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Refractory and/or recurrent Ewing’s sarcoma (EWS) remains a clinical challenge because the disease’s resistance to therapy makes
it difficult to achieve durable results with standard treatments that include chemotherapy, radiation, and surgery. Recently,
insulin-like-growth-factor-1-receptor (IGF1R) antibodies have been shown to have a modest single-agent activity in EWS. Patient
selection using biomarkers and understanding response and resistance mechanisms in relation to IGF1R and mammalian target
of rapamycin pathways are areas of active research. Since EWS has a unique tumor-specific EWS-FLI1 t(11;22) translocation and
oncogenic fusion protein, inhibition of EWS-FLI1 transcription, translation, and/or protein function may be key to eradicating
EWS at the stem-cell level. Recently, a small molecule that blocks the protein-protein interaction of EWS-FLI1 with RNA helicase
A has been shown in preclinical models to inhibit EWS growth. The successful application of this first-in-class protein-protein
inhibitor in the clinic could become a model system for translocation-associated cancers such as EWS.

1. Introduction

In patients with localized Ewing’s sarcoma (EWS), the stan-
dard 5-drug cytotoxic chemotherapy regimen administered
by the Children’s Oncology Group (COG) results in a
disease-free survival rate of 60%–70%. In EWS patients
with metastatic or recurrent disease, however, the same
5-drug regimen results in a disease-free survival rate of
less than 20%, which is not improved with chemotherapy
intensification or stem cell transplantation [1, 2] (Figure 1).
The most recent Surveillance, Epidemiology, and End Results
9 (SEER 9) registry data reflects a therapeutic survival plateau
in EWS over the last 20 years (Figure 2), likely owing to the
rarity of the disease and a consequent lack of study [3]. For
example, from 1993 to 2009, the COG performed 14 phase
III trials for acute lymphoblastic leukemia but only 3 for EWS
[3–6]. This reflects the limitations of conventional cytotoxic
chemotherapy and underscores the need for targeted therapy
in EWS. The classic example of a targeted treatment is
imatinib therapy in chronic myelogenous leukemia where
bcr-abl, the Philadelphia chromosome translocation drives
tumorigenesis. Directed therapy using imatinib induces

dramatic and often durable clinical responses even at doses
well below the maximum tolerated dose. Contrastingly,
many solid tumors do not possess a clear cut tumor driver.
However, Ewing’s sarcoma with its specific translocation
EWS-FLI1 (11 : 22) opens up a possibility of targeted
therapies. So far, it has remained a targetable disease without
a targeted drug.

Insulin-like growth factor 1 receptor (IGF1R) inhibitors
have demonstrated significant activity in EWS [7–9], renew-
ing hope for patients with this disease. However, most
EWS patients whose disease responds to IGF1R inhibitors
develop resistance to the therapy and disease relapse or
recurrence within several months. There are concerns about
how to translate these findings of responses of IGF1R
responses in EWS into frontline, noncardiotoxic therapy for
EWS. Investigations of other novel treatments are clearly
warranted. The IGF1R resistance pathways and mechanisms
of resistance remain subjects of active research [10].

Unlike other sarcomas, which arise from the mesoderm,
the exact cell of origin in EWS is unknown. Because EWS
shares some markers with primitive cells of neural lineage,
the disease may arise from primitive neuroectodermal cells;
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Figure 1: Current and future EWS treatment options. Current treatment of EWS typically employs VAC+IE or VIDE regimens. Local control
includes surgery and/or radiation therapy. With this regimen, patients with only local disease have about 70% disease-free survival (EFS).
However, patients with EWS who have metastatic disease or who have recurrence have <20% EFS. Second-line relapse regimens as shown
below often provide temporary benefit. New agents against IGF1R and /or mTOR are currently available. Future options include innovative
targeted therapies. V: vincristine; D: doxorubicin; C: cyclophosphamide; I: ifosphamide/mesna; E: etoposide; IGF1R insulin-like growth
factor 1 receptor inhibitor; mTOR: mammalian target of rapamycin inhibitor.

however, because EWS most commonly seems to arise from
bone tissue, it is also possible that it is of a mesodermal origin
[11, 12]. EWS may also arise from a marrow mesenchymal
stem cell (MSC) precursor. This is an attractive possibility
because MSC may not only be uniquely susceptible to
EWS/FLI1 action but also be a source of CD133+ tumor stem
cells and high aldehyde dehydrogenase levels [13].

