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Abstract

Cognition can reveal itself in the pupil, as latent cognitive processes map onto specific pupil

responses. For instance, the pupil dilates when we make decisions and these pupil size

fluctuations reflect decision-making computations during and after a choice. Surprisingly lit-

tle is known, however, about how pupil responses relate to decisions driven by the learned

value of stimuli. This understanding is important, as most real-life decisions are guided by

the outcomes of earlier choices. The goal of this study was to investigate which cognitive

processes the pupil reflects during value-based decision-making. We used a reinforcement

learning task to study pupil responses during value-based decisions and subsequent deci-

sion evaluations, employing computational modeling to quantitatively describe the underly-

ing cognitive processes. We found that the pupil closely tracks reinforcement learning

processes independently across participants and across trials. Prior to choice, the pupil

dilated as a function of trial-by-trial fluctuations in value beliefs about the to-be chosen option

and predicted an individual’s tendency to exploit high value options. After feedback a

biphasic pupil response was observed, the amplitude of which correlated with participants’

learning rates. Furthermore, across trials, early feedback-related dilation scaled with value

uncertainty, whereas later constriction scaled with signed reward prediction errors. These

findings show that pupil size fluctuations can provide detailed information about the compu-

tations underlying value-based decisions and the subsequent updating of value beliefs. As

these processes are affected in a host of psychiatric disorders, our results indicate that

pupillometry can be used as an accessible tool to non-invasively study the processes under-

lying ongoing reinforcement learning in the clinic.

Author summary

It has long been known that the pupil dilates when we decide. These pupil dilations have

predominantly been linked to arousal. However, reward-related processes may trigger

pupil dilations as well, as dilations have been linked to activity in the dopaminergic
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midbrain, a region important for reward processing and reinforcement learning. Using a

learning task and a computational model to quantitatively describe the cognitive processes

that drive reinforcement learning behavior, we show that the pupil closely tracks different

aspects of the reinforcement learning process. Prior to making a value-based choice, pupil

dilation reflected the value of the soon-to-be-chosen option. After receiving choice feed-

back, early dilation reflected uncertainty about the value of recent choice options, while

late constriction reflected how strongly an outcome violated current value beliefs.

These findings provide the novel insight that the pupil can be used to track value-based

decision-making, opening up a new method for online tracking of reinforcement learning

processes.

Introduction

There is fast-growing interest to understand how the pupil, as a non-invasive proxy of neuro-

modulation [1], relates to cognition. Already since the 1960s, pupil dilation has been associated

with the expenditure of cognitive effort [2, 3]. In more recent years, its relation to decision-

making has been investigated extensively. These studies show that the pupil dilates during

periods of uncertainty about incoming, task-relevant information [4–7] and after the occur-

rence of unexpected events that generate surprise [8–11]. Also in a gambling task, where unex-

pected outcomes were tied to reward, was pupil dilation associated with surprise [12].

However, in that particular study choices did not influence the outcomes of the gambles; mak-

ing it impossible to learn from the outcomes of choices.

In real world encounters, people can learn from the outcomes of their choices and use this

information to optimize behaviors or maximize reward. Several studies have shown that pupil

dilations track such reward learning processes. During classical or Pavlovian learning [13], the

pupil dilates in response to cues that predict reward [14–16] and tracks changes in reward

expectations [17]. In situations that require decisions to obtain reward, baseline pupil diameter

prior to a choice [18], as well as task-evoked dilations [19] predicted whether a choice would

be either exploratory or exploitatory, hence, predicting the sensitivity to choose the option

with the highest expected reward.

While these findings suggest that the pupil provides a promising marker of several pro-

cesses and states associated with learning from reward, it remains unclear how the pupil relates

to the underlying process of reinforcement learning (RL). Understanding of this relationship

is important, as it could open up the possibility to continuously monitor the underlying cogni-

tive processes that shape learning and decision-making based on reward. This knowledge

would greatly increase the clinical impact of pupil size recordings, which already has shown

some promising results in studies involving Parkinson’s patients [20, 21]. However, it is

unclear how these processes interact with other cognitive processes such as attention, cognitive

effort, and uncertainty. Here, we investigated pupil size fluctuations during value-based learn-

ing and decision-making, using a computational RL model to identify the specific influences

of value-related computations on pupil size.

We measured pupil size while thirty-four participants performed a probabilistic RL task,

consisting of a separate learning and transfer phase. (Fig 1A and 1B and Methods) [22]. In the

learning phase, the reliability of choice outcomes varied across three learning pairs with differ-

ent reward probabilities (AB, 80:20; CD, 70:30; EF, 60:40). As participants gradually learned to

choose the best option in each pair, these different reward probabilities created varying degrees

of choice difficulty, uncertainty and value expectations across choices. In a subsequent transfer

Pupil responses track value-based decision-making during reinforcement learning
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phase, participants were then presented with novel stimulus pair combinations (i.e., AB, CD,

EF, AC, AD, AE, AF, BC, BD, BE, BF, CE, CF, DE, and DF) and asked to select the most

rewarding option based on previous learning. As no choice feedback was provided in the

transfer phase, it allowed us to measure how choices were guided by previously acquired rein-

forcement values, and how this information generalized to entirely new choice situations.

We fitted a hierarchical Bayesian version of the Q-learning RL algorithm [23] to partici-

pants’ choices in the learning phase to describe value-based choices and outcome evaluations

(Fig 1C and Methods) [24–27]. Bayesian hierarchical parameter estimation results in more

precise and stable parameter inference compared to procedures using individual-level maxi-

mum likelihood [26, 28–30], and is therefore a preferred modelling approach. The Q-learning

algorithm describes value-based decision-making using two functions: a choice function and

an outcome function. The choice function calculates the probability of choosing one option

(Q-chosen) over the other (Q-unchosen), based on one’s sensitivity to value differences, or

explore-exploit tendency (β; Fig 1D, left panel). The outcome function then computes the mag-

nitude by which the reward prediction error (RPE) changes value beliefs about the chosen

option, scaled by the learning rate (α; Fig 1D, right panel) [31]. As value beliefs are differently

updated after positive and negative outcomes [32–34] via different striatal learning mecha-

nisms [35–37], we defined separate learning rate parameters for positive (αGain) and negative

(αLoss) choice outcomes [24, 32, 33, 38].

