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Abstract

Macroscopic oscillations in the brain have been observed to be involved in many cognitive

tasks but their role is not completely understood. One of the suggested functions of the oscil-

lations is to dynamically modulate communication between neural circuits. The Communica-

tion Through Coherence (CTC) theory proposes that oscillations reflect rhythmic changes in

excitability of the neuronal populations. Thus, populations need to be properly phase-locked

so that input volleys arrive at the peaks of excitability of the receiving population to communi-

cate effectively. Here, we present a modeling study to explore synchronization between

neuronal circuits connected with unidirectional projections. We consider an Excitatory-Inhib-

itory (E-I) network of quadratic integrate-and-fire neurons modeling a Pyramidal-Interneuro-

nal Network Gamma (PING) rhythm. The network receives an external periodic input from

either one or two sources, simulating the inputs from other oscillating neural groups. We use

recently developed mean-field models which provide an exact description of the macro-

scopic activity of the spiking network. This low-dimensional mean field model allows us to

use tools from bifurcation theory to identify the phase-locked states between the input and

the target population as a function of the amplitude, frequency and coherence of the inputs.

We identify the conditions for optimal phase-locking and effective communication. We find

that inputs with high coherence can entrain the network for a wider range of frequencies.

Besides, faster oscillatory inputs than the intrinsic network gamma cycle show more effec-

tive communication than inputs with similar frequency. Our analysis further shows that the

entrainment of the network by inputs with higher frequency is more robust to distractors,

thus giving them an advantage to entrain the network and communicate effectively. Finally,

we show that pulsatile inputs can switch between attended inputs in selective attention.

Author summary

Oscillations are ubiquitous in the brain and are involved in several cognitive tasks but

their role is not completely understood. The Communication Through Coherence theory

proposes that background oscillations in the brain regulate the information flow between
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neural populations. The oscillators that are properly phase-locked so that inputs arrive at

the peaks of excitability of the receiving population communicate effectively. In this

paper, we study the emerging phase-locking patterns of a network generating PING oscil-

lations under external periodic forcing, simulating the oscillatory input from other neural

groups. We identify the conditions for optimal phase-locking and effective communica-

tion. Namely, we find that inputs with higher frequency and coherence have an adavan-

tage to entrain the network and we quantify how robust are to distractors. Furthermore,

we show how selective attention can be implemented by means of phase locking and we

show that pulsatile inputs can switch between attended inputs.

1 Introduction

Macroscopic oscillations are widely observed in the brain and they span a temporal scale that

ranges from a few to a hundred hertz [1]. There are several studies that associate these rhythms

to different cognitive tasks, but its physiological origin and functional role is not completely

understood and constitutes an active area of research [2–5].

Amongst these rhythms, oscillations in the gamma frequency band (30–100 Hz) have been

reported in many cortical areas and across different species in a variety of tasks, including

attention and memory [5, 6]. Investigations on the mechanisms generating gamma-band oscil-

lations have identified a key role for interneurons [4, 7], which are responsible for generating

synaptic inhibitory activity that periodically modulates the excitability of the neurons. These

rhythmic changes in the neuronal excitability have been hypothesized to regulate the informa-

tion flow between distant brain areas in a flexible way. Thus, Communication Through Coher-

ence (CTC) theory [8, 9] proposes that an effective transmission of information between two

oscillating neuronal groups occurs when the pre-synaptic input of the sending population

reaches systematically the post-synaptic (receiving) population at its maximum phase of excit-

ability (when inhibition has cleared out or is at its lowest value), producing an amplification of

the firing rate of the post-synaptic group. The oscillators must be therefore properly phase-

locked to accomplish effective communication. In this context, synchrony provides a dynamic

mechanism to modulate the information flow without modifying anatomical connections,

resulting in functional connectivity [10, 11]. Out of this theory, it emerges a solid hypothesis to

explain how selective communication arises in the brain, that is, the ability of a receiving neu-

ronal group to respond selectively to different input streams [9].

A growing number of experimental studies have tested some CTC predictions [9]. In partic-

ular, some studies have linked the phase of the inhibitory population with the modulation of

the input gain of the target population [12]. Also, effective connectivity has been linked to the

phase relation between gamma rhythms at the pre and post-synaptic neuronal groups [13]. On

the other hand, different studies support that visual and motor selective attention can be

implemented through the control of the phase and synchronization between populations [14–

16].

There are also several modeling studies approaching different aspects of the CTC hypothe-

sis. These studies are based either on computational simulations of spiking networks [17–21]

or models that admit an analytically more tractable approach such as single neuron models

[22, 23], or firing rate models [10, 24]. There are also studies that compare different modeling

approaches [10, 25], but when both spiking and mean firing rate models are considered [10],

the latter are not an exact derivation of the former. In the last years, the development of a new

generation of neural mass models that provide an exact description (in the limit of an infinitely
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large number of neurons) of the macroscopic quantities of a spiking network [26–28] has

opened the possibility to test CTC hypothesis in realistic models, while simplifying the mathe-

matical analysis. Compared to the classical firing rate models, this description is advantageous

given that it allows for a direct comparison with the spiking network.

In this study, we consider a spiking network of excitatory and inhibitory cells (E-I network),

whose macroscopic activity in terms of mean firing rate and membrane potential can be

described exactly by means of a low-dimensional mean-field model [26, 29]. The low-dimen-

sional mean field model permits mathematical analysis using tools from dynamical systems,

and thereby prediction and insight into the relevant parameters that characterize the firing

properties of the network. These predictions can then be tested in simulations of the full spik-

ing network. This approach allows us to go beyond our results on CTC obtained in an earlier

study for the Wilson-Cowan model [24] by considering more realistic networks. In particular,

the model shows oscillatory behavior for a larger set of parameters, including the absence of

recurrent coupling, and captures transient spike synchronization phenomena within the

network.

Specifically, we consider a mutually interconnected network of Excitatory and Inhibitory

neurons (E-I network), accounting for macroscopic oscillations via the classical PING (Pyra-

midal Interneuronal Network Gamma) mechanism [4, 7, 30]. These oscillations describe

rhythmic changes in the excitability of the E-cells. We apply to this network an external oscil-

latory input, modeling the input from the pre-synaptic population, for which we modulate the

amplitude, the frequency and coherence (that is, how concentrated input volleys are to particu-

lar phases of the oscillation cycle).

The present study requires first to examine how a neural oscillator responds to incoming

perturbations and the mathematical tool to characterize it is the phase response curve (PRC)

[31, 32]. The weak coupling assumption enables us to reduce the dynamics close to the oscilla-

tor to a single equation, known as the phase equation [33]. Since the perturbation is periodic,

we define the so-called stroboscopic map for the phase equation, whose fixed and periodic

points correspond to different phase-locking states between the input and the target network.

A bifurcation analysis of the stroboscopic map determines the Arnold tongues, that is, the

regions in the parameter space of amplitude and frequency of the periodic forcing, where the

different phase-locked states are located. We find that the pre-synaptic input can entrain the

post-synaptic network at different frequencies, and that the range of frequencies is larger for

high coherent inputs.