EWS characteristically possesses a unique translocation
that results from the fusion of the N-terminal of the EWS
gene (EWS) on chromosome 22 to the C-terminal of an
erythroblastosis virus-transforming sequence-1 (ETS)
fusion partner. The friend leukemia integration-1 (FLI-1)
site accounts for about 85% of fusion transcripts; less
commonly, the ETS-related gene (ERG), which is located in
chromosome 22, is involved [14]. EWS fusion proteins act as
aberrant transcriptional regulators and probably cause the
critical events that produce EWS transformation [13].

Although different exon-intron combinations are possi-
ble, the two most common fusions are either EWS exon 7 to
FLI-1 exon 6 (type 1; 51% of EWS patients) or EWS exon
7 to FLI1 exon 5 (type 2; 27% of patients). Two prospective
studies have shown that EWS patients with type 1 or type
2 translocations who are given standard chemotherapy have
similar outcomes [15, 16].

Since the EWS-FLI1 target is present only in EWS
tumor cells and absent in normal cells, directly targeting
the action of this abnormal protein is a logical step in
the development of a specific EWS therapy. Reduction of
EWS-FLI1 expression in cell lines and nude mouse models

by nanoparticle-delivered oligodeoxynucleotides, antisense
RNA, and siRNA is associated with anti-EWS activity [17,
18]. Although these findings confirm that specific EWS-
FLI1 targeting is possible and affects EWS oncogenesis, these
laboratory methods are currently too difficult to translate
into in vivo approaches in humans.

One approach for EWS-FLI1 targeted therapy would be
to develop protein-protein inhibitors, a new class of drugs.
Recently, surface plasmon resonance screening revealed that
YK-4-279, a lead compound with potent anti-EWS activity,
blocked RNA helicase A binding to EWS-FLI1, induced
apoptosis in EWS cell lines, and reduced growth in EWS
xenografts [19]. Since this small molecule is hydrophobic,
it should be orally bioavailable and may be suitable for
continuous dosing, an important schedule for molecularly
targeted agents.

This paper will highlight some of the unique opportuni-
ties to use new biologic agents to improve outcomes in EWS
patients. The successful application of this information in
high-risk EWS patients with relapsed or metastatic disease
may provide a model for improving the treatment of
sarcomas in general.

2. Current Status of IGF1R and EWS

The IGF1R (Figure 3) plays an important role in the growth
and development of normal tissue as well as the initiation,
maintenance, survival, progression, and metastasis of many
sarcomas including EWS [20–22]. The activity of IGF1R
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Figure 2: Five-year survival rates for Ewing’s sarcoma (EWS),
1975–2006. The 5-year survival rates for EWS among children and
adolescents is shown by age group and time period of diagnosis
from 1975 through 2002, with follow-up of survival through 2006;
data are from the Surveillance, Epidemiology, and End Results 9
(SEER 9) registries (Reprinted with permission from Smith et al.
J Clinical Onc 2010; 28:2625-2634).
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Figure 3: Insulin-like growth factor 1 receptor (IGF1R) system.
Ligands (IGF-I, IGF-II, and insulin) bind to the receptors (IGF1R,
IGF-2R, and insulin receptor [IR]) with different affinity. The
IGF1R and IR possess tyrosine kinase activity. Binding of the IGF-
1 ligand to IGF1R leads to a conformational modification of the
receptor and activation of the tyrosine kinase subunit. Each receptor
triggers complex and different intracellular signaling cascades.

in EWS was first demonstrated more than 20 years ago.
Additional preclinical studies since then have shown that
inhibiting IGF1R suppresses growth in EWS cell lines
and EWS xenografts [10]. The introduction of humanized
monoclonal antibodies that inhibit IGF1R in phase I and
II clinical trials and the dramatic single-agent anti-IGF1R
activity observed in refractory EWS patients provided the
initial excitement in the sarcoma community [23].