Fig 1. Probabilistic selection task and reinforcement learning model. (A): During learning, 3 option pairs were presented in random order. Participants had to

select the more rewarding option of each pair (option A, C and E) by learning from probabilistic feedback that indicated +0.1 points reward after a “correct” choice,

or no points. Choosing option A resulted in a reward in 80% of the times, whereas choosing option B resulted in a reward only in 20% of the times. Reward

probability ratios were 70/30 for the CD pair and 60/40 for the EF pair, thereby increasing uncertainty about the correct option to choose. The transfer phase tested

how much was learned from the probabilistic feedback. All options were randomly paired with one another, and participants selected the most rewarding option

based on earlier learning. In this phase, feedback was omitted. (B): Example pupil trace for a trial in the learning phase. (C): Bayesian hierarchical model, consisting

of an outer participant (i = 1. . .,N) and inner trial (t = 1. . .,T) plane. Variables of interest are depicted by circular and squared nodes, indicating continuous and

discrete variables, respectively. Shaded variables are obtained from the behavioral data and used to fit the model. Double bordered variables are deterministic, as

they were derived from the model fit. Arrows indicate dependencies between variables.F() represents the probit transform. (D): Model parameters governing value-

based decision-making. Left panel: the β-parameter describes sensitivity to option value differences (ΔQ-value). Higher β-values indicate greater sensitivity to ΔQ-

value and more exploitatory decisions for options with highest expected rewards. Right panel: the α-parameter governs value belief updating. Higher learning rates

(α) indicate rapid, but more volatile value belief updating compared to lower learning rates. (E): Across-trial fluctuations in value beliefs (Q-values) for the chosen

and unchosen option and RPEs with the EF pair as example.

https://doi.org/10.1371/journal.pcbi.1006632.g001
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Our computational approach allowed us to investigate the potential utility of the pupil as a

proxy for value-based decision-making and value belief updating, across two levels. First, we

describe participants’ choice behavior using parameters that embody core computational RL

principles. These parameters provide a strong handle to investigate how inter-individual dif-

ferences in value-based learning and decision-making relate to pupil responses. Second, by

simulating the learning process we could investigate how pupil size depended on trial-to-trial

fluctuations in underlying computational variables such as value beliefs, uncertainty and

reward prediction errors. That is, our experimental paradigm allowed us to map pupil

responses onto separable computational components both across participants and trials, using

linear systems analysis techniques [39, 40].

Results

Behavioral and model performance

Participants learned the stimulus-reward contingencies well, as they correctly learned to select

the higher reward probability option in all three pairs (P(correct) above chance, all Ps<.001;

Fig 2A). Performance was best in the most reliable choice pair (AB) and decreased progres-

sively as the feedback reliability of choice pairs decreased from CD to EF: smaller differences

in the reward probability ratios increased the number of errors (F(2,66) = 14.45, P<.001,

Z2
p ¼ :19) and response times (F(2,66) = 5.5, P = .006, Z2

p ¼ :04). In the transfer phase, choices

were guided by the previously learned reward probabilities. Here, participants made more

errors (F(2,66) = 49.3, P<.001, Z2
p ¼ :53) and were slower (F(2,66) = 34.6, P<.001, Z2

p ¼ :12)

when confronted with option pairs with small value differences (Fig 2B), consistent with ear-

lier studies [32, 41, 42].

The Q-learning model simulated participants’ choice behavior well (Fig 2C) when using the

fitted learning rates (αGain, αLoss) and explore-exploit (β) parameter (Fig 2D). In accordance

with behavior, the estimated value beliefs were highest for A and lowest for B (Fig 2E) with dif-

ferences in value beliefs being largest for AB, followed by the CD and EF pair (F(2,66) = 20.63,

P<.001, Z2
p ¼ :39).

Pupil responses predict individual differences in value-based decision-

making

We next investigated whether the pupil was sensitive to the cognitive processes supporting

value-based decisions. To do so, we first characterized the average pupil response pattern

across subjects epoched around two separate moments in the trial: leading up to, and immedi-

ately after the moment of choice and around the moment of feedback. Around the moment of

a choice, a biphasic pupil response was observed that was characterized by dilation starting

�1s. prior to the moment of the behavioral report (Fig 3A). This upwards response reflected

the unfolding decision process [5, 43] and was followed by late pupil constriction (�1s. post-

choice). After receiving choice feedback, again a biphasic pupil response was observed that

was characterized by early dilation (�1s. post-event) and late constriction (�2s. post-event;

Fig 3B).

Across individuals, the observed choice- and feedback-evoked pupil responses corre-

sponded differentially to the underlying processes driving value-based decision-making. As

shown in Fig 3C, left panel, pupil dilation at the moment of a choice was uniquely predicted by

an individual’s sensitivity to value differences, or explore-exploit tendency (β; permutation

test, P = .006; S1A Fig), indicating that a greater tendency to exploit high value options (high

β) related to a stronger dilatory response (Fig 3C, right panel). Feedback-related dilation and
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PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006632 November 30, 2018 4 / 24

https://doi.org/10.1371/journal.pcbi.1006632


constriction correlated inversely with an individual’s positive, but not negative, learning rate

(S1B Fig), suggesting that this parameter selectively scaled the amplitude of the feedback-

evoked pupil response. Indeed, as shown in Fig 3D, left panel, the feedback-evoked response

amplitude was uniquely predicted by an individual’s positive learning rate (αGain; permutation

test, P = .017), indicating that slower updating of value beliefs after positive feedback predicted

a stronger feedback-evoked response (low αGain; Fig 3D, right panel and S1D Fig).

In sum, pupil responses evoked by choice and feedback differentially predicted the underly-

ing processes supporting value-based decisions in the learning phase. The tendency to exploit

high value options (β) predicted stronger pupil dilation leading up to a value-driven choice,

whereas less updating of value beliefs after positive feedback (αGain) predicted an amplified

feedback-related response. These relations are consistent with the tenets of the Q-learning

model, in which the explore-exploit parameter determines the outcome of a value-driven

choice and learning rates affect how much value beliefs are updated after receiving choice

feedback.

Fig 2. Behavioral and model performance. Average accuracy and RT across subjects (N = 34) as a function of option

pairs in the learning phase (A) and option value differences (derived from the experimental reward probabilities) in the

transfer phase (B) that indicated small (s), medium (m) or large (l) value differences between presented options. (C):

Real and simulated choice accuracy as a function of run number in the learning phase, split by option pair. For all

option pairs, simulated and real accuracy was very similar, with real EF accuracy being slightly underestimated by the

model. (D): Group-level posterior distributions of the obtained parameter estimates for β, αGain and αLoss. (E): Model

estimates of value beliefs for each option at the end of the learning phase. β/100 for visualization; error bars represent

mean ± s.e.m.

https://doi.org/10.1371/journal.pcbi.1006632.g002
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Pupil dilation reflects the value of the upcoming choice during, but not

after, reinforcement learning

We observed that across-subject variability in pupil responses was explained by model parame-

ters that describe the underlying processes driving value-based decision-making. But do pupil

responses also reflect the ongoing reinforcement learning process during value learning? In a

next step, we investigated the extent to which trial-to-trial fluctuations in variables describing

ongoing value-based decision-making were reflected in pupil responses.