We explore in detail the solutions that emerge in the phase-locking regions to quantify the

communication efficiency in the CTC context, that is, we measure how much the target net-

work (receiver) detects the changes in the amplitude of the pre-synaptic inputs (emitter) by

means of the firing rate and spike synchronization of the E-cells. Interestingly, we observe that

phase-locking is not enough to ensure communication. Indeed, we find that when the input

frequency is higher than the natural gamma cycle of the receiver, increasing the strength of the

pre-synaptic input produces a significant increase of the synchronization of the E-cells

(described by the amplification of the oscillations of the firing rate of the E-cells), but not if the

input frequency is similar to the natural gamma cycle. So, communication is more effective in

the former case, because the input strength is better transferred and detected by the firing rate

synchronization within the target network. Moreover, we explore the effects of a disruptor

onto the phase-locking and we observe that those inputs with higher frequency are more

robust to disturbances, irrespective of its coherence. As a result, the frequency relationship is

crucial to preserve communication in the presence of distracting inputs. Finally, we give par-

ticular attention to show that a pulse delivered at the appropriate phase can drive selective

attention between two similar oscillatory input streams.
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2 Results

2.1 Mathematical setting for CTC

In this Section we describe the mathematical model for a canonical cortical neural network

with intrinsic oscillatory activity in the gamma range. This model will be used to study the

effects of an oscillatory input (modeling the input from a population coding for a particular

stimulus) onto the network activity. In particular, we will explore phase-locking properties

between emitting and receiving populations, and its implications for Communication

Through Coherence (CTC) theory, that is, how changes in some input parameters are detected

at the output.

Several studies on gamma-frequency oscillations have provided the fundamental neurologi-

cal requirements to generate them: either from the interplay of excitatory (E) and inhibitory

(I) populations or from a single inhibitory population with self-feedback. These two processes

are referred to as PING (Pyramidal Interneuron Network Gamma) and ING (Interneuron

Network Gamma) mechanisms, respectively, and represent the classical models to generate

and explain gamma oscillations [4, 7]. In both mechanisms, inhibition plays a strong role. In

this paper we focus on the PING mechanism.

To implement the PING mechanism we consider two populations of neurons, one of excit-

atory (pyramidal) cells and the other one of inhibitory (interneuron) cells, interconnected syn-

aptically. With sufficiently strong and persistent external excitatory drive to the pyramidal

neurons, the E-cells activate and recruit the I-cells which, in turn, send a reciprocal inhibitory

feedback onto the E-cells. The inhibition causes the E-population to be less receptive to the

external drive until its effect decays, starting again the E-I cycle. This mechanism generates

self-sustained macroscopic oscillatory activity in the gamma range (see Fig 1).

To model the E-I network we consider a neural mass model that was recently derived for

networks of spiking neurons [26, 29]. It provides an exact description (in the thermodynamic

limit) of the macroscopic quantities of a spiking network of quadratic integrate-and-fire neu-

rons, namely, the mean firing rate r and the mean membrane potential V (see Methods for

more details).

The model is given by a set of differential equations for the E-population,

te _re ¼
De

pte
þ 2reVe ;

te
_Ve ¼ V2

e þ Ze þ Ie � ðtepreÞ
2
;

tse
_See ¼ � See þ Jeere ;

tsi
_Sei ¼ � Sei þ Jeiri ;

ð1Þ

and another identical set for the I-population,

ti _ri ¼
Di

pti
þ 2riVi ;

ti
_Vi ¼ V2

i þ Zi þ Ii � ðtipriÞ
2
;

tse
_Sie ¼ � Sie þ Jiere ;

tsi
_Sii ¼ � Sii þ Jiiri :

ð2Þ
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Here, Va and ra represent the mean voltage and mean firing rate of the population a 2 {e, i}.
The parameters ηa and Δa are, respectively, the center and width of the static distribution of

inputs to the individual spiking neurons, which is considered to be Lorentzian. The time con-

stant τa is the membrane time constant of the individual neurons in population a. The variable

Sab models the synaptic current from the pre-synaptic population b to the post-synaptic popu-

lation a, and Jab is the strength of the corresponding synaptic connection. The parameter tse
corresponds to the decay time associated to fast excitatory (AMPA) synapses, and tsi to the

time constant of the fast inhibitory (GABAA) synapses.

The total input current to the excitatory population is given by

Ie ¼ Iexte þ teSee � teSei ; ð3Þ

and to the inhibitory one, by

Ii ¼ Iexti þ tiSie � tiSii : ð4Þ

Notice that the terms Ie and Ii above provide the coupling between systems (1) and (2). The

terms Iexte and Iexti represent the external input drive.

In this study, we are going to consider that the input current to the E and I-cells is of the

form

Iexte;i ¼
�I exte;i þ te;igðtÞ; ð5Þ

Fig 1. E-I cortical network and comparison between full network and reduced system. (A) Schematic representation of a cortical neural

network consisting of excitatory (E) and inhibitory (I) cells. Excitatory (resp. inhibitory) synapses are depicted by arrows with a black-filled

(resp. empty) circle pointing at the receiving population. The parameter Jab, a, b 2 {e, i} is the connectivity strength of the b! a synapse.

Besides synaptic input, each population also receives an external tonic current �I exta , a 2 {e, i}. Additionally, both populations receive a periodic

input Ap(t) (red curve), modeling the input from an oscillating neuronal population. (B) From bottom to top: Time evolution of the external

input current Iexte ðtÞ onto the E-cells. Iexte ðtÞ ¼ 0 for 0< t< 20, Iexte ðtÞ ¼ 10, for 20< t< 50 and Iexte ðtÞ ¼ 10þ 0:8pðtÞ, with p(t) defined in (15)

with κ = 2, T = T�/2 and T� = 24.234 ms. Raster plot of 1000 randomly selected neurons (the first 800 neurons are excitatory and the last 200

inhibitory). Time evolution of the macroscopic quantities re and ri obtained from simulations of the mean-field model (1)-(2) (red and blue

curves, respectively) and the averaged firing rate activity of the full spiking network (black). Notice that curves lie one on top of the other,

showing perfect agreement. In the latter case, the mean firing rate has been computed by averaging the number of spikes in a time window of

size δt = 8 � 10−2. Parameters: Ne = Ni = 5000, �I exti ¼ 0 and the rest of the parameters as in (6).

https://doi.org/10.1371/journal.pcbi.1009342.g001
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where �I exte;i is a tonic current and g(t) = Ap(t) is a time periodic function. The parameter A mod-

ulates the amplitude of the periodic input p(t) and is chosen so that it describes the strength of

the input by providing the temporal average of the stimulus (see Methods). We are going to

consider a periodic function p(t) of von Mises type (see Eq (15) in Methods) to explore the

effects of varying the input coherence, that is, how concentrated is the input volley around

some phases of the cycle. Notice the time constant τe,i multiplying the periodic input, so that A
describes the actual effect onto the voltage variable (see Eq (1)).

