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a b s t r a c t

Objectives: Rheumatoid arthritis (RA) is characterized by chronic inflammation of the synovium, pro-
gressive erosion of the articular cartilage, and joint destruction. RA also causes secondary osteoporosis
and muscle wasting. We investigated the effects of ibandronate (IBN), a bisphosphonate; eldecalcitol
(ELD), an active vitamin D3 derivative; and combination treatment with both agents on secondary
osteoporosis and muscle wasting using adjuvant-induced arthritis rats.
Methods: Arthritis was induced in 8-week-old male Lewis rats. Rats were randomized into 4 treatment
groups and an untreated normal control group: IBN (subcutaneously, once every 2 weeks, 10 mg/kg), ELD
(orally, once daily, 30 ng/kg/day), IBN þ ELD, vehicle, and control. Paw thickness measurements were
performed for evaluation of arthritis. The femur was scanned using dual-energy X-ray absorptiometry.
Cross-sectional areas of left tibialis and anterior muscle fibers and the expression of MuRF1, atrogin-1,
MyoD, and myogenin in the gastrocnemius muscle were measured to evaluate muscle wasting.
Results: IBN and/or ELD increased bone mineral density (BMD) in the femur. In addition, there was an
additive effect of combination treatment compared with single treatments for BMD. However, IBN and/or
ELD did not inhibit muscle wasting in adjuvant-induced arthritis rats.
Conclusions: Combination treatment with IBN and ELD may be effective for secondary osteoporosis
associated with RA. Other treatments are necessary for muscle wasting associated with RA. Studies in
humans are needed to confirm these findings.
© 2018 The Korean Society of Osteoporosis. Publishing services by Elsevier B.V. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Rheumatoid arthritis (RA) is a chronic and progressive autoim-
mune disease characterized by proliferative and invasive synovitis;
it results in destruction of joints and erosion of cartilage and bone
[1]. In addition, it has been reported that RA is often associatedwith
periarticular or generalized osteoporosis [2,3], decreased muscle
function, and low muscle mass [4,5]. Patients with RA frequently
have pain and impaired muscle function, which limits physical
activity and decreases quality of life [6e8]. Therefore, it is impor-
tant to prevent physical destruction of joints, bone, and muscle in
patients with RA.

Biologics are commonly used to treat RA. However, the effects of
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biologics on bone mineral density (BMD) and muscle atrophy in
patients with RA are still unclear. Additional treatments for pre-
venting or recovering bone or muscle in patients with RA are
required. Bisphosphonates and active vitamin D are widely used in
the treatment of secondary osteoporosis associated with RA [9].
Bisphosphonates have a high affinity for bone tissue and are
incorporated into osteoclasts during bone resorption [10]; they also
induce apoptosis [11]. Ibandronate (IBN), a nitrogen-containing
bisphosphonate, is effective in preventing bone fragility fractures
in patients with osteoporosis [12]. IBN was shown to increase
lumbar and total body BMD to a greater extent than did alendro-
nate or risedronate, which are widely used in the treatment of
osteoporosis [13]. Although it has been reported that IBN sup-
presses muscle atrophy in animal experiments of RA [14], its effects
on bone and muscle have not been completely clarified.

Vitamin D is necessary for bone health because of its role in the
regulation of calcium homeostasis, and vitamin D serum levels
influence an adequate response to bisphosphonate treatment [15].
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In addition, it was reported that vitamin D deficiency was common
in RA patients [16]. Thus, vitamin D is important in treating sec-
ondary osteoporosis with RA. Eldecalcitol (ELD) is an active vitamin
D3 derivative used for the treatment of osteoporosis in Japan [17]. It
is frequently used in combination with other antiosteoporotic
drugs. Sakai et al. [18] reported that treatment with the combina-
tion of IBN plus ELD was beneficial in the treatment of osteoporosis
in aged postmenopausal osteopenia model rats. There are several
reports of the effect of vitamin D on muscle strength and mobility
in humans [19,20]. Similarly, ELD has been shown to have a positive
effect on skeletal muscle in both animal and human studies [21,22].
However, the effect of ELD used as a single agent or combined with
a bisphosphonate for secondary osteoporosis and muscle atrophy
associated with RA is unknown.

Adjuvant-induced arthritis (AIA) is a widely used experimental
animal model because it shows similarities with human RA [23,24].
After immunization, rats develop inflammation and polyarthritis
that lead to decreased bodyweight and loss of skeletal muscle mass
[25]. Muscle wasting in arthritic rats is associated with an increase
in the activity of the ubiquitin-proteasome pathway, and the key
enzymes in this process are two E3 ubiquitin ligases, muscle ring
finger protein-1 (MuRF1) and atrogin-1 [26].