Table 1: Insulin-like growth factor 1 receptor monoclonal antibod-
ies against Ewing’s sarcoma.

Drug Manufacturer Current status Reference

R1507 Roche PC [9, 25, 26]

CP-751,871
(figitumumab)

Pfizer PC [7]

AMG-479 Amgen C [8, 27]

SCH-717454
(robatumumab)

Schering-Plough PC∗ [24]

IMC-A12
(cixutumumab)

Imclone A+ [28]

MK-0646 Merck A+ [29]

BIIB022 Biogen Idec A [30]

AVE-1642 Sanofi-Aventis A [31]
∗

PC: permanently closed; C: closed; A, accruing; A+: accruing combination
trials and/or additional future trials in development.

Currently, more than 25 agents acting via IGF1R inhi-
bition are in preclinical and clinical development (Tables 1
and 2). The first of these monoclonal antibodies shown to
have activity in EWS was R1507. This finding was initially
presented at the 2007 CTOS meeting [23] and prompted the
Sarcoma Alliance for Research through Collaboration 011
study, a phase II study that enrolled more than 300 patients
with various sarcomas including EWS. Other studies of some
of these antibodies have been completed, and studies of
R1507, CP-751,871 (figitumumab), and AMG-479 have been
published [7–9]. A study of SCH-717454 (robatumumab)
was presented at the 2008 Annual CTOS Meeting; this study
included a cohort of patients with refractory or resistant EWS
as well as two osteosarcoma cohorts [24].

Small-molecule inhibitors of IGF1R are also in preclinical
or clinical development (Table 2). In addition to blocking
IGF1R, some of these IGF1R inhibitors may also inhibit
insulin receptor A, and several have been shown to have
promising preclinical EWS activity. These molecules may act
more proximal with regard to IGF1R signalling and thus
enable oral dosing. On the downside, such agents may have
more toxicity than IGF1R monoclonal antibodies.

3. Toxicity of Anti-IGF1R Antibodies

IGF1R-targeted monoclonal antibodies have a less toxic
safety profile and a higher patient acceptance than currently
available cytotoxic chemotherapy regimens for EWS [7–9,
24]. Grade 3 (severe) and grade 4 (life-threatening) events in
EWS patients taking IGF1R-targeted monoclonal antibodies
are rare (Table 3). Grade 3 hyperglycemia, a concern when
using agents that could affect not only IGF1R but also
insulin receptor, have been reported but are very uncommon,
affecting <5% of patients. Because insulin may drive tumor
proliferation, this finding needs to be investigated in patients
with frank diabetes mellitus. On the other hand, diabetic
patients who receive metformin may benefit from the drug’s
inhibition of mammalian target of rapamycin (mTOR).
Other grade 1 or 2 toxicities such as lymphopenia and



4 Sarcoma

Table 2: Small-molecule inhibitors of insulin-like growth factor 1 receptor (IGF1R).

Drug Manufacturer Current status Reference

OSI-906 OSI Pharmaceuticals In vivo and in vitro activity in EWS, some activity in
chondrosarcoma

[32]

BMS-554417 Bristol-Myers Squibb In vitro activity against EWS [33]

XL-228 Exelixis
A multitargeted protein kinase inhibitor targeting
IGF1R, FGFR1-3, the Aurora kinases, and the ABL,
ALK, and SRC family kinases

[34]

INSM-18 Insmed and UCSF

Orally bioavailable small molecule tyrosine kinase
inhibitor that has demonstrated selective inhibition of
IGF1R and human epidermal growth factor receptor
(Her2/Neu).

[21]

GSK1904529A and
GSK1838705A

GlaxoSmithKline In vitro activity in EWS cell lines [35, 36]

EWS: Ewing’s sarcoma; FGFR1-3: fibroblast growth factor receptor 1–3.

thrombocytopenia are also commonly observed when anti-
IGF1R antibodies are used and are increased when anti-
IGF1R antibodies are used in combination with mTOR
inhibitors.