For this paper, we consider fixed the following parameters for system (1)-(2):

P ¼ fte ¼ ti ¼ 8;De ¼ Di ¼ 1; Ze ¼ Zi ¼ � 5; tse ¼ 1; tsi ¼ 5; Jee ¼ Jii ¼ 0;

Jei ¼ Jie ¼ 13g;
ð6Þ

and we will vary the other ones.

In Fig 1A we present a schematic representation of the E-I neural network described by sys-

tem (1)-(2) and their excitatory and inhibitory synaptic connections. In Fig 1B we show

numerical simulations of the firing rate activity of the network in response to a time dependent

input Iexte ðtÞ using the mean field reduced model (1)-(2) and the full spiking network model.

Notice the perfect agreement between both models. We emphasize here the power of this

reduced description, which will allow us to perform the mathematical analysis detailed in the

next Sections.

We acknowledge that our model has several parameters and we have chosen a particular set

P. Although exploring the PING dynamics in the entire parameter space goes beyond the

scope of this work, we have performed some numerical experiments to identify the qualitative

role played by the most important parameters. Thus, we have observed that the presence of

oscillations is a robust phenomenon and parameters mainly shape the features of the periodic

orbit. For instance, changes in the synaptic strength Jie have an impact on the firing rate activ-

ity of the I-cells, while changes in Jei affect the oscillation frequency. Finally, time constants τe,i
and tse ;si modulate the oscillation frequency. In the next Section, we discuss in more detail the

emergence of oscillations and, in particular, the role of the strength of the tonic currents to E

and I cells.

2.1.1 Characterization of gamma oscillations. Before studying the effects of a periodic

perturbation onto the E-I network, we characterize the network intrinsic oscillatory activity,

that is, when A = 0 in (5) and Iexte;i ¼
�I exte;i are tonic currents.

We first identify the values of the external inputs �I exte and �I exti for which the model (1)-(2)

shows oscillations. With strong enough constant drive to the E-cells, the system (1)-(2) transi-

tions from an asynchronous state of low activity (resting) to an oscillatory regime (see for

instance the transition at t = 20 in Fig 1B). From the viewpoint of dynamical systems, we say

that the system undergoes a bifurcation—a qualitative change in the underlying dynamics

when a parameter is varied (in our case when �I exte or �I exti are varied).

We identify two relevant bifurcations in the ð�I exte ;
�I exti Þ-plane to determine the oscillatory

states of the system (see Fig 2A). The asynchronous activity states destabilize through Hopf

bifurcations (blue curve), which give rise to oscillations (periodic orbits) that can be stable or

unstable depending on whether the Hopf bifurcation is supercritical (solid blue curve) or sub-

critical (dashed blue curve). Along this curve, Generalized Hopf (GH) bifurcations (also

known as Bautin bifurcations) occur at the places (red circles) where the Hopf bifurcation

changes from supercritical to subcritical (or vice versa) [34]. Moreover, oscillations also disap-

pear (resp. appear) through saddle node (or fold) bifurcations of periodic orbits (purple

curve). At these bifurcations, a stable and an unstable periodic orbit collide and annihilate
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Fig 2. E-I cortical network with oscillatory activity in the gamma range. (A) Two-parameter bifurcation diagram of

system (1)-(2) for the excitatory current �I exte (x-axis) and the inhibitory current �I exti (y-axis). The solid (resp. dashed)

blue curve corresponds to a supercritical (resp. subcritical) Hopf bifurcation curve. Red circles correspond to

(codimension 2) Generalized Hopf bifurcations (GH), also known as Bautin bifurcations. Purple curve corresponds to

saddle node bifurcation of limit cycles. Green circle corresponds to a Cusp bifurcation of limit cycles (CPC), a point

where two branches of saddle-node bifurcations of limit cycles meet tangentially. Oscillations occur in the blue and

orange regions. Red cross corresponds to values �I exte ¼ 10 and �I exti ¼ 0 generating the limit cycle considered later on.

(B, C) Frequency oscillation (green) and integral mean values of the firing rates re (dashed red) and ri (dashed blue) as

a function of (B) tonic excitatory current �I exte and (C) tonic inhibitory current �I exti . See Eq (7). (D, E) Time difference

(blue) and relative phase (orange) between inhibition and excitation as a function of (D) tonic excitatory current �I exte

and (E) tonic inhibitory current �I exti . In Panels B and D the inhibitory current �I exti is set to 0. In Panels C and E the tonic

excitatory current �I exte is set to 12. Other parameters are as in (6).

https://doi.org/10.1371/journal.pcbi.1009342.g002
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each other (resp. sudden create). Thus, oscillations occur in the blue and orange regions

enclosed by the Hopf and saddle node bifurcations. Remarkably, in the orange region, the sys-

tem presents bistability between asynchronous activity state and oscillatory state. There is also

a small region (intersection of orange and blue regions) showing bistability between two differ-

ent types of oscillations. Indeed, in this region the system presents 3 limit cycles, two of them

are stable and one is unstable, in addition to the unstable equilibrium point, corresponding to

the asynchronous state. Interestingly, we have found that the size of the bistability region

depends on several parameters of the model, in particular, the parameters modeling the

mutual interpopulations (Jei, Jie) and recurrent coupling (Jee, Jii). Studying the dynamics in the

bistable regions is a topic of interest for understanding the role of oscillations in cognitive

tasks. See, for instance, [35] for a study of the response of multistable networks of recurrently

coupled spiking neurons to external oscillatory drive and its implications for working memory

and memory recall tasks. However, the topic is beyond the scope of this paper and is left for

future research.

To characterize the oscillations, we compute their frequency and the integral mean values

of the firing rate of both populations, that is,

Re≔
1

T�

Z T�

0

reðsÞ ds ; Ri≔
1

T�

Z T�

0

riðsÞ ds ; ð7Þ

where T� is the oscillation period. The values Re and Ri in (7) provide an average of the firing

rate of the individual E and I-cells, respectively.

Moreover, we compute the time difference between the maximum of the I and E firing

rates in one cycle (I to E latency) and the relative phase, i.e., the time difference normalized by

the period. These factors provide information about the time it takes for the I-cells to activate

and halt the activity of the E-cells, and suggest possible gates for communication in the CTC

context [25].

We first consider a fixed value of the external inhibitory current (�I exti ¼ 0), and we increase

the excitatory one �I exte from 6 to 15. This interval covers the progression towards the oscillatory

region (see solid arrow in Fig 2A). In Fig 2B we show the frequency of the emerging oscilla-

tions as a function of the current injected into the E-cells (green curve). Notice that the fre-

quency is bounded away from zero (characteristic of a Hopf bifurcation) and increases from

30 to 70Hz, which fits in the gamma range. The average firing rate of the E and I cells (see Eq

(7)) is close to the macroscopic oscillation frequency for all values of the external current �I exte

that we have explored. Increasing the external input onto the E-cells causes only a slight short-

ening of the latency period of inhibition over excitation, especially for oscillations above 40Hz

(see Fig 2D).

