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Lower Respiratory Tract
Myeloid Cells Harbor SARS-
Cov-2 and Display an
Inflammatory Phenotype

®

To the Editor:

Severe acute respiratory syndrome-coronavirus 2
(SARS-CoV-2) pneumonia may induce an aberrant

immune response with brisk recruitment of myeloid
cells into the airspaces.' Although the clinical
implications are unclear, others have suggested that
infiltrating myeloid cells may contribute to morbidity
and mortality rates during SARS-CoV-2 infection.'
However, few reports have characterized myeloid cells
from the lower respiratory tract, which appears to be the
primary site of viral-induced disease, during severe
SARS-CoV-2 pneumonia.

Methods

Endotracheal aspirate (ETA) samples were collected prospectively from
seven patients whose condition required mechanical ventilation for
severe pneumonia due to SARS-CoV-2 infection, which was
documented by reverse transcriptase polymerase chain reaction from
April to June 2020. All patients were enrolled in a University of
Pittsburgh lung injury registry and biospecimen repository (IRB#
PRO10110387). ETA were fixed in 4% (volume/volume)
paraformaldehyde overnight then processed for subsequent imaging.
Briefly, ETA samples were washed twice then pelleted at 600g.
Samples for electron microscopy were resuspended in 1% (volume/
volume) glutaraldehyde, repelleted at 600g, and processed as
described in a previous report.” Samples for light microscopy and
immunofluorescence were resuspended in phosphate-buffered saline
solution then prepared as cytospins by spinning at 300 rpm onto a
Superfrost plus microscope slide (Fisher Scientific). Manual cell
counts of ETA samples were performed after Diff-Quick (Siemens;
Healthcare Diagnostics, Inc) staining, and representative images were
obtained with the use of an Olympus Provis I microscope (Olympus
Corporation). For immunofluorescence, cytospin slides were placed
in 70% (volume/volume) ethyl alcohol followed by 90% (volume/

volume) ethyl alcohol for 10 minutes each, then allowed to air dry.
Antibodies that were used include SARS-CoV-2 nucleocapsid protein
(NB100-56576; Novus Biologicals), CD14 (#347490; BD Biosciences),
CD16 (MA1-84008; Invitrogen), CD142 (Tissue Factor; BD 550252;
BD Biosciences), and IL-6 (Novus NBP2-44953; Novus Biologicals).
Subsequent staining was performed, and slides were imaged using a
Nikon Al confocal scanning fluorescence microscope (Nikon Inc).
Preembed immune-electron microscopy was performed after
cytospin preparation with colloidal gold-conjugated secondary
antibodies (CD14, 18 nm; SARS-CoV-2, 6 nm nucleocapsid; Jackson
ImmunoResearch) using a JEOL JEM 1400 transmission electron
microscope (JEOL USA, Inc) at 80 kV with image capture via an
Advanced Microscopy Techniques 2K digital camera. RNAscope was
performed per manufacturer instructions. Quantitative imaging
analysis was performed with the use of object-based area overlap
analysis via Nikon Elements software. Statistical comparisons of co-
expression of CD14, CD16, IL-6, and tissue factor in cells with or
without SARS-CoV-2 nucleocapsid protein were performed with
non-parametric testing in GraphPad Prism version 7.05 (GraphPad
Software).

Results

The median age of the seven patients was 58 years
(range, 56-77 years), and five patients (71.4%) were
men. The median duration of reported symptoms
prior to initiation of mechanical ventilation was

7 days (range, 3-11 days). Samples were collected
within a median of 5 days (range, 1-14 days) after
initiation of mechanical ventilation. Notably, three
patients required extracorporeal membrane
oxygenation, and two patients were dead by 60 days of
follow up from ICU admission. There were no
patients with known immune deficits in this cohort as
defined by history of immunosuppressive therapy,
which included chemotherapy or chronic systemic
steroids, or known immune deficiency. ETAs were
composed primarily of mononuclear and
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polymorphonuclear leukocytes (range, 70.6%-

97.5% of nucleated cells) (Fig 1A). Electron
tomography of ETAs revealed intracellular
localization of presumptive SARS-CoV-2 virions in
mononuclear leukocytes (Fig 1B) and
polymorphonuclear leukocytes (Fig 1C). The
identification of SARS-CoV-2 virions by electron
tomography was consistent with immune-electron
microscopy with an antibody against the nucleocapsid
protein of SARS-CoV-2 that confirmed the presence
of virus in CD147 cells in the lower airways (Fig 1D).
Quantitative imaging of ETA cells revealed SARS-
CoV-2 nucleocapsid protein expression (n=6; patient
7 did not have sufficient ETA available for imaging)
(Fig 2A), many of which were also positive for CD14,
IL-6, and tissue factor immunostaining (Fig 2B).