In the learning phase, prior to reaching a value-driven choice, pupil dilation correlated pos-

itively with the value difference between options (cluster P<.001, 2.0s. pre-event until -0.07s.

pre-event, Fig 4A, upper panel), indicating that larger value differences elicited larger pupil

dilation before the choice. Specifically, the pupil dilated as a function of trial-by-trial value

beliefs of the chosen, but not the unchosen option (paired t-test, t(33) = 6.98, P<.001; Fig 4B,

upper panel), revealing that pupil dilation uniquely reflected the value belief determining the

upcoming choice.

To rule out the possibility that condition differences (i.e. AB, CD, EF) instead of trial-by-

trial fluctuations in chosen value beliefs explained pupil dilation prior to a choice, we estimated

their independent effects on pupil size in a single regression analysis. We observed no differ-

ences between conditions in average pupil dilation prior to a choice (Fig 4A, lower panel). This

also excluded the hypothesis that pre-choice pupil dilation was driven by uncertainty [5, 44] or

cognitive effort [2, 3], as we did not observe significantly more dilation in the most uncertain,

hence, most effortful EF pair. In all pairs, pre-choice pupil size correlated positively with cho-

sen value (F(2,66) = 19.76, P<.001, Z2
p ¼ :15; Fig 4B, lower panel) irrespective of condition type

(F(2,66) = 1.8, P = .17). Thus, prior to reaching a value-driven choice, the pupil tracked subtle

Fig 3. Across-subject relations between model parameters and pupil responses during choice and after feedback.

Average deconvolved choice- (A) and feedback-related (B) pupil response. Regression coefficients of an across-subject

GLM of the relation between derived model parameters and pupil dilation at the moment of choice (C, upper panel),
and a scalar amplitude measure of the feedback-related pupil response (D, upper panel). Median split across subjects

based on modulations of β at the time of choice (C, lower panel), and αGain after feedback (D, lower panel). Lines and

(shaded) error bars of represent mean ± s.e.m of across-subject modulations (N = 34). Horizontal significance

designators indicate time points where regression coefficients significantly differentiate from zero (P<.05), based on

cluster-based permutation tests (n = 1000), ��P<.01, �P<.05.

https://doi.org/10.1371/journal.pcbi.1006632.g003
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differences in value beliefs about the upcoming choice, while dilation did not reflect uncer-

tainty or cognitive effort driven by condition differences.

Next, we asked whether value beliefs also modulated pre-choice pupil dilation in the subse-

quent transfer phase, where choices were based on previously acquired reinforcement values.

In contrast to the learning phase, pupil dilation prior to a value-driven choice was not pre-

dicted by previously learned value differences between options (Fig 4C, upper panel). Indeed, a

repeated measures ANOVA with the factors phase (learning, transfer) and value (chosen,

unchosen) indicated that only during learning, but not during transfer, pre-choice pupil dila-

tion was modulated by value beliefs about the upcoming choice (F(1,33) = 6.9, P = .013,

Fig 4. Pre-choice pupil dilation reflects the value of the upcoming choice. (A, upper panel): Beta coefficients accounting for choice-related pupil dilation in

the learning phase. Larger value differences between options (blue dashed line) elicited larger choice-related pupil dilations (black solid line) prior to choice (at

t = 0). After choice, this relationship reversed, as smaller value differences elicited larger post-choice pupil dilations. (A, lower panel): Average choice-related

pupil dilation for AB, CD and EF pairs. (B,upper panel): Beta coefficients of chosen and unchosen value regressors accounting for pupil size fluctuations in the

pre-choice decision interval of the learning (left) and transfer phase (right). (B, lower panel): Beta coefficients of chosen and unchosen value regressors split by

learning phase pairs, showing that pre-choice pupil size is modulated by values of the to-be chosen stimulus, irrespective of uncertainty. (C, upper panel):
Differences in learned value beliefs between the chosen and unchosen option did not modulate choice-related pupil dilation prior to choice (at t = 0). However,

smaller value belief differences elicited stronger pupil dilation after a value-based choice. (C, lower panel): We defined value differences between options

presented in the transfer phase using the experimentally defined reward probabilities (see also Fig 1A). Value differences ranged from 10% to 60% and were

subsequently divided into three categories to describe Small (10-20%), Medium (30-40%) or Large (50-60%) value differences between presented options. Small

value differences between presented options elicited largest post-choice pupil dilation, in line with findings in C, (upper panel), suggesting that choice conflict

drove pupil size after a value-based choice. Lines and (shaded) error bars of represent mean ± s.e.m of within-subject modulations. Horizontal significance

designators indicate time points where regression coefficients significantly differentiate from zero (P<.05), based on cluster-based permutation tests (n = 1000),
��� P<.001, �� P<.01, repeated measures ANOVA.

https://doi.org/10.1371/journal.pcbi.1006632.g004

Pupil responses track value-based decision-making during reinforcement learning

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006632 November 30, 2018 7 / 24

https://doi.org/10.1371/journal.pcbi.1006632.g004
https://doi.org/10.1371/journal.pcbi.1006632


Z2
p ¼ :06). This interaction effect was not explained by differences in tonic pupil size fluctua-

tions between the experimental phases (S2 Fig), which can impact the magnitude of phasic

pupil responses [1, 40]. Additionally, we investigated the observed interaction using a Bayesian

repeated measured ANOVA. Compared to the null model, the model that incorporated both

main factors and their interaction received most support from the data as indicated by

BF = 55.4. This is regarded very strong evidence in favour of the alternative model [45]. This

model also convincingly received most support from the data compared to all candidate mod-

els, as indicated by BF = 16.9. Lastly, post-hoc test that directly compared chosen and uncho-

sen value beliefs showed that they did not differently modulate pre-choice pupil size in the

transfer phase (paired t-test,<1, Fig 4B, upper panel). Nor did either variable’s mean correla-

tion with pre-choice pupil dilation differ from zero(t<1 for chosen and unchosen value).

Together, these findings provide compelling evidence that chosen and unchosen value beliefs

differently modulate pupil dilation during decision formation in the learning compared to the

transfer phase.

However, immediately after a value-based choice, learned value beliefs negatively predicted

pupil dilation both in the learning (cluster P = .007, 0.68s. pre-event until 1.5s. post-event;

Fig 4A, upper panel) and transfer phase (cluster P = .003, -0.02s. until 1.48s. post-event; Fig 4C,

upper panel). Now smaller, instead of larger, value differences elicited larger post-choice pupil

dilation, suggesting that the difficulty of a recent choice, or the choice conflict it generated,

drove pupil size upward. Indeed, we observed a similar post-choice pupil response pattern

when regressing choice conflict on the basis of the experimental reward probabilities on pupil

size (Fig 4C, lower panel), indicating that post-choice pupil dilation was modulated by choice

conflict, consistent with an earlier report [42].

These model-based trial-to-trial analyses show that when engaged in active reinforcement

learning, pupil dilations differentially reflect value beliefs and choice conflict at different points

in time. Prior to value-based choices, pupil size uniquely reflected value beliefs about the

upcoming choice, where stronger dilations predicted higher value beliefs. This pattern of pre-

choice value dilations was absent in the subsequent transfer phase where rewards could not be

obtained, indicating that apparently similar pupil dilations prior to value-based choices can

index different cognitive processes during and after reinforcement learning.