We also vary the constant external drive onto the inhibitory cells �I exti from 6 to -2 (notice

that it may take negative values), while the input to the E cells is kept fixed at �I exte ¼ 12. The sys-

tem is initially in the non-oscillatory region and enters the oscillatory region (see dashed

arrow in Fig 2A). Increasing the depolarizing current onto the I-cells �I exti does not significantly

affect the macroscopic oscillation frequency (the frequency remains close to 50 Hz, except for

the final drop around �I exti � 5, see green curve in Fig 2C), in contrast with the effect of a depo-

larizing current onto the E-cells. However, increasing �I exti causes a strong effect on the inhibi-

tion-to-excitation latency (compare phase difference with Fig 2D), the inactive period after

inhibition acts on excitation shortens, and thus the relative phase (see Fig 2E).

In summary, the oscillation frequency is governed by a trade off between the decay time of

the inhibitory conductance and the external excitatory drive onto the E-cells. Thus, increasing

the depolarizing drive onto the E-cells (�I exte ) shortens the oscillation period, because excitation
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can overcome the effect of the inhibition sooner. On the other hand, increasing the depolariz-

ing drive onto the I-cells (�I exti ), activates the I population faster, thus shortening the I-E latency.

Next, we are going to study the different phase-locking patterns that emerge when the oscil-

latory neural E-I network receives a periodic external input. To do so, we consider the oscilla-

tions that emerge for values �I exte ¼ 10 and �I exti ¼ 0 (red cross in Fig 2A). The oscillation

frequency is about 41.26Hz (period T� = 24.234 ms), clearly in the gamma range. Moreover,

the time difference between the E and I volley peaks is short (around 4ms, see Fig 2D). Fig 3A

shows the evolution of the variables of the system along this periodic orbit. Later in Section

2.6, we will explore another type of oscillations, closer to the Hopf bifurcation curve, showing

different features.

2.2 Mathematical analysis of phase dynamics

In this Section we describe the mathematical analysis used to study the phase relationship

between the neural oscillator described by the low dimensional firing-rate model (1)-(2) and

an external time periodic input g(t) (see Eq (5)).

2.2.1 The phase equation. Consider the case for which the E-I network presents macro-

scopic oscillatory activity by means of a PING mechanism. Then, for an adequate set of param-

eters (see previous Section), the system of differential Eqs (1) and (2) has a hyperbolic

asymptotically stable limit cycle Γ, of period T�, attracting all nearby orbits. This stable limit

cycle is referred to as the oscillator.

Any oscillator can be parametrized by a single phase variable θ measuring the elapsed time

(modulo T�) from a reference point on the limit cycle, pinpointed as θ0 (i.e. θ(t) = t + θ0 mod

T�). This point is arbitrary. From now on, we will assume θ0 = 0 corresponds to the maximum

of the mean excitatory voltage Ve on the oscillation. The phase variable θ describes uniquely

a point on the oscillator via the periodic solution, i.e. γ(θ(t)) = γ(t) = (re(t), Ve(t), . . ., ri(t),
Vi(t), . . .), such that γ(t) = γ(t + T�).

When we apply an external periodic input g(t) of period T (see Eq (5)) through the dynam-

ics of the variables Ve and Vi, the evolution of the phase variable θ is described by the equation,

dy
dt
¼ 1þ gðtÞðZVe

ðyÞ þ ZVi
ðyÞÞ; ð8Þ

where ZVe
ðyÞ and ZVi

ðyÞ are the coordinates of the infinitesimal Phase Response Curve (iPRC)

Z in the direction of the variables Ve and Vi, respectively. The function ZVe
(resp. ZVi

) measures

the oscillator’s phase shift due to an infinitesimal perturbation applied to the voltage Ve (resp.

Vi) at different phases of the cycle [31]. Thus, the iPRC ZVe
þ ZVi

measures the oscillator’s

phase shift when the perturbation applies to both E and I populations. For, g(t) = Ap(t), the

positive parameter A controls the strength of the input, and it is assumed to be sufficiently

small (A� 1). See Methods. In Fig 3B, we show ZVe
(red curve) and ZVi

(blue curve) for the

oscillator in Fig 3A (corresponding to the parameter set P in (6) with �I exte ¼ 10;�I exti ¼ 0).

Notice that the excitatory inputs to the I-cells produce a weaker effect onto the phase com-

pared with inputs to the E-cells (compare the iPRC ZVe
ðyÞ and the iPRC ZVi

ðyÞ in Fig 3B).

Indeed, when the same excitatory input is applied to both populations, the iPRC ZVe
þ ZVi

(pink curve) has a similar shape than the iPRC ZVe
ðyÞ (red curve). Thus, the oscillator is almost

input insensitive for phases of the cycle corresponding to the activation of the I-volley, (iPRC

close to zero) and positive for the rest, achieving its maximum value right before the activation

of the E-volley. Later in Section 2.6, we will explore another type of oscillations, closer to the

Hopf bifurcation curve, for which the iPRC takes both positive and negative values.
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Fig 3. Rotation numbers and phase-locking regions for the forced PING oscillation varying input parameters. (A)

Temporal evolution of firing rate, mean membrane potential and synaptic variables over a cycle of a PING oscillation

for system (1)-(2) corresponding to the red cross in Fig 2A. (B) Infinitesimal Phase Response Curve (iPRC) for

perturbations in the direction of the variables Ve and Vi (red and blue curves, respectively) and the sum of them

(purple curve). (C) Von Mises (circular) distribution as a function of the factor κ controlling the input coherence.

Large values of κ result in distributions concentrated around the location μ = 0, whereas smaller values lead to broader

low-amplitude distributions. The black horizontal line corresponds to the uniform distribution (limit case attained

when κ = 0). (D, E) Rotation numbers of the stroboscopic map (9) for a von Mises input (15) applied in the direction

of Ve and Vi, as a function of the ratio between the intrinsic period of the E-I network T� and the input period T. (D)

Rotation numbers for κ = 2 and different amplitude values A. (E) Rotation numbers for A = 0.1 and different input

coherence values κ. (F) Arnold tongues computed using the phase reduction corresponding to the 1:1 (orange), 1:2

(purple) and 2:1 (blue) phase-locked states for different input coherence: κ = 20, 2, 0.5 corresponding to the regions

delimited by solid, dashed, dash-dotted curves, respectively. In grey, we show the corresponding Arnold tongues for

pulsatile inputs (κ!1) obtained analytically. See Methods.

https://doi.org/10.1371/journal.pcbi.1009342.g003
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2.2.2 Stroboscopic map and phase-locking. Since the input g(t) is periodic of period T,

we use the so-called stroboscopic map to study the phase Eq (8). Let Ft(θ) be the solution of the

Eq (8) starting at phase θ0 at t = 0. The stroboscopic map P (also known as Poincaré phase

map) is defined on the circle and provides the phase of the oscillator after a time T (the period

of the perturbation), that is

ynþ1 ¼ PðynÞ≔FTðynÞ modT� : ð9Þ

In general, we cannot find an analytical expression for the stroboscopic map and the com-

putation must rely on the numerical integration of the system. However, in the case of pulsatile

inputs, we can provide an analytical expression for it (see Methods).