In this study, we investigated the effects of IBN, ELD, and a
combination of IBN þ ELD on secondary osteoporosis and muscle
wasting using AIA rats.

2. Methods

2.1. Animals and experimental protocol

Eight-week-old male Lewis rats (Japan SLC, Shizuoka, Japan)
were used in this study. Adjuvant arthritis was induced by subcu-
taneous injection of a prepared suspension of Mycobacterium
tuberculosis H37Ra (Difco Laboratories, Detroit, MI, USA) in paraffin
oil (5mg/mL) into the footpad of the right hind paw (50 mL). Normal
untreated rats were used as a control (CON) group. From day 21
after adjuvant injection, the CON and AIA rats were divided into 5
groups (n ¼ 10 in each group): (1) CON group, normal control rats
for the AIA group; (2) Vehicle group, AIA control rats treated with
isotonic sodium chloride solution (Otsuka Pharmaceutical Factory,
Tokushima, Japan) for vehicle of IBN and medium-chain triglycer-
ide (The Nisshin Oillio Group, Tokyo, Japan) for vehicle of ELD; (3)
IBN group, AIA rats treated with IBN (subcutaneously, once every 2
weeks, 10 mg/kg) (Bonviva, Chugai Pharmaceutical Co., Ltd., Tokyo,
Japan); (4) ELD group, AIA rats treated with ELD (orally, once daily,
30 ng/kg/day) (Chugai Pharmaceutical Co., Ltd.); and (5) IBN þ ELD
group, AIA rats treatedwith a combination of IBN and ELD. The dose
of IBN or ELD was based on previous studies [18,27], in which IBN
and ELD elevated femoral and lumbar spinal BMD in ovariecto-
mized rats. Rats were allowed ad libitum access to tap water and
commercial standard rodent chow (CE-7; Clea Japan, Tokyo, Japan),
and housed in a controlled environment (temperature 23 ± 2 �C,
humidity 40 ± 20%) with a 12-h light-dark cycle. After 2 or 4 weeks
treatment, rats were euthanatized by an injection of sodium
pentobarbital (150 mg/kg body weight, intraperitoneally)
(Nembutal, Sumitomo Dainippon Pharma Co., Ltd., Osaka, Japan).

2.2. Tissue preparation

Left femurswere harvested and used formeasurement of BMD by
dual-energy X-ray absorptiometry (DXA). Left tibialis anterior (TA)
muscles were harvested and stored in liquid nitrogen for measure-
ment of cross-sectional areas (CSAs), and left gastrocnemius muscles
were harvested and stored in RNAlater solution (Qiagen, Hilden,
Germany) at �80 �C for real-time polymerase chain reaction (PCR).
The Animal Research Committee of our institute approved the
protocol for all animal experiments, and all animal experiments
adhered to the “Guidelines for Animal Experimentation” of the
university.

2.3. Body weight

Body weight was measured at the beginning and end of the
experiment (Keimaiko; Yamato-scale, Hyogo, Japan).

2.4. Clinical measurements of arthritis by paw thickness

Clinical signs of arthritis in each hind paw were assessed once
weekly by investigators blind to the treatment group, as previously
described [28,29]. Hind footpad width was also measured once
weekly with calipers (Dial Thickness Gauge; Ozaki Mfg. Co., Ltd.,
Tokyo, Japan) [30].

2.5. BMD measurement

BMD of the total femur was measured using DXA (QDR-4500
Delphi; Hologic, Bedford, MA, USA). Results were used to assess
secondary osteoporosis.

2.6. Histological analysis of muscle

Left TA muscles in rats in the 5 groups that were treated for 4
weeks (n ¼ 5) were analyzed histologically. Samples were cut into
10-mm thick transverse serial sections at the thickest part of the
muscle belly, with the cryostat maintained at�18 �C. Sections were
stained histochemically with hematoxylin and eosin. To measure
CSAs of muscle fibers, microscopic images at a magnification of
200� were captured digitally (Facescope IIPS20; Alfabio, Gunma,
Japan), and individual muscle fibers were traced on-screen using
ImageJ image analysis software (National Institutes of Health,
Bethesda, MD, USA). Areas were calculated using ImageJ software
based on a calibrated pixel-to-actual size (micrometer) ratio. Fifty
fibers per muscle were randomly chosen, muscle fiber CSA was
measured, and mean CSA for one muscle fiber was calculated.