Feedback-related pupil responses reflect value uncertainty and reward

prediction errors

Only during active reinforcement learning, we observed that choice-related pupil dilation

reflected value beliefs about the upcoming choice. If the pupil reliably tracked the ongoing

reinforcement learning process, it should also provide information about the evaluation of a

recent choice outcome. In the last step, we therefore investigated how feedback-related pupil

responses covaried with the degree to which outcomes violated value beliefs about a recent

choice.

We observed larger feedback-related pupil dilation (Fig 5A) after choices between options

with small value differences. Specifically, early post-feedback dilation correlated negatively

with differences in value beliefs of recently presented options (cluster P<.001, -1.5s. pre-event

until 1.78s. post-event; Fig 5B). We furthermore verified that these feedback-related dilations

were not driven by feedback valence (S3A and S3B Fig). In contrast to dilation in the choice

interval, dilation in the feedback interval was explained by fluctuations in trial-by-trial value

beliefs of both the chosen and the unchosen options, in opposite directions (Fig 5C). Thus,

lower beliefs about the chosen and higher beliefs about the alternative option both increased

dilation, indicating that uncertainty about the value of a recent choice modulated feedback-
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related dilation. In support of this, trial-by-trial chosen and unchosen value beliefs explained

feedback-related dilation already prior to receiving feedback, which suggested that uncertainty

about the outcome of a value-based decision drove pupil size. Lastly, outcomes that violated

value beliefs did not elicit larger feedback-related dilations (S3 Fig), excluding the hypothesis

that these modulations of the feedback response reflected surprise.

Importantly, whereas value beliefs about a recent choice affected early dilation, the degree

to which outcomes violated those beliefs modulated late feedback-related pupil constriction.

As shown in Fig 5B, signed RPEs correlated positively with late feedback-related pupil con-

striction�2s. after receiving feedback (cluster P<.001, 1.8s. until 3.0s. post-event). This

correlation indicated that worse-than-expected outcomes (-RPEs) elicited stronger pupil con-

striction compared to better-than-expected outcomes (+RPEs).

To summarize, we observed a biphasic feedback-related pupil response that tracked the

evaluation of a recent value-based choice. Early pupil dilation was modulated by uncertainty

about the value of options, as choices between similarly valued options increased dilation the

most. Late pupil constriction was modulated by the violation of current value beliefs, as worse-

than-expected outcomes elicited stronger pupil constriction compared to better-than-expected

ones.

Discussion

The present results provide the novel insight that the pupil reliably tracks the underlying cog-

nitive processes of learning and decision-making based on reward. When engaged in active

reinforcement learning, but not when choice value was already internalized, the pupil showed

two distinct response patterns. Prior to reaching a value-driven choice, pupil dilations scaled

with trial-by-trial value beliefs about the upcoming choice and were diagnostic for an individu-

al’s sensitivity to choose the option with the highest expected outcome. Feedback about the

choice subsequently evoked a biphasic evaluation response. Early pupil dilation scaled with

Fig 5. Feedback-related pupil responses reflect value uncertainty and reward prediction errors. (A, upper panel): Beta

coefficients accounting for choice-related pupil dilation in the learning phase. Larger value differences between options (blue dashed

line) elicited larger choice-related pupil dilations (black solid line) prior to choice (at t = 0). After choice, this relationship reversed,

as smaller value differences elicited larger post-choice pupil dilations. (A, lower panel): Average choice-related pupil dilation for AB,

CD and EF pairs. (B, upper panel): Beta coefficients of chosen and unchosen value regressors accounting for pupil size fluctuations in

the pre-choice decision interval of the learning (left) and transfer phase (right). (B, lower panel): Beta coefficients of chosen and

unchosen value regressors split by learning phase pairs, showing that pre-choice pupil size is modulated by values of the to-be chosen

stimulus, irrespective of uncertainty. (C,upper panel): Learned value differences did not modulate choice-related pupil dilation prior

to choice (at t = 0). After choice, smaller learned value differences elicited stronger pupil dilation. (C, lower panel): Smaller value

differences between choice options elicited larger post-pupil dilation, indicating choice conflict drove pupil size. Lines and (shaded)

error bars of represent mean ± s.e.m of within-subject modulations. Horizontal significance designators indicate time points where

regression coefficients significantly differentiate from zero (P<.05), based on cluster-based permutation tests (n = 1000), ��� P
<.001, �� P<.01, repeated measures ANOVA.

https://doi.org/10.1371/journal.pcbi.1006632.g005
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uncertainty about the value of recent choice options, whereas subsequent pupil constriction

scaled with the violation of current choice value beliefs, or signed reward prediction errors.

Earlier studies have shown that pupil dilations can reflect variables or states related to

reward learning [14–16, 20, 21]. Our results extend these findings by showing that pupil

responses reliably track choice value computations during both decision formation and deci-

sion evaluation. The specificity of our findings outlines how the pupil can be used to index the

ongoing reinforcement learning process. These results could greatly increase the clinical

impact of pupil size recordings, as our findings suggest that pupil responses can be used to

monitor the (affected) ongoing reinforcement learning process.

Specifically, single-trial fluctuations in pupil dilation prior to choice signaled the value of

the to-be-chosen option, but not the alternative one. This indicates that during decision forma-

tion, pupil dilation specifically reflected the value that was driving the choice. Could these

value-driven dilations reflect the effects of cognitive effort [2, 3], or uncertainty [4, 5, 8] that

are known to affect pupil size? While effects of cognitive effort are typically studied with tasks

in the domain of cognitive control (e.g. [46–49]), it is generally found that pupil dilation

increases with increasing task demands. Presumably, dilations reflect the effort exerted in reac-

tion to difficult or demanding situations [50]. In our study, this would translate to the follow-

ing hypothesis: the most difficult choice condition (i.e. the most unreliably reinforced stimulus

pair EF) should elicit greater pupil dilation. Our findings do not agree with this hypothesis, as

choices in the difficult EF pair were not preceded by stronger pupil dilation. Neither can our

findings be explained by effects of uncertainty about a value-based choice, as higher value

beliefs, indicating more certainty about choice value, elicited greater dilation. What our find-

ings indicate is that higher value beliefs about the upcoming choice led to stronger reward

expectations [20, 21], or lower risk assessment [12] that increased pupil dilation prior to a

value-based choice.