The dynamics of the stroboscopic map determines the phase-locking between the oscillator

and the periodic perturbation. In our context, we say that they are p: q phase-locked if every

time the forced oscillator completes p revolutions, the oscillatory input completes q revolu-

tions. The concept of synchronization is often associated to the 1:1 phase-locking, that is, the

external stimulus entrains the oscillator and both oscillate at the frequency of the forcing.

The 1:1 phase-locked states correspond to fixed points of the stroboscopic map P in (9),

because, after integrating the phase equation for a time T (the period of the forcing), the phase

of the forced oscillator coincides with the initial one (modulo T�), i.e. θ + T� = P(θ). The rela-

tion p : 1, consisting in p revolutions of the oscillator per one of the stimulus, also corresponds

to a fixed point of the stroboscopic map (we must find a solution of θ + pT� = P(θ)). Finally, in

the most general framework, p : q phase-locked states correspond to q-periodic points of the

stroboscopic map, i.e. solutions of the equation θ + pT� = Pq(θ).

2.2.3 Rotation number and Arnold tongues. To identify the fixed and periodic points of

the stroboscopic map P in (9) (and therefore, the phase-locked states) we compute the rotation

number. The rotation number (denoted by ρ) measures the angle on the circle that the map P
turns on average at each iterate. See Methods for the formal definition. Results in dynamical

systems theory [36] guarantee that whenever ρ is rational (i.e. ρ = p/q for p; q 2 N), there exists

a q-periodic point of the stroboscopic map (9), that is, a solution of PqðyÞ ¼ y mod T�, corre-

sponding to a p : q phase-locking relationship. If, by contrast, ρ is irrational, then the orbits of

(9) fill densely the circle, and phase-locking does not occur.

We have computed the rotation number for the stroboscopic map (9) of the phase Eq (8)

corresponding to the oscillator in Fig 3A (whose iPRC ZVe
þ ZVe

is shown in Fig 3B) and a

depolarizing input g(t) = Ap(t) of von Mises type (see Eq (15) and Fig 3C), for which we will

vary the frequency 1/T, the amplitude, controlled by the parameter A, and the coherence κ.

When A = 0, the only p : q phase-locked states occur at rational values of the frequency rela-

tionship, T/T� = p/q. However, as A increases, there appear plateaus in the graph of the rota-

tion number as a function of T/T�, which is known as Devil’s staircase. The plateaus,

corresponding to rational values of the rotation number, appear because there is a range of

periods T close to
p
q T
� that also give rise to p : q phase-lockings (see Fig 3D). The easiest detect-

able plateaus correspond to ρ = 1, 1/2, 2 for the range of input frequencies considered. Increas-

ing the amplitude, these plateaus are lengthened and shifted towards higher input frequencies.

In the relative frequency vs amplitude parameter space (T/T�, A)-plane, a p : q phase-lock-

ing region resembles a leaf or a fang with their tip stuck at A = 0, known as Arnold tongue [36]

(see Fig 3F). The plateaus in the graph of the rotation number are actually slices of such Arnold

tongues obtained by fixing the amplitude (see Fig 3D). The shape of these Arnold tongues is

strongly linked to the sign of the iPRCs. Indeed, when the iPRC is mainly positive (e.g. the

iPRC ZVe
þ ZVi

in Fig 3B), the oscillator can essentially only advance its phase and thus it syn-

chronizes almost exclusively to fast external oscillations, that is, periodic forcing with period
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T< T�. The resulting Arnold tongue is bent to the left (see Fig 3F). This fact justifies why the

p/q plateaus in Fig 3D were shifted gradually to the left (see, for instance, at the 1:1 phase-

locked state for different amplitudes).

The computation of the phase-locking regions in Fig 3F was carried out under the weak

coupling hypothesis (small A). For this reason, the prediction of phase-locking for the full

model (1)-(2) might be less accurate as the amplitude increases. Remarkably, computations

only show a slight disagreement between the prediction obtained from the phase equation and

the solution found by exhaustive search of periodic orbits for the perturbed 8-dimensional sys-

tem (1)-(2) (see S1 Fig). This outcome guarantees the reliability of the predictions based on the

phase reduction method at least for amplitudes with A� 0.1.

2.3 Increasing the coherence of the periodic input enlarges the frequency

range that entrains the network

Beyond varying the input strength and frequency, we have also computed the rotation number

and Arnold tongues while varying the input coherence. In this paper, the concept of coherence

refers to concentration of the periodic input volley around some phases of the cycle (as in

[22]). The input coherence is modulated by the parameter κ in the input Eq (15), while the

total external drive over a cycle is maintained, that is, the area under the input is independent

of κ (see Fig 3C and Methods). Moreover, we also consider the limit case (κ!1), the input

then becomes a periodic pulse and the pulses are modeled by delta functions. In this case, the

Arnold tongues can be computed analytically. See Methods.

We observe that higher coherent inputs (larger κ) give rise to devil’s staircases with larger

rational plateaus (compare the red curves with the blue ones in Fig 3E). Moreover, when look-

ing at the Arnold tongues of the largest phase-locking regions in the devil’s staircases (1:1, 1:2

and 2:1), we observe that lower coherent inputs (small κ) result in narrower Arnold tongues,

enclosed in those with larger κ (see Fig 3F). Thus, inputs with higher coherence are capable of

entraining the target network for a wider range of frequency values. Noticeably, as input

coherence increases, the right boundary of the Arnold tongues is set approximately at a fixed

frequency relationship T/T� � p/q independently of the amplitude A (notice the right bound-

ary of the 1:1 and 1:2 Arnold tongues for κ!1 is fairly vertical). Thus, increasing the input

coherence enlarges the range of frequencies that entrain the network without shifting it.

In the following Section, we explore whether the type of entrainment that emerges inside

the 1:1, 1:2 and 2:1 phase-locking regions for coherent inputs (κ = 2) is optimal for communi-

cation in the CTC context.

2.4 Inputs with higher frequency communicate more effectively

In this Section, we explore the implications of phase-locked states for neuronal communica-

tion in the CTC context. In the previous Section, we have identified several phase-locked states

between an oscillating E-I network (PING interplay) and a periodic input using the phase

reduction (see Fig 3). However, phase-locking is not enough to guarantee effective communi-

cation; the phase relationship must satisfy certain conditions. The CTC theory proposes that

the phase difference between oscillating neuronal groups is adequately set up for communica-

tion if windows for sending and receiving are open at the same time, because then the inputs

from the pre-synaptic group will produce changes in the firing rate of the post-synaptic popu-

lation and communication will occur [8, 9].

