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ABSTRACT Here, we report the draft genome sequence for a new putative genus
and species in the Methanoregulaceae family, whose members are generally slow-
growing rod-shaped or coccoid methanogenic archaea. The information on this
sediment-dwelling organism sheds light on the prokaryotes inhabiting isolated, deep,
and extremely cold methane-rich environments.

With methane concentrations reaching as high as 21.8 � 1.4 mmol liter�1, the
anoxic basin of the ice-covered Antarctic Lake Untersee is one of the most

methane-rich naturally occurring aquatic ecosystems on Earth (1). An Untersee envi-
ronmental sample was collected in 2016 (coordinates, 71°21=12�S, 13°26=08�E) from
benthic sediments below 100 m of 4°C water using an Ekman dredge. After collection,
the samples were frozen and then shipped on dry ice and stored at �80°C.

The sequence was isolated from metagenomic data. DNA was extracted using a
Qiagen AllPrep kit. A paired-end library was constructed using a Kapa HyperPlus kit and
sequenced on an Illumina MiSeq platform on a V3/600-cycle flow cell, generating
24,799,516 paired-end 300-bp reads for the entire metagenome. The reads were
trimmed to remove adapters and bases below a quality score of 30 using Trimmomatic
0.36 (2), assembled using MEGAHIT version 1.1.2 (3), and binned using MetaBAT 0.32.5
(4). Reads were mapped back to the bin using the default parameters in Bowtie 1.2.2
(5) and SAMtools 1.3.1 (6) and reassembled using ABySS version 2.1.5 (7) to improve the
metagenome-assembled genome (MAG) quality. This MAG contains 45 contigs and
1,202,444 reads (4.9% of the total metagenomic reads).

The N50 value for this genome is 69,553 bp. CheckM version 1.0.11 (8) calculated
completion to be 95.07% and contamination to be 0.0%. The draft genome is 2.367 Mb,
with 2,318 open reading frames (ORFs), 1 small subunit (SSU) 16S rRNA gene, and 60
tRNA genes (Fig. 1). The genome was annotated using MetaPathways 2.5.1 (9) and
KAAS-KEGG 2.1 (10). Default settings were used for all programs.

The 16S rRNA of this organism is 95% similar to that of Methanosphaerula palustris
(11), as calculated using online BLAST-based (12) homology. This genetic distance
suggests that the MAG may be classified as a previously unobserved genus in the
Methanoregulaceae family (13).

Of the predicted ORFs in the MAG, 17.24% code for translation, ribosomal structure,
and biogenesis, 10.49% belong to metabolism, and 10.53% code for amino acid
metabolism genes. This MAG has a GC content of 66.4%. An average coverage of
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52.261� was calculated using Bowtie 1.2.2 (5) and SAMtools 1.3.1 (6), with default
parameters.

The sequence describes a methanogen with the complete mcrABG operon identified
on a single contig. It contains the oppA, mppA, and qseF genes for quorum sensing and
cheA, cheW, cheR, and cheYB genes associated with chemotaxis. It has ORFs for amino
acid transport and synthesis, a potential response to starvation, and the regulation of
nitrate uptake in low-nitrogen environments (glnL and glnA genes) (14).

The sequence also includes the ruvABC resolvasome genes, which are absent in
Methanosphaerula palustris. These ruvABC genes catalyze the resolution of the Holliday
junction during recombination and DNA repair (15); their presence may lead to
recombination rates higher than those for Methanosphaerula palustris, as higher re-

FIG 1 Shown from the outer to inner ring of this metagenome-assembled genome (MAG) circos plot is the following: first, the proportion of the
total predicted open reading frames (ORFs) (any sequence with a start and stop codon, excluding rRNA genes) with a corresponding annotation
in the COG database (17); then, tRNA locations, contigs numbered based on their order in the MAG, and all predicted ORFs. Finally, in the
innermost ring, the long subunit (LSU)/SSU/5S location is shown.
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combination rates have been observed to lead to higher GC content in prokaryotes
(16).

Data availability. This whole-genome shotgun project was deposited at DDBJ/ENA/
GenBank under accession number SISS00000000, and the reads were deposited under
accession number PRJNA521775. This study is version SISS01000000.
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