Furthermore, an individual’s sensitivity to value differences between presented options, as

quantified by the β parameter of our model, predicted the amount of pupil dilation exactly at

the moment of a value-based choice. Individuals that were sensitive to small value differences

showed stronger choice-locked pupil dilation and made more exploitatory choices, which also

led to better task performance [25]. Optimal task performance [51, 52] as well as the tendency

to exploit in dynamic environments [19, 53] have previously been associated with increased

choice-related pupil dilation. The observed relationship could therefore reflect either one of

these processes, as choosing a high value option can result from accurate option value repre-

sentations, or from the general tendency to favor exploitation over exploration [54]. Future

studies that measure pupil size during value-based decision-making in a reversal learning para-

digm may be able to disentangle these two alternative explanations, as optimal task perfor-

mance would then depend on changing decision strategies over time.

After receiving feedback, a biphasic feedback-related pupil response tracked two different

evaluation processes associated with the outcome of a choice. First, early dilation was scaled by

the uncertainty associated with the outcome of a value-based choice. This was further evi-

denced by the observation that choices between closely valued options triggered uncertainty-

related pupil dilation already prior to the moment of feedback. This suggests pupil dilation

reflected value uncertainty when participants anticipated the outcome of a choice. While our

study is the first to relate feedback-related pupil dilation directly to uncertainty about internal

choice value beliefs, these findings are consistent with studies that relate pupil dilation to per-

ceptual decision uncertainty, driven by observer’s internal noise [6, 7].

Second, late pupil constriction was explained by signed reward prediction errors, reflecting

how much an outcome violated current value beliefs about the chosen option. Lower-than-

expected choice outcomes resulted in stronger pupil constriction compared to higher-than-
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expected ones, a response pattern consistent with value coding [55]. As the reward prediction

error term multiplied with the learning rate updates the value of the chosen stimulus, reward

prediction error responses in the pupil after feedback are consistent with our finding that cho-

sen value uniquely modulated pupil dilation prior to a choice. We can only speculate about the

similarity to the reward prediction error firing pattern of phasic dopamine neurons [56–59]

that briefly activate after higher-than-expected outcomes and deactivate after lower-than-

expected outcomes.

Alternatively, the observed correlation between late feedback-related pupil constriction and

signed reward prediction errors could be driven by differences in saliency between unexpected

positive and negative outcomes. It has been shown that contrast-based stimulus saliency mod-

ulates the magnitude of transient pupil responses, with more salient stimuli evoking a larger

peak-to-peak (i.e. larger dilation and constriction) pupil response [60, 61]. While we controlled

for the physical stimulus saliency in our experiment, some experimental events could have

been more salient than others. Due to reinforcement learning, unexpected negative outcomes

occurred less often than unexpected positive outcomes, which might have rendered them sub-

jectively more salient events. Thus, increased subjective saliency could explain the stronger

feedback-related pupil constriction observed after unexpected negative events.

We found that pupil responses systematically tracked key components of reinforcement

learning, however, important differences were observed with a later recall phase. Only during

learning, but not during transfer, was pupil dilation prior to choice modulated by choice value;

a difference that may indicate different underlying cognitive processes that drive value-based

choices [62, 63]. Why was this the case, in a task where participants had to make value-based

decisions in both experimental phases? One important difference between the learning and

transfer phase was the presentation of choice feedback, thus, the ability to learn from choice

outcomes. In the learning phase, only three stimulus pairs were presented and each choice was

followed by feedback to allow learning. In the transfer phase, our objective was to assess

already internalized choice value by confronting participants with novel stimulus pair combi-

nations of previously acquired reinforcement values. Hence, in this phase, choices were not

followed by feedback, and choice value representations could not be changed.

Dopamine, particularly in the striatum [64], plays an important role during reinforcement

learning [65]. Striatal dopamine strengthens actions that lead to rewarding outcomes and

weakens those that lead to aversive ones [22, 32, 36]. It thereby flexibly adapts behavior to max-

imize future reward. In the transfer phase, value beliefs are consolidated and dopamine no lon-

ger plays an important role in learning or modulating choice behavior. Information used to

make a value-based choice can be retrieved from memory, guided by structures that encode

learned value representations, such as the ventromedial prefrontal cortex [63, 66]. Our finding

that pupil dilation signaled upcoming choice value only during learning, could mean that the

pupil is particularly sensitive to contingency learning [67], thus, to learning the mapping

between actions and outcomes.

Whether, and in what way, dopamine modulates the pupil response has yet to be deter-

mined, but several lines of research show promising results [7, 20, 21, 68, 69]. It is likely that

such modulations occur via interactions with the noradrenergic locus coeruleus (LC), a brain-

stem nucleus that is often linked to pupil dilation in micro-stimulation and decision-making

studies [68, 70–73]. As these studies also found that activity in other brain areas correlated

with pupil responses [60, 61, 70, 71], including the dopaminergic ventral tegmental area [68],

this further suggests multiple (interacting) sources driving pupil size. In support of interactions

between the noradrenergic and dopaminergic system in modulating pupil size, the LC and

dopaminergic midbrain structures have dense reciprocal connections and receive a common

top-down projection from the prefrontal cortex [74]. Moreover, both systems play important,
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yet different, roles in reward-learning and motivational behavior [73, 75], which suggest they

both might play important roles in modulating the pupil during reinforcement learning.

While we observed the pupil to systematically track key components of reinforcement

learning, could these results alternatively be explained by effects of attention? The pupil has

long been used as an index of attention, as the amount of attention paid to a stimulus deter-

mines the amount of transient pupil dilation [76–79]. In our study, when choices where made,

attention was most likely shifted toward the chosen option, which could have driven phasic

pupil dilation during choice. While this explanation fits our finding in the learning phase,

where pre-choice pupil dilation scaled with the value of the to-be chosen option, it does not fit

with the absence of this relation in the transfer phase, even though participants paid attention

to the chosen options, as they performed the task well. Neither does attention -and its relation

to phasic pupil dilation- explain why feedback-related pupil constriction in the learning phase

scaled with how much an outcome violated choice value beliefs. Thus, while attention likely

plays an important role in value-based decision-making [42, 80–82], the observed patterns of

results here cannot be solely explained by effects of attention.

To conclude, our study provides evidence that the pupil is a reliable indicator of value-

based decision-making during active reinforcement learning. Pupil responses signaled the pro-

cessing of value up to a choice and the subsequent evaluation of choice outcomes in terms of

uncertainty and violations of value beliefs. There were several aspects to our approach that

enabled us to establish these specific relations and to move beyond previous work linking the

pupil to reward. First, our computational approach enabled us to characterize the full temporal

profile of value-based decisions in the pupil, thereby relating different decision and evaluation

processes to different components of the pupil response. These relationships could only be

obtained using a ridge regression deconvolution approach that enabled us to disentangle the

multiple underlying cognitive processes that impacted pupil size within a single regression

analysis. Second, these specific relations could only be established with the use of classical

learning theories that provided us access to participants’ developing value beliefs, and the

underlying choice considerations thought to support value-driven decisions. This also high-

lights our use of internal, or subjective, value estimates to relate to the pupil. This contrasts

previous studies that used externally derived value estimates to investigate reward-related

effects on pupil size [8, 12, 20, 21, 69]. Lastly, our study describes the temporal evolution of

reinforcement learning in the pupil, thereby providing evidence that the pupil can be used to

non-invasively track the reinforcement learning process as it takes place. Future studies that

combine functional brain imaging and pupillometry will have to further specify the brain areas

that contribute to the value-based pupil response.