To identify how information can be encoded in the input, transmitted and represented in

the output of the firing rate of the E-cells, we consider periodic inputs with different ampli-

tudes modulated by the parameter A (when A = 0, the stimulus is not present) and we measure
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the changes in the firing rate of the post-synpatic group, either on the average firing rate or in

the spike synchronization, as suggested in [21]. If inputs with different amplitudes generate

different output responses, then the information encoded in the amplitude of the input will be

detected at the output and communication will occur.

Moreover, CTC theory proposes that effective communication depends essentially on the

timing of the inhibition and the external input [37]. In the unidirectional setting considered

herein (see Fig 1A), if the external input volley reaches the receiving E-population before the

inhibition activates, it may elicit a response of the E-cells. Thus the target network will detect

changes in the input strength by means of its firing rate and render communication effective.

On the other hand, if the input volley arrives to the E-population when the inhibition is pres-

ent, then such an input may have no effect on the activity of the E-cells and information will

not be transmitted to the target network.

In this Section, we provide four measures that will allow us to characterize quantitatively

whether the input strength A is transmitted to the receiving population, how it is represented

by the activity of the E-cells of the target network and how this transmission is related to the

phase-locking properties of the entrainment. In particular, we compute the factor Δτ (Eq (23)),

which measures the time difference between the peaks of the input and the I-volley, and the

factors D�a, Δα and Δσ which measure the firing rate response of the E-cells of target network

to the input (see Methods). More precisely, D�a (Eq (24)) provides information about the rate

change in the overall firing rate of the E-population over the whole cycle, Δα (Eq (25)) about

the rate change in the maximum of the E-volley and Δσ (Eq (26)) about the rate change in the

half-width of the E-volley. In our previous work [24], we considered only the factor Δα, but

the quantities D�a and Δσ allow us to complement the information about the changes in the fir-

ing rate. Thus, the factor Δτ describes the properties of the phase-locking that emerges, in par-

ticular, how close in time is the input from the activation of the I-cells, while the other factors

describe how the network firing rate is affected by the changes in the input strength.

In Fig 4 we show the factors Δτ, D�a, Δα, and Δσ for periodic solutions of system (1)-(2) per-

turbed with a von Mises input Ap(t) with coherence κ = 2 (see Eq (15)), in the 1:1 phase-lock-

ing region (identified in Fig 3), where the existence of these orbits is guaranteed. The factors

were computed along constant amplitude values that range between A = 0.01 and A = 0.2 in

the corresponding Arnold tongue.

The entrainment presents different features inside the 1:1 phase-locking region depending

on the frequency of the external input. The factor Δτ (see Fig 4A) indicates that when the input

frequency is close to the natural gamma cycle (T/T� � 1), the input volley reaches the E-popu-

lation when the I-cells are active (Δτ� 0 or even smaller) and, as the input frequency increases

(T/T� decreases away from 1), the time by which the input volley precedes the I-population

volley increases (Δτ increases up to 0.4). See Fig 4B.

The factor D�a (Fig 4C) indicates that the increase in the mean firing rate of the E-cells due

to changes in the input amplitude A is stronger for high frequency inputs (i.e. T/T� close to the

left boundary) than for inputs with frequencies similar to the natural gamma cycle (i.e. T/T�

close to the right boundary). However, in all cases we observe a weak modulation of the mean

firing rate activity by the input strength A (values of D�a below 1.3).

These differences between input frequencies in the modulation of the output response due

to changes in the input strength A are more noticeable when looking at the factors Δα and Δσ,

describing the shape of the E-volley, that is, the spiking synchronization properties within the

target network. For higher input frequencies there is a significant sharpening of the E-volley

and therefore an increase in the spike synchronization of the post-synaptic group when A
increases: the half-width decreases (Δσ much smaller than 1) and the maximum increases (Δα
much greater than 1) (see Fig 4D and 4E). For frequencies T/T� � 1 (close to the right
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Fig 4. Input effects on the E-cell evoked response for a network entrained by coherent inputs. (A) Evolution of the firing rate variables re (red)

and ri (blue) of the perturbed system (1)-(2) with a von Mises input with κ = 2 (dashed green) for a representative periodic orbit within the 1:1

phase-locking region. (B-E) Factors describing changes in the E-cell response within this phase-locking region for orbits of the perturbed system

(1)-(2) calculated along (equidistant) sections A = ct of the corresponding Arnold tongue, indicated by the color of the curve (ranging from dark

blue, A = 0.01, to yellow, A = 0.2, with increments of size 0.01). The factors are: (B) Δτ, describing the timing between inhibition and input volleys

(normalized by the input period T), (C) D�a, describing the rate change in the averaged firing rate of the E cells, (D) Δα, describing the rate change

in the maximum of the firing rate of the E cells, and (E) Δσ, describing the rate change in E-volley half-width. See Methods.

https://doi.org/10.1371/journal.pcbi.1009342.g004
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boundary), the maximum and half-width of the E-volley barely changes when A increases

(Δα� 1 and Δσ� 1). Indeed, it slightly widens (i.e. the E-cells become less coherent) because

the input arrives close to the natural activation of the E-cells. We will see later in Section 2.6

that this effect is more pronounced in the case of oscillations close to the Hopf bifurcation.

Therefore, we have found that changes in the input strength A are transmitted and better

reproduced at the output by the spike synchronization properties of the E-population

(described by both the maximum firing rate and half-width of the E-volley) rather than by the

average firing rate re. Moreover, they are better detected for periodic inputs with higher fre-

quency than the natural gamma cycle. Thus, we establish that communication between input

and output is quantified by means of the factor Δα (and, also the factor Δσ), which measures

the amplification of the oscillations of the target network (the receiver) due to the periodic per-

turbation. Thus, we conclude that our results suggest that the entrainment of the network by

higher input frequencies than the natural gamma cycle may result in a more effective commu-

nication of the information encoded in the input strength.

We acknowledge that we have studied an E-I network driven by a periodic input in the

absence of noise, thus our setting is deterministic. However, our predictions on effective com-

munication might be tested in the presence of noise using techniques from information theory.

We have run preliminary computations that we include in the S1 Appendix, that seem to agree

with our deterministic observations. Further explorations are left for future work. See the

Discussion.

We have also explored the type of entrainment that emerges in the 1:2 and 2:1 phase-lock-

ing regions (see S3 Fig). In the 1:2 phase-locking region, the network receives two input volleys

but responds with only one E-I volley every cycle (see S4 Fig). Thus, only one input volley elic-

its a response in the target network, while the other one is ignored, due to the activation of

inhibition. We observe that the E-volley is modulated in a similar way as in the 1:1 phase-lock-

ing region (see panels C-E in S3 Fig).

Finally, in the 2:1 phase-locking region, we find two E/I-volleys per one of the input (see S5

Fig). Thus, the input affects mainly only one E/I-volley (solid line in S3 Fig right), while the

second E/I-volley reflects only the intrinsic dynamics of the network and it is slightly modu-

lated by the external input. Interestingly, when the input frequency is decreased, the input

modulates both E/I-volleys. Then, in these cases, the low frequency input can be seen as a

modulator of the E/I-network rhythm (see Discussion).

