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a b s t r a c t

The basic reproduction number, R0, is a well-known quantifier of epidemic spread. How-
ever, a class of existing methods for estimating R0 from incidence data early in the
epidemic can lead to an over-estimation of this quantity. In particular, when fitting
deterministic models to estimate the rate of spread, we do not account for the stochastic
nature of epidemics and that, given the same system, some outbreaks may lead to epi-
demics and some may not. Typically, an observed epidemic that we wish to control is a
major outbreak. This amounts to implicit selection for major outbreaks which leads to the
over-estimation problem. We formally characterised the split between major and minor
outbreaks by using Otsu's method which provides us with a working definition. We show
that by conditioning a ‘deterministic’ model on major outbreaks, we can more reliably
estimate the basic reproduction number from an observed epidemic trajectory.

© 2024 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi
Communications Co. Ltd. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

A new, emerging infectious disease can potentially spread around the world within days or weeks, as observed during
COVID-19 (Carvalho et al., 2021), and swine flu (Coker, 2009). During the early phase of an epidemic, estimation of key
epidemiological parameters helps us to estimate its future behaviour including the rate of spread, final size, and the re-
quirements for effective control. In these early stages, epidemics typically exhibit exponential growth.

The basic reproduction number, R0, is the average number of secondary infections per primary infection in an otherwise
susceptible population (Dietz, 1993; Heesterbeek & Dietz, 1996; Heffernan et al., 2005). The basic reproduction number has
been shown to have important implications relating to the final epidemic size (Andreasen, 2011) and requirements for control
(Lipsitch et al., 2003). It is also directly related to the early growth rate (r) of epidemics (Lipsitch et al., 2003; Ma, 2020) and
both of these quantifiers are used for predicting the fate of outbreaks. That is, when R0 is greater than 1 (or r is positive), then
the introduction of an infected individual into a susceptible population may lead to a major epidemic. Given the random
nature of infection processes, stochastic models are the natural choice to model epidemics (Bailey, 1975; Britton & Pardoux,
).
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2019; Whittle, 1955), and methods such as maximum likelihood can be used to estimate R0, taking into account this inherent
randomness (Becker & Britton, 1999; Britton & Pardoux, 2019; Ma et al., 2014).

Although epidemics are stochastic processes, it is sometimes convenient to use a deterministic approach such as the
Kermack-Mckendrick SIR model (Kermack & McKendrick, 1927, 1932), SIS model (Lajmanovich & Yorke, 1976), SEIR Model
(Anderson & May 1992) or the exponential or logistic growth curves (Chowell et al., 2006) to understand and predict them.
Unlike their stochastic counterparts (Bailey, 1975; Britton & Pardoux, 2019; Whittle, 1955), these models guarantee an
epidemic when R0 > 1 (Dietz, 1993; Kermack & McKendrick, 1927). Such models have been used to estimate epidemic pa-
rameters by fitting them to real epidemic data, for example, influenza (Chowell et al., 2016), cholera (Pourabbas et al., 2001),
and COVID-19 (Metelmann et al., 2021). We refer to (Ma, 2020; Ma et al., 2014) for more details on estimating early growth
rates and the basic reproduction number from real data.

These classic models can be valuable but may lead to an overestimation of the basic reproduction number (Breban et al.,
2007; Chowell, 2017; Green et al., 2006; Keeling & Grenfell, 2000). Generally, uncertainty in the estimation of parameters
may arise due to noise in the data and/or the underlying assumptions for building models (Chowell, 2017; Ferrari et al., 2005).
However, herewe observe that there is also a fundamental bias in the deterministic models which occurs because they do not
capture the stochastic effects in the early phases of an outbreak and, in particular, do not distinguish the possibility of sto-
chastic fade-out when R0 is greater than 1 (Bailey, 1975; Whittle, 1955). Similar issues with deterministic models and sto-
chastic fade-out have been explored in (Overton et al., 2022) in the context of steady-state solutions to the SIS model.