Although IGF1R agents have the potential for car-
diotoxicity, none of these antibodies have yet demonstrated
cardiotoxicity, even in sarcoma patients who received prior
anthracycline-based regimens [7–9, 24]. A favorable safety
profile of anti-IGF1R antibodies and modest activity has
been seen in EWS patients.

4. Future Challenges in Developing
IGF1R Inhibitors in EWS

Several anti-IGF1R agents in combination with cytotoxic and
other targeted agents are currently in clinical development
for more common cancers such as lung and colorectal cancer.
In theory, however, EWS patients would benefit most from
these monoclonal antibodies because EWS has the highest
anti-IGF1R single agent activity.

Correlative lab and biomarker findings from anti-IGF1R
studies may help illuminate the cell signaling and biology
of sarcomas in general and EWS in particular. Given that
a minority of EWS patients respond to antibody therapy,
identifying EWS patients who will benefit most remains
challenging. Even if such patients are identified, it will
be difficult to convince pharmaceutical companies and
regulatory agencies to use clinical trial designs that do not
require a large number of patients (e.g., trials in which
patients serve as their own controls). Hopefully, serum
sample analysis, examination of existing tumor samples, and
analysis of tumor biopsies from EWS patients enrolled in
clinical studies will help identify which proliferation and
resistance pathways should be targeted to achieve the best
antitumor response.

There are several significant differences in the IGF1R
system between mice and humans [37]. For example, mice
and humans both express IGF2-P0 transcripts during fetal
development; however, IGF2-P0 is not expressed in adult
mice but is expressed in humans at all ages [38]. In addition,
an inactivated insulin receptor gene is associated with normal

growth in mice, but mutations or deletions of the insulin
receptor gene in humans with Donohue syndrome have been
associated with abnormal growth, resulting in short stature
[39]. Such genetic variation may slow biomarker discovery,
prediction and validation.

5. Rationale for Targeted Drugs Other Than
IGF1R in Patients with Refractory EWS

A therapeutic plateau seems to have been reached in
EWS despite the use of diverse multidrug chemotherapy
combinations [3, 14, 40]. In EWS patients with metastatic
or recurrent disease, the outcomes remain dismal, and
durable responses are rare. Because IGF1R inhibitors are
available only in controlled clinical trials, and because
EWS patients develop resistance to IGF1R inhibitors, other
options for relapse therapy include enrolling patients in other
combinational clinical trials. Trials using mTOR inhibitors or
VEGF inhibitors may be one approach. Several options that
employ commercially available chemotherapy agents have
also been investigated [41] (Tables 4 and 5). Some current
and anticipated future novel drug therapies for refractory or
recurrent EWS are outlined in Tables 6 and 7.

Because no treatment for refractory EWS has been
proven to be superior to others, the ideal combination to
treat EWS patients with relapsed disease remains unknown.
To establish new therapies, it is critical to increase the
number of clinical trials offered to EWS patients when their
disease first relapses.

6. EWS-FLI1 Targeting

Using a small molecule to disrupt key EWS-FLI1 protein-
protein interactions may be an effective treatment strategy
in EWS patients. In a preclinical model of EWS, a small
molecule that blocks the oncogenic protein interaction of
EWS-FLI1 with RNA helicase A inhibited tumor growth
[19] (Figure 4). This or a similar approach could potentially
inhibit EWS oncogenesis in proliferating EWS cells and EWS
stem cells in a way that is analogous to imatinib’s action



Sarcoma 5

Table 3: Uncommon (<10%) Grade 3 and 4 toxicities of antiinsulin-like growth factor 1 receptor (IGF1R) antibodies.