2.5 Inputs in competition and selective communication

Thus far we have studied how a single periodic external input may entrain the network and

how is the communication established between the emitting and receiving populations. In this

Section we want to explore how CTC theory implements selective communication. In selective

communication the target network receives several stimuli from different sources, but

responds only to one of them (the relevant stimulus), while ignoring the others [9].

To identify the relevant properties that are involved in selective communication, we probe

how the phase-locked states described in the previous Section are affected by the presence of a

distractor. In particular, we consider the case where the target network is entrained by a pri-

mary periodic input A1p1(t) of the form (15) with frequency f1 = 1/T1 and coherence κ1 = 2

(coding for the attended stimulus) and we add a second periodic perturbation A2p2(t) (coding

for the distractor) of the form (15) for which we will vary the frequency f2 = 1/T2 and the

coherence κ2 (see Fig 5A). We investigate first whether the distractor prevents or not the target

oscillatory network to follow the rhythm of the primary stimulus. Second, we investigate how

changes in the amplitude of the primary and the distractor affect the output firing rate to
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determine how the information stored in the amplitude of the primary is transmitted and

detected at the output by means of the E-cell evoked response. This approach allows us to iden-

tify whether there is a stimulus being detected (attended stimulus) and another ignored and

the underlying mechanisms for this selection.

2.5.1 Two input streams of the same frequency. We first consider the case when the dis-

tractor has the same frequency as the primary input (i.e, f2 = f1 = 1/T2 = 1/T1 = 1/T), but

phase-shifted by T/2 so that the two inputs are in anti-phase. We assume that the coherence of

the primary is fixed at κ1 = 2 and we vary the coherence of the distractor κ2 and the period of

both inputs T. The input strength is taken A1 = A2 = A = 0.1 and we consider only those values

of T for which the primary input entrains the network, that is, the pair (T/T�, A) lies inside the

1:1 Arnold tongue (see Fig 3F).

Since both inputs have the same frequency, the perturbed system is still T-periodic and

therefore we can compute the rotation number ρ for the stroboscopic map (9) of the phase

Eq (8) with g(t) = A1p1(t) + A2p2(t). Recall that if ρ� 1, then 1:1 phase-locking is preserved,

whereas if ρ is away from 1, then the distracting stimulus manages to disrupt phase-locking.

We find that the ability of a distractor to disrupt the entrainment by the primary stimulus

depends mainly on the frequency relationship T/T� (see Fig 5B). Indeed, for lower values of

T/T� (on the left-hand side of the 1:1 Arnold tongue), the entrainment is more robust to per-

turbations by a distractor input (the rotation number remains constant ρ = 1). Remarkably,

this effect is fairly independent of the coherence of the distractor κ2. As the input frequency

decreases (T/T� increases), the entrainment by the primary is significantly affected by the dis-

tractor (ρ 6¼ 1).

For the cases when the entrainment is not disrupted, we will see in Section 2.5.5 that there

is a symmetry in the system and the network may switch between the attended stimuli.

Fig 5. Effect of an identical frequency distractor in the network entrained by the primary stimulus. (A) Schematic representation of an E-I cortical neural network

(PING interplay) receiving two oscillatory inputs from different sources: the primary input A1p1(t) (green circle) and the distractor one A2p2(t) (red circle). (B)

Rotation numbers ρ of the stroboscopic map (9) for a perturbation consisting of a primary input and a distractor. Both inputs are modeled by means of a von Mises

distribution, have the same amplitude factor A1 = A2 = 0.1 and the same period T = T1 = T2 but phase-shifted. The coherence for the primary is fixed at κ1 = 2. We vary

the distractor coherence κ2 (x-axis) and the period T, so that the values T/T� (color legend) are distributed along the 1:1 plateau for κ1 = 2 (the oscillator and the

primary stimulus support a 1:1 phase-locking relationship). If ρ = 1, the entrainment by the primary stimulus is preserved despite the presence of the distractor,

otherwise, it breaks down.

https://doi.org/10.1371/journal.pcbi.1009342.g005
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2.5.2 Two input streams of different frequency. We now turn to study the effect of a dis-

tractor of different frequency than the primary that entrains the network. We fix the parame-

ters κ1 and T1 of the primary input A1p1(t) so that there is a 1:1 phase-locking relationship

between the primary and the oscillatory E-I network. Then, we add a second external input

A2p2(t), for which we vary the coherence κ2 (between 0.01 and 20) and the period T2 (within

the range
T1

2
;

3T1

2

� �
). The distractor is phase-shifted so that both input volleys are as much apart

as possible over a cycle (see Fig 6A and 6B and Methods for a precise definition). The ampli-

tude for both inputs is set to A1 = A2 = A = 0.1.

Notice that in this case the perturbed system (1)-(2) with g(t) = A1p1(t) + A2p2(t) is no lon-

ger T1-periodic, neither the phase Eq (8). However, we still consider the time-T1 map of the

phase equation, which provides a phase over the cycle at each time T1 (although the evolution

of this map depends also on time). See Methods for more details. We compute the synchroni-

zation index (SI) r, also known as vector strength, for the phases of this map. The synchroniza-

tion index is a measure of how clustered are the phases on a cycle [38, 39]. Thus, if r� 1, the

Fig 6. Effect of a non-identical distractor in the network entrained by the primary stimulus. (A, B) Two von Mises inputs of different frequency phase-shifted

according to the rule described in Methods. The black curve corresponds to the primary stimulus located about μ1 = 0 with κ1 = 2 and period T1 = T. The other curves

correspond to a distractor with different coherence values κ2 indicated in the legend. The distractor is phase-shifted (A) T2/2 if T2/T1 < 1 or (B) T1/2, otherwise. (C)

Arnold tongue corresponding to 1:1 phase-locking between a single von Mises input with coherence κ1 = 2 (primary input) and the target network. We have selected 3

orbits along the section A1 = A = 0.1 (black crosses) corresponding to T1/T� = 0.845, 0.93 and 1 (left to right), for which we apply a distractor input of the same strength

A2 = A = 0.1. (D, E, F) Synchronization index r for the stroboscopic map at time T1 as a function of the coherence of the distractor κ2 (x-axis) for different values of the

periods ratio between inputs, T2/T1 (color legend). The distractor frequency can be higher (cold colors) or lower (warm colors) than the primary frequency, being as

much twice as fast (dark blue line) or 3/2 times slower (red line).

https://doi.org/10.1371/journal.pcbi.1009342.g006
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phases are all clustered around the same value, while if r� 0 they are scattered around the cir-

cle. See S6 Fig.

The frequency relation T1/T� has been fixed at three different points inside the 1:1

Arnold tongue for κ1 = 2 along the line A1 = A = 0.1: on the left (T1/T� = 0.845), in the middle

(T1/T� = 0.93) and on the right-hand side (T1/T� = 1). See Fig 6C. In Fig 6D-F we show the

SI as a function of the frequency relation between the primary input and the distractor (f1/f2 =

T2/T1) and the coherence of the distractor κ2. We consider that the entrainment of the target

network by the primary input is maintained despite the presence of the distractor when SI sat-

isfies r> 0.8.