By reducing them to a simple birth-death process, we show that SIR and SIS deterministic models implicitly average over
both major and minor outbreaks during their early phases; that is both extinct and extant trajectories are included in the
average behaviour. However, an observed epidemic is necessarily a major outbreak and therefore corresponds to an implicit
conditioning onmajor outbreaks. This leads deterministic SIR and SIS models to overestimate the basic reproduction number,
R0, when they are fitted to epidemic data which we illustrate in the next section. This is more pronounced when the prob-
ability of minor outbreaks is large; i.e. whenwe have a small number of initial infections or when R0 is close 1. In Section 3 we
consider a birth-death process conditioned on major outbreaks which we approximate by conditioning on non-extinction
(Kot, 2001; Kendall, 1948a, 1948b). This better-describes a typical major outbreak and we show that it performs well in
removing the bias from the estimation of R0.

2. Estimation of R0 using standard deterministic models

Consider an infectious disease that is spread via contact between susceptible and infected individuals in a well-mixed
homogeneous population. Let t be the rate at which a single individual infects a susceptible individual during its infec-
tious period and let i(t) and s(t) denote the infectious and susceptible populations respectively. We consider an infectious
disease with no latent period and suppose that infection occurs according to a Poisson process with rate tsi. Similarly, we
assume removal (or recovery) occurs according to a Poisson process with rate gi where g is the rate of removal/recovery of a
single individual. This can be applied to infections that produce no long-term immunity (SIS or SIRS) or permanent immunity
(SIR).

In a sufficiently large population, the early phase of the epidemic behaves like a simple birth-death (BD) process. This can
be seen from the infection rates tsi; for a total population of size N initiated with a single infected (i0 ¼ 1) in an otherwise
susceptible population, the initial infection rates for i¼ 1, i¼ 2, i¼ 3,… infected individuals are t(N� 1), 2t(N� 2), 3t(N� 3),
Table 1
State transitions in the Susceptible-Infected-Susceptible (SIS), Susceptible-Infected-Recovered (SIR) and the simple Birth-Death (BD) processes.

Event SIS SIR BD

Infection ðs; iÞ/tsi ðs � 1; i þ 1Þ ðs; iÞ/tsi ðs � 1; i þ 1Þ i/
bi
iþ 1

Recovery ðs; iÞ/gi ðs þ 1; i � 1Þ ðs; iÞ/gi ðs; i � 1Þ i/
gi
i� 1

Fig. 1. The average of 10,000 simulations (solid line) and those conditioned on major outbreaks (dashed line) for (a) the SIR process, (b) the SIS process and (c) the
simple Birth-Death (BD) process. In each case, b ¼ 1.5, g ¼ 1, N ¼ 1000 and the initial number infected is i0 ¼ 1.
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… respectively. These are approximately itN ¼ bi because the susceptible population is approximately N (Renshaw, 1993). So,
the early phases of the infection dynamics are approximated by a simple birth-death process with individual birth rate b and
individual death rate g. For comparison, both SIS and SIR processes and (their approximation) the simple BD process are
summarised in Table 1, and the time series curves of the infected populations are illustrated in Fig. 1.

The expected number of infected individuals (denoted by CiD) in the simple BD process at a given time t can be derived from
themaster equation for the process. Let the probability that there are i infected individuals at time t be denoted by pi(t), where
i 2 {0, 1, … }. Thus, the master equation for the simple birth-death process is given by:

d
dt
piðtÞ ¼ bði�1Þpi�1ðtÞ � ðbþgÞipiðtÞ þ gðiþ1Þpiþ1ðtÞ: (1)

From this, the rate of change of the expected infectious population is (Feller, 1939; Kendall, 1948a):
d
dt
CiD¼

X
i

i
d
dt
piðtÞ¼ ðb�gÞCiD: (2)
This has the same form as the deterministic simple BDmodel given in Table 2, so the deterministic BDmodel describes the
average of all stochastic realisations of the stochastic BD process. This connection is well-known but unusual, although similar
connections can be established between the stochastic and deterministic SIS and SIR models under some closure approxi-
mations (Kiss et al., 2017; Sharkey et al., 2015) and in limiting cases Kurtz (1970).

Moreover, the deterministic BD model (and equivalently Equation (2)) describes the expected early deterministic dy-
namics of both SIS and SIR processes when N is large. This is because (see Table 2) the deterministic SIS and SIR (and SIRS)
models have the following equation for the infectious population (Kermack & McKendrick, 1927):

dI
dt

¼ tSI � gI; (3)

where we use capital letters I and S for denoting the number of infected and susceptible individuals in deterministic models.
This reduces to the form of Equation (2) under the same approximation as we applied to the stochastic models (i.e. Sz Nwith
b ¼ tN) and so the expected behaviour of the stochastic SIR and SIS models is approximated by the deterministic SIR and SIS
models, and by the BD model in the early stages.