963



http://crossmark.crossref.org/dialog/?doi=10.1016/j.chest.2020.10.083&domain=pdf
http://chestjournal.org

Figure 1 — A-D, Lower respiratory tract myeloid cells can harbor SARS-CoV-2 virions. A, Representative images of cytospins prepared from endo-
tracheal aspirate samples; patient 3 is on the left and patient 6 is on the right. Black arrowheads denote mononuclear cells, and red arrowheads denote
polymorphonuclear cells. Black scale bar in lower right portion of each image indicates 20 microns. B, Electron microscopy overview of lower respiratory
tract mononuclear leukocyte (presumptive macrophage) from patient 4: the upper inset shows the region indicated by the square that shows a
tomographic slice with presumptive SARS-CoV-2 virion in a smooth-walled compartment or surface invagination; the lower inset shows a higher
magnification tomographic view of presumptive virion with apparent spike proteins indicated by red arrowheads. C, Polymorphonuclear leukocyte
(presumptive neutrophil) from patient 7; the inset shows the region indicated by the square in the overview that contained presumptive SARS-CoV-2
virions (red arrowheads). D, Immunotransmission electron microscopy of lower respiratory tract mononuclear leukocyte from patient 6 with CD14
(18 nm gold colloid; open arrowhead) surface immunostaining and internal immunostaining of SARS-CoV-2 Nucleocapsid protein (6 nm gold colloid;

black arrowheads at clusters of staining). SARS-CoV-2 = severe acute respiratory syndrome coronavirus 2.

Myeloid cells that expressed SARS-CoV-2
nucleocapsid protein were more likely to express the
inflammatory markers CD14 and CD16 (P < .01 by
Mann-Whitney test) (Fig 2C) compared with myeloid
cells without viral co-localization within each sample.
Similarly, lower respiratory tract cells that expressed
SARS-CoV-2 nucleocapsid protein were more likely to
express IL-6 (P < .01) (Fig 2D) and tissue factor (P <
.05) (Fig 2D) compared with cells without co-
localization of viral protein within each sample.
Finally, we noted that ETA myeloid cells showed IL6,
F3, and CD1I4 transcripts (representative image of
polymorphonuclear leukocyte) (Fig 2E).

Discussion

Taken together, our findings suggest that lower
respiratory tract myeloid cells found in ETA samples
harbor SARS-CoV-2 virus and display an inflammatory
phenotype marked by expression of CD14, CD16, IL-6,
and tissue factor. Although others have shown co-
localization of SARS-CoV-1 and HINI influenza virus
with human monocyte/macrophages in autopsy
studies,”® we believe this to be the first description and
confirmation of the presence of SARS-CoV-2 virions
inside lower respiratory tract myeloid cells, including
polymorphonuclear leukocytes, from human samples.
Although the clinical implications of our findings are
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Figure 2 — A-E, Lower respiratory tract myeloid cells that harbor SARS-CoV-2 virions display an inflammatory phenotype. A, Quantitative immuno-
fluorescence with median percentage (n=3 slides per patient) of total endotracheal aspirate cells that expressed SARS-CoV-2 nucleocapsid protein (n=6
patients; patient 7 did not have sufficient endotracheal aspirate for immunofluorescence staining). B, Representative montage from a single poly-
morphonuclear cell shows co-localization by immunofluorescence. Panels from left to right show merge, CD14 (green), IL-6 (red), SARS-Co V-2 nucleocapsid
protein (white), and Imaris (Bitplane) surface-rendered image of the overlapping areas of labeling. The blue nuclear stain in all panels is DAPI; the white
scale bar is 10 microns. C, Comparison of endotracheal aspirate cells that co-expressed CD14 (14) or CDI16 (16) with (N+) or without (N-) SARS-CoV-2
nucleocapsid protein in each sample (n=5 patients; patient 2 was removed due to low number of cells with nucleocapsid protein). Statistical comparison by
Mann-Whitney test. The double asterisks indicate a probability value of <.01. D, Comparison of endotracheal aspirate cells that co-expressed IL-6 (IL-6+)
or tissue factor (TF+) with (N+) or without (N-) SARS-CoV-2 nucleocapsid protein in each sample (n=>5 patients; patient 2 was removed due to low
number of cells with nucleocapsid protein). Statistical comparison by Mann-Whitney test; the single asterisk indicates a probability value of <.05; the double
asterisks indicate a probability value of <.01. E, Representative in situ localization of CD14 (green), IL6 (white), and tissue factor or F3 (red) transcript and
DAPI nuclear staining (blue) in an endotracheal aspirate myeloid cell. Pt = patient; SARS-CoV-2 = severe acute respiratory syndrome coronavirus 2.

unclear, we speculate that the benefits of dexamethasone cells and the associated inflammatory phenotype to help
in patients with SARS-CoV-2 pneumonia whose guide future clinical research strategies.

condition requires mechanical ventilation” potentially
result from modulation of inflammatory myeloid cells
recruited to lung airspaces, which are deleterious in
mouse models of SARS-CoV-1 pneumonia.® Notably,
we found that lower respiratory tract myeloid cells can
harbor virus as long as 14 days after initiation of
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