With this method, intraobserver variation, as assessed by the
coefficient of variation for 3 corresponding measurements in 50
randomly selected fibers, ranged from 0.1% to 1.2%. Interobserver
variation between the three investigators, as assessed by the co-
efficient of variation of measurements in 50 randomly selected
images, ranged from 3.7% to 8.5%.

2.7. Gene expression analysis of skeletal muscle

Gastrocnemius muscles were isolated from the tibias of rats
from all groups treated for 2 and 4 weeks (n ¼ 5). We evaluated the
gene expression of MyoD, and myogenin as muscle anabolic
markers and atrogin-1 and MuRF1 as muscle catabolic markers.
Samples were crushed with a homogenizer (MS-100R; Tomy,
Tokyo, Japan). Total RNA was collected from tissue using TRIzol
reagent (Life Technologies, Carlsbad, CA, USA) according to the
manufacturer's protocol. The final concentration of RNA was
determined with NanoDrop spectrophotometer ND-1000 (Thermo
Fisher Scientific, Waltham, MA, USA). First-strand cDNA synthesis
was performed using the First-Strand cDNA Synthesis Kit (GE
Healthcare, Milwaukee, WI, USA). Quantitative reverse-
transcription PCR was done using Light Cycler 480 (Roche, West
Sussex, United Kingdom) according to the manufacturer's protocol,
with TaqMan probes specific for rat MyoD (TaqMan probe ID:
Rn01457527_g1), myogenin (TaqMan probe ID: Rn01490689_g1),
atrogin-1 (TaqMan probe ID: Rn00591730_m1), and MuRF1
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(TaqMan probe ID: Rn00590197_m1).
Amplification of glyceraldehyde3-phosphate dehydrogenase

was used as an internal control for sample normalization (TaqMan
probe ID: Rn01775763_g1).

2.8. Statistical analyses

Statistical analyses were performed using the Statistical Package
for the Biosciences software ver. 9.6 (Akita University, Akita, Japan)
[31]. Continuous variables were expressed as mean ± standard
deviation. Differences between groups at each time point were
evaluated using one-way analysis of variance (ANOVA). Multiple
comparisons were made using Scheffe and Dunn post hoc tests, as
appropriate. Nonparametric data, including skeletal muscle gene
expression, was analyzed by Dunn method. Parametric data were
analyzed by Scheffe method. Skeletal muscle gene expression was
analyzed by the Wilcoxon rank-sum test based on the data of
control rats at 2 weeks. Data were analyzed by 1-way ANOVA fol-
lowed by a least significant difference test. Values of P < 0.05 were
considered significant.

3. Results

3.1. Body weight and arthritis

The body weight of rats in the CON group was significantly
higher than rats in the AIA groups (Vehicle, IBN, ELD, and IBNþ ELD
group) at the beginning and end of the experiment (P < 0.05).
However, no significant differences inweight were seen among any
of the AIA groups (Table 1).

The paw thickness of rats in the AIA groups was significantly
greater than rats in the CON group at the end of 2 and 4 weeks.
However, therewere no significant differences in the paw thickness
of the AIA groups at the 2 and 4 weeks (Fig. 1).

3.2. Bone mineral density

At the end of 2 and 4 weeks, total femoral BMDwas significantly
decreased in the AIA groups (Vehicle, IBN, ELD, and IBN þ ELD
groups) compared with the CON group (P < 0.01).

IBN and/or ELD treatment for 2 weeks significantly increased
the BMD of total femur compared with that of vehicle group
(P < 0.05). At 4 weeks, an additional increase was observed at the
total femoral BMD in the IBN þ ELD group, compared with IBN
alone or ELD alone groups (P < 0.05) (Table 2).

3.3. Cross-sectional area

The CSA of TA muscle fibers of rats in the CON group was
significantly greater than rats in the AIA groups at the end of 2 and 4
Table 1
Body weight (g) in each group at 2 and 4 weeks.