The equivalence of the deterministic models to the expected value of the stochastic models and their derivation from the
master equation tells us that the deterministic epidemicmodels approximate an averaging over all epidemic outcomes (Kurtz,
1970; Overton et al., 2022). Crucially this averaging is over both major and minor outbreaks. However, a real epidemic of
interest is a major outbreak and this therefore represents conditioning on major outbreaks.

Fig. 2a shows the distribution of final sizes (Andreasen, 2011) of an SIR process when initiated with a single infected
individual. The bimodal nature of this distribution tells us that that a group of realisations generate major outbreaks while
others go extinct in the early phase. Fig. 2b shows similar bimodal behaviour for SIS dynamics where here the process is run
until either extinction or until 2N events have occurred. Although the split between major and minor outbreaks is usually
obvious, it is not well-defined in finite populations. Throughout this paper we choose to formally characterise the split be-
tween major and minor outbreaks by using Otsu's method (Otsu, 1979) which gives a threshold value for clustering bimodal
histograms and provides us with a working definition.

To illustrate the issue of over-estimation, we performed least-squares fits of both deterministic SIR and SIS models to
simulated major outbreaks of both types to estimate the transmission rate b, assuming that we know g (here g¼ 1). R0 is then
calculated from R0 ¼ b/g (Keeling & Grenfell, 2000; van den Driessche, 2017).

For all least-squares fits in the paper, epidemic incidence data was constructed by taking the number of infection events
between one time step and the next: jt ¼ c(t þ dt) � c(t) where c(t) is the cumulative number of infection events up to time t
given by c(t) ¼ N � S(t) in the SIR case. We minimise
Table 2
Equations for deterministic SIS, SIR and BD models where S, I, R are the sizes of the classes of susceptible, infected and removed
respectively. The parameters t and g are the transmission and recovery (or removal) rates. Here, for convenience we have used the
same parameter notation as for the stochastic models.

SIS SIR BD

dS
dt

¼ �tSI þ gI

dS
dt

¼ tSI � gI

dS
dt

¼ �tSI

dS
dt

¼ tSI � gI

dR
dt

¼ gI

dI
dt

¼ bI � gI
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Fig. 2. (a) The final size distribution obtained from 10, 000 stochastic simulations of SIR dynamics and (b) the distribution in the number of (infection and
recovery) events for 10,000 SIS simulations capped at 2N events. In both sets of simulations, N ¼ 10, 000, b ¼ 1.5, g ¼ 1, and the initial number infected is i0 ¼ 1.
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SSE ¼
XT=dt
n¼0

ðJndt � jndtÞ2

where Jt ¼ C(tþ 1)� C(t) and C(t) is the cumulative number of infections in the corresponding deterministic model (Ma et al.,
2014). Here, T is the upper end of the fit window and we use dt ¼ 0.1. Minimisation was performed using the Nelder-Mead
simplex algorithm as implemented by the fminsearch function in MATLAB ver. R2023a.

The resulting distributions in R0 values are shown for both SIR (Fig. 3a) and SIS (Fig. 3b). Both distributions clearly show an
upward bias in the estimates with respect to the “true” value of R0 ¼ 1.5 used to generate the stochastic simulations. Thus,
fitting mean-field SIS and SIR models (or the simple BD model) to major real outbreak data will have a tendency to over-
estimate the transmission rate and overestimate R0.

To resolve this and obtain a deterministic model that we can fit to the early phases of epidemics to determine R0, we need
to account for the implicit conditioning on major outbreaks. Since the early stages of SIS and SIR dynamics are well-
approximated by the simple BD process, we try to obtain a simple BD process which is conditioned on major outbreaks.
3. Estimation of R0 using a conditioned BD model