Materials and methods

Ethics statement

The Ethics Committee of the Vrije Universiteit Amsterdam approved this study.

Participants

Forty-two healthy participants with normal to corrected to normal vision completed the exper-

iment (10 males; mean age = 24.9; age range = 18-34 years). They were paid 16€ for 2 hours of

participation and earned an additional performance bonus (mean = 10.2€, SD = 1.8). The ethi-

cal committee of the Vrije Universiteit Amsterdam approved the study and written informed

consent was obtained from all participants. Eight participants were excluded from analyses

due to the following reasons: inadequate fixation to the center of the screen (N = 4), reporting

more than three unique stimulus pairs in the learning phase (N = 1) and (almost) perfect
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choice accuracy in the learning phase, which complicated behavioral model fitting (N = 3),

resulting in a total of 34 participants for the analyses.

Task & procedure

Participants were seated in a dimly lit, silent room with their head positioned on a chin rest, 60

centimeters away from the computer screen. They received written information about the gen-

eral purpose of the experiment, after which they completed a 30-trial practice session of the

learning phase. Subsequently, participants completed for the learning phase 6 runs of 60 trials

each (360 trials in total, 120 presentations of each stimulus pair), with small breaks in-between

runs. After each run, the earned number of points was displayed. At the end of the learning

phase, the total number of earned points was converted into a monetary bonus. Directly after

the learning phase, participants entered the transfer phase. They completed 5 runs of 60 trials

each (300 trials in total, 20 presentations per stimulus pair), with small breaks in-between

runs. Overall choice accuracy was displayed at the end of the transfer phase.

Stimuli & trial structure

Stimuli were presented on a 21-inch Iiyama Vision Master 505 MS103DT with a spatial resolu-

tion of 1024 x 768 pixels, at a refresh rate of 120Hz, with mean luminance 60 cd/m2. Experi-

ments were programmed in OpenSesame and data analysis were performed using custom

software written in Python, using Numpy (v1.11.2), Scipy (v0.18.1), FIRDeconvolution (v0.1.

dev1), Hedfpy (v0.0.dev1), MNE (v0.14) and PyStan (v2.14) packages. Luminance effects on

pupil size were minimized by keeping the background luminance of the display constant.

Color stimuli were near-isoluminant to each other and the background (set via a flicker-fusion

color calibration test carried out once at the start of the experiment). To account for further

luminance bias effects, each participant had a unique color pair (red-blue; yellow-dark blue;

green-magenta) to reward probability mapping (AB, CD, EF) that was counterbalanced in

order (e.g. red-blue or blue-red for AB).

In each learning phase trial, participants continuously fixated on a central white fixation

dot. After 500ms (SD = 200ms), two colored stimuli (1.26˚x1.26˚ visual angle) appeared at the

horizontal meridian left and right from the central fixation dot at a distance of 5.04˚ visual

angle. Participants made a choice for one of the options using the ‘K’ (left choice) and ‘L’ (right

choice) keys. A choice was highlighted by a small dark gray arrow (150ms) pointing in the

direction of the chosen option. After a random interval drawn from a Gaussian distribution

with a mean of 1500ms (SD = 300ms), the choice was followed by auditory feedback, indicat-

ing reward (+0.1 points; 500ms “correct” sound) or no reward (500ms; pure sine tone at

300Hz). Omissions or response times (RTs) longer than 3500ms were followed by a neutral

tone (500ms; pure sine tone at 660Hz). Inter-trial intervals were drawn from a Gaussian distri-

bution with a mean of 3000ms (SD = 300ms) Trials of the transfer phase followed the same

trial structure as trials in the learning phase, but had a shorter duration as choices were not fol-

lowed by feedback.

Behavioral analysis

Choices and RTs were recorded for all trials in the learning and transfer phase. RT on every

trial was computed as the time from onset of the stimulus pair until the choice (key press). Tri-

als with RTs below 150ms or above the RT deadline of 3500ms were removed from all analyses.

As a choice between two options in the learning phase was never necessarily “correct”, we

defined the selection of the optimal option (more reinforcing option of the presented pair) as a

correct choice. For the transfer phase, value conflict on a particular trial was defined on the
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basis of the experimental reinforcement value difference between the presented stimuli, where

smaller value differences were associated with higher conflict.

Computational model

Choices during the learning phase were fit with a reinforcement learning (“Q-learning”)

model [23, 83]. The Q-learning model has an extensive theoretical background in which deci-

sion-making is explicitly evaluated [84, 85] and has been successfully applied in a range of

domains. Examples of this are genetics [32, 86], clinical settings [54, 63, 87–89], attention [24],

decision bias [34] and risk [38]. For each option, the model estimates its expected value, or “Q-

value”, on the basis of individual sequences of choices and outcomes. All Q-values were set to

0.5 before learning. After each choice, the chosen option’s Q-value is updated by learning from

feedback that resulted in an unexpected outcome, which is captured by the RPE, ri(t) − Qi(t).
Thus, the Q-value for option i on the next trial t is updated depending on the outcome, r,
using the following formula:

Qiðt þ 1Þ ¼ QiðtÞ þ

(
aGain½ riðtÞ � QiðtÞ� if r ¼ 1

aLoss½ riðtÞ � QiðtÞ� if r ¼ 0
ð1Þ

where parameters 0� αGain, αLoss� 1 represent positive and negative learning rates, respec-

tively, that determine the magnitude by which value beliefs are updated depending on the

RPE. We modeled separate learning rates, as different striatal subpopulations are involved in

positive and negative feedback learning [35–37, 90] and individuals tend to learn more from

positive feedback [24, 25, 34]. Modeling two learning rates was further validated by comparing

this hierarchical Q-learning model to a hierarchical Q-learning model with only one learning

rate. Model selection was based on individual AIC and BIC values and supported the use of

two learning rates, as indicated by lower AIC and BIC values (mean AIC 1α = 234, mean AIC

2α’s = 218; mean BIC 1α = 242, mean BIC 2α’s = 230). Given the Q-values, the probability of

selecting one option over the other (e.g. selecting option A over B) was described by a softmax

choice rule:

PAðtÞ ¼
expðb � QAðtÞÞ

expðb � QBðtÞÞ þ expðb � QAðtÞÞ
ð2Þ

Here, 0� β� 100, or the explore-exploit parameter, described the sensitivity to option

value differences, where larger β values indicates greater sensitivity, and more exploitative

choices, for options with relative higher reward values.