CON Vehicle IBN ELD IBN þ ELD

2 Weeks
Start 258 ± 61 199 ± 7* 202 ± 12* 199 ± 9* 195 ± 11*
End 291 ± 11 228 ± 12* 223 ± 12* 212 ± 11* 209 ± 12*

4 Weeks
Start 269 ± 11 193 ± 9* 191 ± 6* 198 ± 12* 203 ± 11*
End 321 ± 16 246 ± 13* 245 ± 11* 235 ± 18* 237 ± 12*

n ¼ 10 per group.
Values are presented as mean ± standard deviation.
CON, control; IBN, ibandronate; ELD, eldecalcitol; Start, beginning of drug admin-
istration; End, at sacrifice.
*P < 0.05 vs. CON by Scheffe method.
weeks. However, no significant differences in the CSA of TA muscle
fibers were seen among the AIA groups at the both of 2 and 4 weeks
(Table 3).

3.4. Gene expression analysis of skeletal muscle

Two weeks of treatment with ELD alone and IBN þ ELD showed
significantly higher mRNA expression of MuRF1 (P < 0.05)
compared with the CON group (Fig. 2B). IBN and/or ELD treatment
did not affect mRNA expression of atrogin-1 at 2 or 4 weeks (Fig. 2A,
C).

On the other hand, in regard to the myogenic regulatory factors,
AIA rats (Vehicle group) revealed significantly higher mRNA
expression levels ofMyoD at 2 and 4 weeks compared with the CON
group (P < 0.05) (Fig. 3A, C). Two weeks' treatment with IBN and 4
weeks’ treatment with ELD showed significantly higher MyoD
expression compared with the CON group (P < 0.05) (Fig. 3A, C).
Myogenin mRNA expression levels in the IBN, ELD, and IBN þ ELD
groups at 2 weeks and IBN group at 4 weeks were significantly
higher than levels in the CON group (P < 0.05) (Fig. 3B, D).

However, there were no significant differences in the muscle
anabolic (MyoD and myogenin) and catabolic markers (MuRF1 and
atrogin-1) among the AIA groups at both 2 and 4 weeks (Figs. 2 and
3).

4. Discussion

In the present study, we demonstrated that IBN and/or ELD
increased BMD in the femur, whereas IBN and/or ELD did not
inhibit muscle wasting in AIA rats.

There are several reports on combination therapy with IBN and
ELD. Sakai et al. [18] reported that treatment with IBN þ ELD had a
synergistic effect on inhibition of bone resorption without sup-
pressing bone formation in ovariectomized rats. Takada et al. [32]
reported that IBN þ ELD for 6 months significantly improved bone
strength of the proximal femur in postmenopausal women with
osteoporosis. Bisphosphonates augment BMD through the inhibi-
tion of osteoclast activity [33]. Third-generation nitrogen-contain-
ing bisphosphonates, such as IBN, inhibit farnesyl pyrophosphate
synthetase in the mevalonate pathway in osteoclasts and induce
apoptosis of osteoclasts, thereby inhibiting osteoclastic activity
[11]. On the other hand, it was reported that ELD increased BMD by
suppressing the expression of receptor activator of nuclear factor-
kappa B ligand in bone tissue, a stimulator of osteoclast differen-
tiation and bone resorption [34]. This difference in mechanism of
action on osteoclasts might be the reason for the additive effect of
ELD þ IBN on the increase in BMD.

AIA rats revealed significantly higher mRNA expression levels of
MyoD at 2 and 4 weeks compared with the CON group. Impaired
skeletal muscle regeneration affects muscle atrophy, andMyoD and
myogenin are important factors in muscle regeneration. Following
damage in adult skeletal muscle, satellite cells start to proliferate
and differentiate, and expression of MyoD and myogenin increases
[35]. Expression ofMyoD is related to activation and proliferation of
satellite cells, whereas myogenin reflects terminal myoblast differ-
entiation [36]. Castillero et al. [37] reported that AIA increases the
expression ofMyoD andmyogenin in rats. The increased expression
of MyoD was considered to reflect stimulated muscle regeneration
in AIA rats.

In the skeletal muscle, when muscle satellite cells differentiate
and proliferate, and damaged muscles are regenerated, several
myogenic regulatory factors are involved, such as MyoD and myo-
genin [36]. An in vitro study showed that ELD upregulated gene
expression of vitamin D receptors,MyoD, insulin-like growth factor,
and myosin heavy chain subtypes in differentiated C2C12
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Fig. 1. Paw thickness. Paw thickness at 2 weeks (A) and 4 weeks (B). n ¼ 10 per group. Values are presented as mean ± standard deviation. CON, control; IBN, ibandronate; ELD,
eldecalcitol. *P < 0.05 vs. CON by Scheffe method.

Table 2
Bone mineral density (g/cm2) of total femur in each group at 2 and 4 weeks.