We wish to calculate the conditional probability P(i infected at time t| major outbreak) for the simple BD process. Due to
the ambiguity in defining a major outbreak and to make analytic progress, we approximate this probability by:
Fig. 3. The distributions of R0 estimated by performing least squares fits of (a) the SIR model and (b) the SIS model to 1 million major outbreaks of each type
generated by taking b ¼ 1.5, g ¼ 1, N ¼ 100, 000 and the initial number infected i0 ¼ 1. The blue lines in both plots represent the actual value of R0 used to generate
the simulated outbreaks. The fitting window for both histograms is t 2 [0, 10].
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Pði infected at time tj major outbreakÞzqiðtÞ

where

qiðtÞ ¼ Pði infected at time tjis0 at time tÞ

for i 2 {1, 2, … }. This is given by (Kot, 2001)

qiðtÞ ¼
piðtÞ

1� p0ðtÞ

where, with reference to Equation (1), the probability that the disease has died out at time t, is denoted by p0(t).
Differentiating gives

d
dt
qiðtÞ ¼

d
dtpiðtÞ

1� p0ðtÞ
þ piðtÞ
½1� p0ðtÞ�2

d
dt
p0ðtÞ; for i ¼ 1;2;…:

Using the expression for dp (t)/dt given in Equation (1) when is 0, and using dp (t)/dt¼ gp (t) and q (t) ¼ p (t)/(1� p (t)), we
i 0 1 i i 0
reach the following model (Kot, 2001):

d
dt
qiðtÞ ¼ bði�1Þqi�1ðtÞ � ðbþgÞiqiðtÞ þ gðiþ1Þqiþ1 þ gq1qiðtÞ: (4)
We now derive an equation for the rate of change of the expected number of infected individuals at time t:

CiDcðtÞ ¼
X
i¼1

iqiðtÞ;

where the subscript c indicates that this is the expected value in the conditioned process. Differentiating with respect to time
and substituting for dqi(t)/dt from Equation (4) gives:

d
dt
hiic ¼ b

X
i¼1

iði� 1Þqi�1ðtÞ � ðbþ gÞ
X
i¼1

i2qiðtÞ þ g
X
i¼1

iðiþ 1Þqiþ1 þ gq1hiic:

The summation in the first term on the right-hand-side can be written as:

X
i¼1

iði�1Þqi�1ðtÞ ¼
X
k¼0

ðkþ1ÞðkÞqkðtÞ ¼
X
i¼1

i2qiðtÞ þ
X
i¼1

iqiðtÞ;

and the summation in the third term on the right-hand-side can be written as:

X
i¼1

iðiþ1Þqiþ1ðtÞ ¼
X
k¼2

ðk�1ÞðkÞqkðtÞ ¼
X
i¼2

i2qiðtÞ �
X
i¼2

iqiðtÞ:

This leads to:

d
dt
CiDc ¼ ðb�gÞCiDc þ gCiDcq1 (5)

with the cumulative number of infections given by

dC
dt

¼ bhiic þ ghiicq1:

This system is not closed becausewe have one extra variable, q1, which is the probability of single infection in the conditioned
process. However, using the exact solution of Equation (1) (Renshaw,1993; Kot, 2001, Chapter 3), the exact expression for q1 is
given by

q1ðtÞ ¼
p1ðtÞ

1� p0ðtÞ

where
684
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p0ðtÞ ¼

8>>>><
>>>>:

�
bt

1þ bt

�i0
if b ¼ g

�
gðert � 1Þ
beet � g

�i0
if bsg

and

p1ðtÞ ¼

8>><
>>:

i0

�
bt

1þ bt

�i0�1 1

ð1þ btÞ2
if b ¼ g

i0a
i0�1½ð1� aÞð1� 4Þ� if bsg:

Here i0 is the initial number of infected individuals and

a ¼ gðert � 1Þ
bert � g

; 4 ¼ bðert � 1Þ
bert � g

;

where r ¼ b � g.
As discussed in Section 2, the early phases of the SIS and SIR epidemic models are well-approximated by the simple BD

process. Similarly the conditional (SIS and SIR) epidemic processes are also well-approximated by the conditional stochastic
BD process. Conditioned and non-conditioned processes lead to different average trajectories (Fig. 4a) and it can be seen that
the new conditioned BD model (Equation (5)) accurately describes the early part of the SIR, SIS and BD expected behaviour
when these processes are conditioned on major outbreaks. This model resolves the issue of upward bias which we saw in
Fig. 3a. When it is fitted to major outbreaks of SIR epidemics, we can see in Fig. 4b that the distribution of estimated R0 values
is centred around the true value. Fig. 5a explores the parameter space for small R0 more fully and shows a significantly
improved estimate of R0 when compared with the standard SIR model (Fig. 5b). The fitting window for Figs. 4b and 5 is the
time interval t 2 [0 T] where we determined T to be the time point at which the simple BD approximation gives a 1% error
with respect to the infectious time series in the SIR process.