Bayesian hierarchical modeling procedure

The Q-learning model was fit using a Bayesian hierarchical fitting procedure, where individual

parameter estimates were drawn from group-level parameter distributions that constrained

the range of possible individual parameter estimates. This procedure allowed for the simulta-

neous estimation of group-level and individual-level parameters [26, 91], thereby capitalizing

on the statistical strength offered by the degree to which participants are similar with respect

to the model parameters as well as taking into account individual differences [92].

As shown in Fig 1C, our model was implemented following [24, 25]. Variables ri(t-1)

(outcome for participant i on trial t-1) and chi(t) (choice of participant i on trial t) were

obtained from the behavioural data. Per-participant parameter estimates αGi (αGain participant

i), αLi (αLoss participant i) and βi (β participant i) were modeled using a probit transformation

z’i (a0Gi, a
0
Li, b

0

i). The probit transformation is the inverse cumulative distribution function of
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the normal distribution that can be used to specify a binary response model. z’i were drawn

from group-level normal distributions with mean μz0 and standard deviation δz0. A normal

prior was assigned to group-level means m z’ � N ð1; 0Þ and a uniform prior to the group-

level standard deviations d z’ � Uð1; 1:5Þ [26]. The Bayesian hierarchical model was imple-

mented in STAN [93] and fit to all trials of the learning phase that fell within the correct

response time window 150ms� RT� 3500ms, (mean = 99.5% of trials, SD = 0.8%). Multiple

chains were generated to ensure convergence, which was evaluated by the Rhat statistic [94].

The Rhat statistic confirmed convergence of the fitting procedure (i.e., all Rhats were equal to

1.0). We also tested whether the derived per-participant parameters could simulate choices

that were qualitatively similar to the observed choices originally used for fitting. Here, choices

were simulated 100 times for each participant using the mode of the derived per-participant

parameter distribution. Simulated choice accuracy was averaged across simulations and evalu-

ated against the observed choice data (Fig 2C).

Quantifying single-trial estimates

The modes of the per-participant posterior parameter distributions were selected to describe

individual positive and negative learning rates (αGain, αLoss) and relative reward sensitivity (β).

In the learning phase, these per-participant parameter estimates were used to quantify Q-val-

ues and RPEs on each trial. Specifically, we quantified for each trial the value of the option that

was chosen and the alternative unchosen option. In the transfer phase, when participants did

not receive feedback about their choices, we investigated how previously learned value related

to pupil responses during value-based decisions. To do so, we selected the final Q-value esti-

mates for each option (i.e. at the end of the learning phase) and used these values to quantify

for each trial the value of the chosen and unchosen stimulus, given the individual sequences of

choices. All obtained single-trial variables were used as covariate regressors in a deconvolution

analysis (described below), to investigate how they dynamically varied with trial-by-trial fluc-

tuations in transient pupil responses in the learning and transfer phase.

Pupillometry: Preprocessing

The diameter of the pupil was recorded at a 1000Hz using an EyeLink 1000 Tower Mount (SR

Research). The eye-tracker was calibrated prior to each run. Blinks and saccades were detected

using standard EyeLink software with default settings and Hedfpy, a Python package for pre-

processing eye-tracking data. Periods of data loss during blinks were removed by linear inter-

polation, using an interpolation time window of 200ms before until 200ms after a blink. Blinks

not identified by the manufacturer’s software were removed by linear interpolation around

peaks in the rate of change of pupil size, using the same interpolation time window. The inter-

polated pupil signal was band-pass filtered between 0.05Hz and 4Hz, using third-order Butter-

worth filters, z-scored per run, and resampled to 20Hz. As blinks and saccades have strong

and relatively long-lasting effects on transient pupil size [40, 95], these influences were

removed from the data, as follows. Blink and saccade regressors were created by convolving all

blink and saccade events with their standard Impulse Response Function (IRF) [40, 96, 97].

These convolved regressors were used to estimate their responses in a General Linear Model

(GLM), after which we used the residuals of this GLM for further analysis. For the subsequent

deconvolution analysis, trials were removed in which participants made a saccade towards

either of the two presented colored stimuli (i.e. saccades exceeding 3.3˚ visual angle away from

fixation) to ensure that pupil responses were not affected by eye movements (percentage

removed trials, mean = 4.8%; SD = 4.5%; range = 0.0%-16.3%).
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Pupillometry: Deconvolution analysis

Learning phase. Transient pupil responses were analyzed using FIRDeconvolution, a

Python package used to perform Finite Impulse Response fits [39]. For the analysis of the

learning phase, a design matrix was constructed that estimated pupil time courses of the fol-

lowing 3 transient event types: the onset of the choice options (start of the decision interval),

choice (keypress) and feedback (auditory tone). Time courses of the onset of the options and

feedback were estimated in the interval -0.5s. pre-event until 3.0s. post-event. The time course

of the choice was estimated in the interval -2.0s. pre-event until 1.5s post-event, as decision-

related pupil dilation is predominantly driven prior to the behavioral report [5, 43]. Further,

the sustained drive of pupil size during the decision interval, defined as the time period from

onset of the options until the choice, was estimated by a boxcar regressor. The boxcar regressor

expanded each trial’s RT (in samples) and was normalized by dividing the height of the boxcar

by the mean RT of the regressor. This procedure ensured that the estimated IRF of all transient

and sustained regressor types were comparable. Lastly, the design matrix included 2 stick

regressors to estimate the pupil time course of the following nuisance events: the onset of the

fixation dot and the offset of the options from the screen. Pupil time courses of both events

were estimated -0.5s. pre-event until 3.0s. post-event. No intercept was added to the design

matrix as ridge regression (described below) requires centered dependent and independent

variables [98]. For the decision interval, we investigated how value beliefs about presented

options affected pupil size by adding single-trial chosen and unchosen Q-value estimates as

covariates to the design matrix. The resulting regression coefficients -describing the time

course of the correlation between chosen and unchosen value and pupil size- were subtracted

from each other to quantify the correlation of the Q-value difference (ΔValue) and pupil size.

For the feedback interval, the same Q-value estimates were used as in the decision interval.

This allowed us to investigate how value beliefs about a recent choice affected pupil size after

receiving choice feedback. Thus, by using the same Q-value estimates for choice and feedback

intervals, we were able to investigate the effects of value predictions (choice) and value evalua-

tions (feedback) on pupil size. Finally, we added single-trial RPE estimates to the design matrix

to investigate how violations of choice beliefs affected the feedback-related response. All covar-

iate regressors were z-scored per participant, to ensure unbiased across-subject comparisons

of deconvolution beta weights.

Transfer phase. The design matrix for the deconvolution analysis of the transfer phase was

identical to that of the learning phase, with two exceptions: (1) the pupil time course for feed-

back events was not estimated, as no feedback events occurred during this phase, (2) a stick

regressor was included to investigate the effects of choice conflict on pupil responses. Choice

conflict was determined the basis of experimental reinforcement value differences between the

presented options, where trials were divided into three bins (10-20%; 30-40% and 50-60%), that

corresponded to large, medium and small choice conflict between options.