CON Vehicle IBN ELD IBN þ ELD

2 Weeks 0.230 ± 0.009 0.165 ± 0.013* 0.181 ± 0.007*,y 0.189 ± 0.010*,y 0.197 ± 0.010*,y,z

4 Weeks 0.246 ± 0.009 0.153 ± 0.010* 0.178 ± 0.006*,y 0.186 ± 0.010*,y 0.202 ± 0.012*,y,z,¶

n ¼ 10 per group.
Values are presented as mean ± standard deviation.
CON, control; IBN, ibandronate; ELD, eldecalcitol.
*P < 0.05 vs. CON by Scheffe method.
yP < 0.05 vs. Vehicle by Scheffe method.
zP < 0.05 vs. IBN by Scheffe method.
¶P < 0.05 vs. ELD by Scheffe method.

Table 3
Cross-sectional areas of tibialis anterior muscle fibers (mm2).

CON Vehicle IBN ELD IBN þ ELD

2 Weeks 3682.1 ± 586.5 1091.7 ± 177.6* 1230.1 ± 175.7* 1304.0 ± 105.1* 1476.7 ± 417.0*
4 Weeks 3655.3 ± 781.4 1192.4 ± 262.9* 1317.8 ± 201.0* 1385.1 ± 466.7* 1336.1 ± 342.6*

n ¼ 5 per group.
Values are presented as mean ± standard deviation.
CON, control; IBN, ibandronate; ELD, eldecalcitol.
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myoblasts [38]. Kinoshita et al. [21] reported that ELD treatment
increased TA muscle type II fiber CSA and improved muscle
strength by inducing higher expression of myogenin in the
glucocorticoid-induced myopathy rat model. Based on these re-
sults, we expected that IBN and/or ELD treatment regenerated
muscle atrophy in the AIA rats by stimulating the expression of
myogenic regulatory factors such as myogenin and MyoD at the
beginning of the experiment. However, muscle atrophy was not
improved by administration of IBN and/or ELD, and there were no
significant differences in the expression of the anabolic skeletal
muscle genes (MyoD andmyogenin) among the AIA rats. This might
be caused by the severe muscle atrophy in AIA rats or a lower dose
and shorter duration of IBN and ELD treatment in the present study.

MuRF1 and atrogin-1 are key enzymes in the ubiquitin-
proteasome proteolytic pathway [26,39]. In addition, inflamma-
tory cytokines such as tumor necrosis factor-a and IL-6 promote
NFkB signaling and induce muscle protein degradation and
apoptosis [40]. Granado et al. reported that increased expression of
MuRF1 and atrogin-1 was involved in muscle wasting in AIA rats
[26], and Watanabe et al. reported that IBN treatment significantly
inhibited skeletal muscle atrophy by suppressing the expression of
atrogenes (atrogin-1 and MuRF1) in denervation-induced immobi-
lization model mice [14]. Thus, we hypothesized that IBN and/or
ELD administration would suppress the expression of atrogenes
such as MuRF-1. However, instead, ELD and IBN þ ELD stimulated
the expression of MuRF-1 in AIA rats. Although there are several
reports that administration of active vitamin D decreased food
intake and increased expression of MuRF1 in rats [41,42], further
investigation is needed regarding the effects of IBN and/or ELD on
atrogenes.
5. Conclusions

In conclusion, IBN and/or ELD treatment increased femoral BMD
in AIA rats. However, IBN and/or ELD treatment did not inhibit
muscle wasting. These results suggest that combination treatment
of IBN and ELD may be effective for secondary osteoporosis asso-
ciated with RA, but another treatment might be necessary for
muscle wasting associated with RA. Studies in humans are needed
to confirm these findings.



Fig. 2. Muscle catabolic markers. Measurement of Atrogin-1 (A, C) and MuRF1 (B, D) expression in gastrocnemius muscle at 2 and 4 weeks using reverse-transcription polymerase
chain reaction. n ¼ 5 per group. Values are presented as mean ± standard deviation. *P < 0.05 by Dunn multiple comparison test. MuRF1, muscle ring finger protein-1, CON, control;
IBN, ibandronate; ELD, eldecalcitol.

Fig. 3. Muscle anabolic markers. Measurement of MyoD (A, C) and Myogenin (B, D) expression in gastrocnemius muscle at 2 and 4 weeks using reverse-transcription polymerase
chain reaction. n ¼ 5 per group. Values are presented as mean ± standard deviation. *P < 0.05 by Dunn multiple comparison test. CON, control; IBN, ibandronate; ELD, eldecalcitol.
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