Anti-IGF1R antibody Grade 3 or 4 toxicity Reference

R1507
Phase I: lymphopenia, thrombocytopenia, adrenal hemorrhage, hyperglycemia,
DVT/PE, CVA;phase II: thrombocytopenia, anemia, pain, hyponatremia,
hyperglycemia

[9, 26]

CP-751,871
(figitumumab)

Fatigue, pain, hyperglycemia, increased LFTs, proteinuria; with mTOR RAD001
(everolimus): nausea, fatigue, diarrhea, hypophosphatemia, mucositis

[7, 42]

AMG-479
Phase I: thrombocytopenia, hyperglycemia; phase II: thrombocytopenia, anemia,
pain, dyspnea, nausea/vomiting, hyperglycemia

[8, 27]

SCH-717454
(robatumumab)

Constipation, hyperglycemia, back pain [24]

IMC-A12
(cixutumumab)

With mTOR inhibitor (temsirolimus): hypercholesterolemia, hypertriglyceridemia,
hyperglycemia, mucositis (all of these events can be ascribed at least in part to
temsirolimus)

[28]

MK-0646
Thrombocytopenia, skin rash, hyperglycemia, fatigue, GI bleeding, elevated LFTs,
respiratory problems

[29]

DVT: deep venous thrombosis; PE: pulmonary embolism; CVA: cerebrovascular accident; LFT: liver function test; mTOR: mammalian target of rapamycin;
GI: gastrointestinal.
Note: Grade 3 or 4 toxicities have been seen in <10% of patients. These antibodies have generally been very well tolerated with few side effects compared to
standard EWS chemotherapy.

Table 4: Sarcoma chemotherapy combinations with activity in
relapsed sarcomas including Ewing’s family of tumors.

Drug Reference

Temozolomide/irinotecan: [41, 43–45]

Topotecan/cyclophosphamide [14, 43]

Gemcitabine/docetaxel [46]

Oral cyclophosphamide/vinorelbine [47]

Ifosfamide+Mesna [48–50]

Table 5: Biologic agents with potential synergy against Ewing’s
sarcoma (EWS).

Drug Comments Reference

Bisphosphonates
Zoledronate, a potent inhibitor of
EWS cell growth in vitro

[51]

Metformin

Metformin inhibits both the
mTORC1 pathwayand the
IGF1R/IRS-1 pathway and at the
same time downregulates the
phosphorylation of Akt onserine
473

[52, 53]

Anti-angiogenic
agents
(bevacizumab)

Preclinical studies: VEGF
inhibition suppresses EWS
growth. Three of five EWS patients
had stable disease for >4 months
in a phase I study of bevacizumab

[54, 55]

mTOR: mammalian target of rapamycin; IGF1R: insulin-like growth factor
1 receptor; IRS-1: insulin receptor substrates 1; VEGF: vascular endothelial
growth factor.

against chronic myelogenous leukemia. Although synthe-
sizing and investigating a first-in-class new agent for EWS
will be challenging, such an approach may have applications
beyond EWS, given that the EWS and ETS fusion tran-
scripts occur in other sarcomas including desmoplastic small
blue round cell tumor (EWS-WTI), myxoid liposarcoma

Cancer
(Ewing’s sarcoma)

Ewing’s sarcoma
cells die.

Helicase
A

EWS FLI1

Helicase
A

EWS FLI1
YK-4-279

Figure 4: A simplified view of fusion protein: RNA helicase protein
disruption, the mechanism of action of a new EWS-FL1 targeted
molecule, YK-4-279. Because EWS-FLI1 is a disordered protein
that precludes standard structure-based small-molecule inhibitor
design, a divergent strategy was designed. EWS-FLI1 interaction
with RNA helicase A is critical for oncogenesis. YK-4-279 blocks
RHA interaction with EWS-FLI1. This protein–protein inhibition
induces apoptosis in EWS cells and reduces the growth of EWS
orthotopic xenografts.

(EWS-CHOP), clear-cell sarcoma (EWS-AFT1), chondrosar-
coma (EWS-TEC), and angiomatoid fibrous histiocytoma
(EWSR1-ATF1) as well as several other nonsarcomatous
cancers including acute myeloid leukemia (TLS-ERG), secre-
tory breast carcinoma (ETV6-NTRK3), and prostate cancer
(TMPRSS2-ERG).