4. Discussion

One method for obtaining the basic reproduction number (R0) from real data is to fit deterministic models to epidemic
data (Breban et al., 2007; Chowell, 2017; van den Driessche, 2017; Green et al., 2006; Keeling & Grenfell, 2000; Ma, 2020).
Here we showed that some of these deterministic models are fundamentally biased in their estimation of R0 (Breban et al.,
2007; Chowell, 2017). We showed this explicitly in the context of SIS and SIR epidemic dynamics (Fig. 3a and b) where we can
make some analytic progress. This also applies directly to SIRS models as well (Mena-Lorcat & Hethcote, 1992).

The early phases of both the stochastic SIS and SIR epidemic processes and the deterministic SIS and SIRmodels reduce to a
simple birth-death process (see, for example (Renshaw, 1993)), and so the early behaviour of the deterministic models
Fig. 4. (a) The deterministic conditioned and unconditioned BD models together with averages of 100,000 conditioned and unconditioned BD, SIS and SIR
simulations. (b) Estimates of R0 by least-square fits of the conditioned BD Model (Equation (5)) to 1 million major outbreaks. The fitting window used is t 2 [0,
9.5] which is determined so that the simple BD model is within 1% of the SIR infectious time series. For both subplots, i0 ¼ 1, b ¼ 1.5, g ¼ 1 and N ¼ 100, 000.
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Fig. 5. The distribution of estimated R0 values by fitting (a) the conditioned BD model and (b) the SIR model. Both these models are fitted to 1 million simulated
major SIR outbreaks per R0 value. The horizontal axis corresponds to the “true” values of R0 used to generate the simulations. The vertical axis corresponds to the
histograms of estimated R0 (similar to Fig. 4b). The intensity of the color indicates the percentage of estimates in each interval.
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describes the expected behaviour of all possible epidemic realisations. The over-estimation of R0 occurs because a real
epidemic of interest is necessarily a major outbreak, representing an implicit conditioning on major outbreaks. This over-
estimation arises when deterministic epidemic models are initialised with very few initial infected individuals (i0) and/or
where R0 is very close to 1 which leads to the probability of a minor outbreak (given by ð1=R0Þi0 (Whittle, 1955)) to be sig-
nificant. Once the epidemic is underway and the deterministic models can be initialised with sufficient infected individuals to
make the probability of minor outbreaks negligible, then the overestimation problem does not arise.

We resolved the issue of overestimation by developing a simple birth-death model with conditioning on major outbreaks.
To make analytic progress we approximated conditioning on major outbreaks by conditioning against extinction (Equation
(5)) (Kot, 2001; Kendall, 1948a, 1948b). We made use of the analytic solution of the simple birth-death master equation and
showed that fitting this model to the early stages of epidemic outbreaks resolves the issue of overestimation of R0 (Figs. 4b
and 5a). Similar models were used for approximating the average phylogenic lineages (Harvey et al., 1994) and for correcting a
similar bias in deterministic coalescent models (Stadler et al., 2015).

It is expected that similar issues would apply to other epidemic models such as SEIR type models (Anderson &May 1992)
and models that do not rely on Poisson processes (Kenah, 2011; KhudaBukhsh et al., 2020). It would be of interest to
determine the extent of this error in these scenarios. For this, we currently lack the ingredients that wemade use of which are
the approximation of SIS and SIR dynamics by the simple birth-death (BD) process, the analytic solution of the BD process and
the equivalence of the deterministic BD and the average stochastic BD processes. Nevertheless, this implicit conditioning on
major outbreaks seems likely to cause problems with these models as well. The approximation to the conditioned SIS model
proposed in (Overton et al., 2022) can also be extended to cover transient dynamics and to model more complex epidemi-
ological structures. While the validity of using a deterministic description early in an epidemic is questionable due to the
stochastic fluctuations of the infected population, the main fluctuation is the one between major and minor outbreaks. Our
work emphasises the importance of not defining the initial conditions of standard deterministic models too early in the
epidemic unless the models have conditioning against minor outbreaks.
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