Pupillometry: Ridge regression

We implemented the deconvolution analysis using cross-validated ridge regression, which

allows one to find the general solution to a least-squares problem that would be unstable due

to multicollinearity of regressors [98]. Ridge regression penalizes, or shrinks, regression coeffi-

cient weights towards zero to reduce the estimation variance on the coefficients:

b̂ridge ¼ ðXTX þ lIÞ� 1XTy ð3Þ
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Here, y is the pupil time series signal and X is the design matrix consisting of a set of vectors

that contain ones at all sample times relative to the event timings of which we estimated the

pupil response, and zeros elsewhere. The identity matrix, I, is multiplied by λ� 0, a tuning

parameter that controls the strength of the penalty term. If λ = 0, the linear regression solution

is obtained, λ =1, b̂ridge ¼ 0. To obtain for each participant the optimal λ value, we applied

cross validation on the pupil time series data. Here, the pupil data was divided into a training

and test set. A weight matrix was obtained for each λ value (range = 0� λ� 1), using the train-

ing set, and was used to predict the test set. This process was repeated for 20 different selec-

tions of training and test sets, and the best λ value was selected based on its prediction

accuracy. The resulting regression, b̂ridge, contained the deconvolved pupil responses of all sepa-

rate event types.

Statistical comparisons

Nonparametric cluster-based permutation t-tests [99–101] were used to test for significant

regression coefficients and to correct for multiple comparisons over time. Briefly, for each

time point of a time series signal, t-tests were performed on each set of across-subject coeffi-

cient values. The cluster size was determined by the number of contiguous timepoints for

which the t-test resulted in P<.05. The observed cluster size was then compared to a random

permutation distribution of maximal cluster sizes: the proportion of random clusters resulting

in a larger size than the observed one determined the P-value, corrected for multiple

comparisons.

To assess the effects of chosen and unchosen value covariates on pupil size across the deci-

sion interval, we summed each regressor’s coefficient values locked to the start (option onset)

and locked to the end of the decision interval (the moment of choice), while discarding their

post-choice effects. We normalized the summed regressor coefficient values by the number of

samples they explained of the pupil time series signal. The resulting averaged, normalized

regressor coefficient values were used in a repeated measures ANOVA to test for main and

interaction effects on pupil size, both for the learning and transfer phase.

Across-subject analyses of the relation between pupil responses and computational model

parameters were calculated using bootstraps [102]. We randomly drew with replacement

10,000 new pupil size—model parameter estimate pairs which were used in the across-subject

GLM. From the resulting bootstrapped regression coefficients, 68% confidence intervals were

calculated using a percentile approach. P-values calculations were based on a two-sided

hypothesis test, with the P-value being the fraction of the bootstrap distribution that fell below

(or above) 0.

Supporting information

S1 Fig. Pupil responses predict individual differences in value-based decision-making. We

performed an across-subjects GLM describing the relation between pupil responses and esti-

mated model parameters across time. Average choice-locked pupil dilation (A) at the time of

the behavioral report (t = 0) was uniquely predicted by individual differences in relative reward

sensitivity (β-parameter; B). (C): Average feedback-related pupil dilation (1s. post-event) and

pupil constriction (2s. post-event) were uniquely predicted by individual differences in posi-

tive learning rate (αGain-parameter; D). (E,F): Average choice-locked pupil dilation in the

learning and transfer phase related in a highly similar fashion to the derived model parameters

(compare panels B and F), suggesting these underlying mechanisms affected choice-locked

pupil dilation in a similar way. Lines (dashed & solid) and shaded error bars of represent
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mean ± s.e.m of across-subject modulations (N = 34). Horizontal significance designators indi-

cate time points where regression coefficients significantly differentiate from zero (P<.05),

based on cluster-based permutation tests (n = 1000).

(TIF)

S2 Fig. Differences in tonic pupil size do not explain observed differences in pre-choice

pupil size modulation between the learning and transfer phase. Chosen value modulated

choice-locked pupil dilation prior to choice in the learning, but not in the transfer phase.

Could this differential pupil size modulation be driven by slow fluctuations in tonic pupil size,

that are known to affect the magnitude of concurrent phasic pupil responses? We tested this

hypothesis using the unfiltered pupil time series data from the learning and transfer phase. As

these data contain all temporal frequencies in the pupil size signal, they provide a clear view on

potential tonic pupil size differences between the learning and transfer phase. Before making

any comparisons, we first calculated each participant’s average pupil size across the entire

experiment and subtracted this value from the blink-interpolated pupil time series data. This

procedure corrected for inter-individual differences in raw baseline pupil diameter that can be

caused by several confounding factors such as differences in ambient lightning or age [40,

103], improving power for the comparison of the different conditions. Next, for each subject

the blink-interpolated pupil data of the learning and transfer phase was divided in trial epochs

and mean pupil size per trial was calculated—this effectively constitutes a low-pass filtering

operation and is standard in the literature [4, 104]. (A), Averaged across subjects (N = 34), no

systematic differences in tonic pupil size were observed between the learning and transfer

phase. This finding speaks against the hypothesis that differences in tonic pupil size explain

the observed differential modulation of pre-choice pupil dilation between the learning and

transfer phase. However, the observed slow fluctuations of tonic pupil size followed a consis-

tent pattern that was characterized by high tonic pupil size at the start of each run (consisting

of 60 trials) and that progressively decreased until the end of a run; a pattern that has been

reported before [40, 105] and is thought to reflect the evolution of general vigilance during

each experimental run. (B) Box plots representing tonic pupil size averaged across all trials of

all participants (N = 34) of the learning and transfer phase largely overlap, showing that tonic

pupil size does not systematically differ between the learning and transfer phase. Shaded error

bars represent bootstrapped 95% confidence intervals of the mean (n = 1000).

(TIF)

S3 Fig. Surprise does not modulate feedback-related pupil dilation. We asked whether feed-

back-related pupil dilations scaled with the unexpectedness or the uncertainty of choice out-

comes. We quantified how value beliefs about a recent choice modulated dilation after

receiving positive versus negative feedback. Receiving positive (A, black line) versus negative

(B, black line) feedback resulted in equally strong feedback-related pupil dilation at time of

maximal dilation (cluster P = .23), indicating that feedback valence did not drive pupil dilation.

If these feedback-related pupil dilations were modulated by surprise, unexpected feedback

with respect to current value beliefs should increase dilation. That is, for positive feedback the

difference in value beliefs (chosen—unchosen) should correlate negatively with pupil dilation

whereas for negative feedback it should correlate positively. We found that the correlation

between value beliefs and pupil dilation was highly similar in response to both positive and

negative feedback (C). This pattern of results indicates that uncertainty rather than surprise

drives feedback-related pupil dilations. Statistics based on cluster-based permutation tests

(n = 1000).

(TIF)
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