7. Other Targets in EWS

Given the complex pathways involved in the mechanisms of
EWS oncogenesis and drug resistance, new agents will need
to be investigated. In the era of genomics and proteomics,
potential new pathways will be unravelled to reveal impor-
tant to host-tumor interactions [56]. Some of the agents
targeting these potential pathways are already in different
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Table 6: Current and future trials of targeted therapy for refractory and/or recurrent Ewing’s sarcoma (EWS).

Sponsor site Drugs Rationale Comments
PI contact info/clinicaltrials.gov
identifier

Imclone/UTMDACC,
Wayne State

IMCA12 +
temsirolimus

IGF1R + mTOR

Recently completed
accrual for expanded
EWS cohort at
temsirolimus dose
higher than that in
children

Aung Naing, MD
anaing@mdanderson.org
NCT00678769

COG
IMCA12 +
temsirolimus

IGF1R + mTOR

Phase I
study;pediatric
patients with
recurrent or
refractory solid
tumors

Maryam Fouladi, MD
maryam.fouladi@cchmc.org
ADVL0813; NCT00880282

MSKCC/CTEP
IMCA12 +
temsirolimus

IGF1R + mTOR

Phase II study in
recurrent or
refractory soft tissue
or bone sarcomas

Robert Maki, MD PhD
makir@mskcc.org NCT01016015

PI: principal investigator; UTMDACC: The University of Texas MD Anderson Cancer Center; IGF1R: insulin-like growth factor 1 receptor; mTOR:
mammalian target of rapamycin; COG: Children’s Oncology Group; MSKCC: Memorial Sloan Kettering Cancer Center; CTEP: Cancer Therapy Evaluation
Program.

phases of development and are used in other sarcomas and
cancers.

(1) mTOR. mTOR1 pathway signaling may be upregu-
lated when IGF1R is inhibited. Combination treat-
ment is available (Table 6). Another potential ben-
efit of mTOR is that its blockade of IGF1R may
prevent the counterproductive rapamycin-induced
upregulation of Akt [57]. Although mucositis and/or
stomatitis can be a problem with this class of agents,
use of glutamine suspension is a simple an effective
means to reduce or eliminate this side effect [58, 59].

(2) Phosphoinositide-3 Kinase (PI3K)/Mitogen-Activated
Protein Kinase (MAPK). The PI3K and MAPK sig-
naling pathways are both constitutively activated in
EWS, likely owing to the presence of IGF1R-mediated
autocrine loops [11]. Several P13K inhibitors are
in different stages of clinical development for other
cancers.

(3) Histone Deacetylase. Histone deacetylase inhibition
might inhibit the expression of EWS-FLI1 via the
suppression of the EWS promoter activity [60].

(4) Aurora Kinase. Aurora kinase A is a transcriptional
target of EWS. The initial results of a Pediatric Pre-
clinical Testing Program investigation of MLN8237,
an Aurora kinase A inhibitor, showed promise for
EWS [61].

(5) Hedgehog. Arsenic trioxide inhibits EWS growth by
blocking the Hedgehog/GLI pathway GLI1 both in
vitro and in vivo in mouse models [62]. Arsenic
trioxide, a useful agent that acts at the level of GLI1
and has already been used to treat acute promyelo-
cytic leukemia, is a potential novel inhibitor of the
hedgehog pathway that merits further investigation

in EWS [62]. However, given arsenic trioxide’s severe
cardiotoxicity and neurotoxicity profile, a novel agent
such as ZIO-101 (darinaparsin), a small-molecule
organic arsenic compound synthesized by conjugat-
ing dimethylarsinic acid to glutathione, may be a
more reasonable option [63].

