was removed, and the product was

purified by flash column chromatography eluting with

5% ethyl acetate in dichloromethane to afford 271 mg of

6 (69% yield).

To a solution of 6 (50 mg, 87 µmol) in dichloromethane

(2 mL) cooled to 0°C was added m-chloroperoxybenzoic

acid (CPBA, 26 mg, 93 µmol) in 0.5 mL of dichlorometh-

ane. The reaction mixture was stirred for 15 min at 0°C,
and was then washed with 5% potassium hydrogen car-

bonate solution followed by brine. The solvent was re-

moved, and the product was purified by flash column

chromatography eluting with 8% ethyl acetate in dichlo-

romethane to afford 34 mg of 7 (66% yield).

Compound 7 (15 mg, 25 µmol) was added to a solution of

1 (9 mg, 23 µmol) in DMF (0.3 mL), which was synthe-

sized as we reported previously [20], and the reaction

mixture was stirred overnight at room temperature. The

product was purified by thin layer chromatography elut-

ing with ethyl acetate and hexane (3/1, v/v) to afford 12
mg of 8 (62% yield). 1H NMR (DMF-d7, ppm): 10.70 (s,

1 H), 9.15 (s, 1 H), 8.63 (s, 1 H), 8.25–7.85 (m, 4 H),

7.60–7.19 (m, 7 H), 7.05–6.95 (m, 2 H), 6.05–6.01 (m, 1

H), 5.39–5.30 (d, 1 H), 5.12–4.79 (m, 5 H), 4.35–4.27 (m,

1 H), 4.19–3.75 (m, 6 H), 1.58 (s, 9 H). FAB MS m/e

866.0 (M + Na)+.

To a solution of 8 (5 mg, 5.9 µmol) in DMF (0.2 mL) and

dichloromethane (1 mL) was added trifluroacetic acid (1

mL), and the solution was stirred for 2 h at room temper-

ature. The solvent was removed, and ethyl ether was add-

ed. The solid was filtered, and washed with ether to

afford prodrug 2 (3.7 mg, 79% yield). 1H NMR (DMF-d7,

ppm): 11.56 (s, 1 H), 10.50 (s, 1 H), 9.65 (s, 1 H), 8.25–

7.85 (m, 4 H), 7.60–7.24 (m, 7 H), 7.10–6.96 (m, 2 H),

6.10–6.01 (m, 1 H), 5.42–5.38 (d, 1 H), 5.10–4.60 (m, 5

H), 4.35–4.25 (m, 1 H), 4.20–3.75 (m, 6 H). FAB MS m/

e 787.1.
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