8. Immunotherapy for EWS

That early lymphocyte recovery (i.e., an absolute lymphocyte
count >500 cells/mL on day 15 of the first course of
chemotherapy) is a highly significant independent prog-
nostic indicator for high-risk EWS [64] suggests that
immune reconstitution constitutes a novel direction in
EWS management. Immune reconstitution as a treatment
strategy for EWS could be exploited via lymphocyte-sparing
chemotherapy agents; for example, Kushner et al. found
that lymphopenia was not observed in patients treated with
temozolomide plus irinotecan [65]. Alternatively, nutrients
such as glutamine could be used to facilitate the proliferation
of lymphocytes, which may also benefit young patients in
particular by reducing the severity and duration of mucositis
[58, 59, 66–68]. Other strategies that could be used to
augment lymphocyte proliferation may include cytokine
therapy, ex vivo cell culture and infusion therapy [69–71].

In addition to IGF1R antibodies, other specific anti-
bodies and cellular immunotherapy strategies may be used
to boost the immune system to overcome drug resistance.
Specific immunotherapeutic approaches with vaccine ther-
apy and interleukin-2 with or without cellular therapy
have been used to treat patients with recurrent sarcomas
(NCT00019279), and autologous T-cell transplantation, vac-
cine therapy, and indinavir has been used to treat patients
with metastatic pediatric sarcomas (NCT00019266). Other
trials of high-dose immunotherapy have been reviewed
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Table 7: Anticipated future trials of targeted therapy for refractory and/or recurrent Ewing’s sarcoma (EWS).

Sponsor site Drugs Rationale Comments PI contact info

Merck/UTMDACC MK-0646+ MK8669 IGF1R+/−mTOR
“up front” Rx; Phase
II in development

Joseph Ludwig, MD
jaludwig@mdanderson.org
UTMDACC

Georgetown/UTMDACC YK-4-279
EWS-FLI1: RNA
helicase inhibitor

Currently preclinical;
clinical at UTMDACC

Jeffery Toretsky, MD
jat42@georgetown.edu
Pete Anderson MD, PhD
pmanders@mdanderson.org
Aung Naing, MD
anaing@mdanderson.org

elsewhere [72]. Recent studies have shown that EWS cells are
highly sensitive to expanded allogeneic natural killer cells,
partially through an NKG2D- and DNAM-1–dependent
mechanism, and reveal another potential future direction for
immunotherapy in EWS [73, 74].

9. Future Research Questions

Many questions concerning the biology of EWS and the
information necessary to make decisions about targeted
therapies for EWS remain.

EWS Pathogenesis

(i) What is the cell of origin of EWS?

(ii) Is chromosomal translocation the initial event in
sarcomagenesis in EWS?

(iii) Does a genetic predisposition lead to this transloca-
tion?

(iv) Is EWS-FLI protein action necessary for EWS stem
cell survival?

(v) Is there a genetically relevant preclinical animal
model for EWS?

IGF1R Therapy for EWS

(i) What are the active contributions of insulin receptor,
IGF1R, insulin-like growth factor-2 receptor, insulin-
like growth factor-binding protein-3, and other
insulin-like growth factor-binding proteins?

(ii) What are the causes of heterogeneity in clinical
response?

(iii) What mechanisms of resistance and biomarker vali-
dation could be used to predict response and relapse
after IGF1R blockade?

(iv) Can the pathways controlled by IGF1R be validated
in clinical trials?

(v) How can a targeted strategy be combined with
current and novel therapy regimens?

10. Conclusion

We have come a long way in understanding EWS since
the identification of the EWS-FLI-1 translocation. IGF1R-
targeted therapies have shown clear benefit in select EWS
patients, and it is important to identify the subsets of
patients that are most likely to respond to IGF1R-targeted
therapy. Now is an exciting time to exploit additional novel
therapeutics in sarcomas by optimizing the IGF1R blockade.
With a clear sense of the challenges at hand, scientists,
clinicians, the National Cancer Institute, the United States
Food and Drug Administration, philanthropic foundations,
and pharmaceutical companies will have to make a coordi-
nated effort to develop effective new targeted treatments of
EWS. The successful translation of EWS targeted therapies
into the clinic can then become a model system for a
larger number of rare and common translocation-associated
cancers.
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[67] H. Köhler, M. Klowik, O. Brand, U. Göbel, and H. Schroten,
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