We observe that the entrainment is not disrupted by the presence of a distractor when the

relation T1/T� lies near the leftmost edge of the 1:1 Arnold tongue (see Fig 6D for T1/T� =

0.845). The distractor can either oscillate faster or slower (within the range
T1

2
;

3T1

2

� �
) or it

might even come in the form of sharper or broader pulses (vary κ2), but it does not prevent the

primary input to entrain the oscillator. Notice that the SI remains above 0.8 for all values of κ2

and frequency relations T2/T1.

When T1/T� lies in the center of the 1:1 Arnold tongue, faster distractors than the primary

input (i.e. T2/T1� 1) cause the phase-locking breakdown since the SI falls below 0.8 (see cold

color curves in Fig 6E), independently of the distractor coherence κ2, as long as it is above 1.

However, slower distractors than the primary input (i.e. T2/T1� 1) do not disrupt phase-lock-

ing significantly. Indeed, the SI remains above 0.8 (see warm color curves in Fig 6E).

Finally, when T1/T� lies close to the right border of the 1:1 Arnold tongue, the distractor

succeeds in completely disrupting the 1:1 phase-locking, irrespective of κ2 and the frequency

relationship T2/T1 (see Fig 6F). Indeed, the SI for all values is below 0.5.

In conclusion, if the distractor is coherent enough, what determines the robustness of the

entrainment is the frequency relationship T1/T�. Indeed, the entrainment of the network by

the primary input is much stronger (robust to distractors) when the primary has a higher fre-

quency than the natural gamma cycle. In this case, even the more coherent distractors cannot

break the 1:1 phase-locking. As the primary input frequency decreases and approaches the nat-

ural gamma cycle frequency, the entrainment becomes weaker because, first, faster distractors

can break the synchrony and finally, close to the right boundary, any distractor can do so.

In the next Section we will discuss the underlying mechanisms that explain the dependency

of the entrainment robustness on T1/T�.
2.5.3 The role of inhibition. In the previous Section, we observed that the entrainment is

more robust for inputs with higher frequencies than the natural gamma cycle. The explanation

is related to the phase relationship that emerges between the primary input and the I-volley of

the target network. First, notice that in the absence of the periodic primary stimulus, the E-I

volley peaks are shifted apart by approx 0.18 phase units when �I exte ¼ 10 (see Fig 2D). We

emphasize that this difference is maintained more or less constant when we add the entrain-

ment by a von Mises type of input.

Observe that for values of T1/T� close to left boundary of the 1:1 Arnold tongue, the factor

Δτ is close to 0.4 (see Fig 4B), so inhibition is weak when primary input volleys arrive and

strong near the distractor volleys, thus suppressing their effects. In conclusion, inhibition

shadows the distracting stimulus and phase-locking with the primary is not disrupted. See S7

Fig left.

On the contrary, if T1/T� is close to right boundary of the 1:1 Arnold tongue, Δτ is close to

0 (see Fig 4B), thus indicating that the peak of inhibition occurs close to the primary input.

Therefore, inhibition is low when the distractor volleys reach the E-cells of the target network,

thus allowing the distractor to activate E-cells and disrupt phase-locking. See S7 Fig right.
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For intermediate values of T1/T�, only faster inputs disrupt phase-locking (T2/T1 < 1),

because every time an input volley arrives under sufficiently low inhibition it elicits (indirectly)

an I-volley that shadows the effects of subsequent input volleys arriving close in time. Thus,

faster distractor inputs are more frequent and are capable to elicit more I-volleys that shadow

the effects of the primary volleys and disrupt phase-locking. See S7 Fig middle.

2.5.4 Effects of the disruptor on the E-cell evoked response. We are not only interested

in studying whether entrainment is preserved but also how the communication (i.e., how the

input strength of the primary input affects the E-cell firing rate respones) is affected by the

presence of a distractor. More precisely, in those cases in which the entrainment by the pri-

mary input is maintained, we want to explore whether the presence of a distractor affects the

response of the E-cells of the target network, and therefore disrupts the communication with

the primary. A question that arises is whether the output of the E-I network reflects summa-

tion in some sense of the two inputs or whether one dominates over the other.

Exploring in detail the influence of a distractor in the output firing rate and, in conse-

quence, the communication, involves several parameters, such as the relative frequency T1/T2

and relative amplitudes A2/A1 between both inputs (primary and distractor), together with the

relative frequency with respect to the natural gamma cycle. In this Section, we highlight the

qualitative role played by the most important parameters and we leave the systematic study for

future research.

The main findings are summarized in Fig 7, where we show for some representative exam-

ples, the firing rate re of the E-cells in the absence of input (yellow dashed curve), when only

the primary input is present (orange dash-dotted curve) and when both the primary and the

distractor inputs are present (red solid curve). The representative examples chosen are with

T1/T� as in Fig 6 and T2/T1 = 1.2, κ1 = κ2 = 2.

For values of T1/T� on the left-hand side of the 1:1 Arnold tongue, the I-volley is in anti-

phase with the primary input volley. Thus, the windows for the disruptor to evoke a response

are only open during the arrival times of the primary volley. Therefore, depending on the fre-

quency relationship T2/T1, we have that, for some cycles, the input volley of the distractor and

the primary input almost coincide, thus providing more concentrated input drive to the E-

cells and evoking a higher response, while for other cycles, the distractor input volley reaches

the E-cells when inhibition is present and the network does not respond to the distractor. See

also S7 Fig left and panel A in S8 Fig.

For values of T1/T� in the middle region of the Arnold tongue, the presence of a distractor

decreases on average the evoked response of the E-cells to the primary input, even when the

network is still entrained by the primary (compare red solid and orange dash-dotted curves in

Fig 7B). The reason is again related to the timing of the I-volley. The time difference between

the primary input volley and the I-volley has shortened (see Fig 4B), thus offering more tempo-

ral windows (away from the primary input volley) for the disruptor to elicit a response on the

E-cells. This causes that for certain cycles the disruptor volley elicits a response ahead of the

primary, thus affecting the overall response. See also S7 Fig middle and panel B in S8 Fig.

For the case T1/T� = 1, the primary input elicits a weak response on the E-cells (compare

yellow dashed and orange dash-dotted curves in Fig 7C), while the distractor increases the

response in the E-cells (compare red solid and orange dash-dotted curves in Fig 7C). In this

case, most of the distractor volleys arrive when inhibition is low, thus causing the activation of

the E-cells and affecting the entrainment. See also S7 Fig right and panel C in S8 Fig. In this

case, the output firing rate reflects the effects of both primary and distractor inputs.

Next, we take a more systematic approach to assess the contribution of each input to the E-

cell evoked response in a particular setting. We consider the case where the primary input has

a frequency relationship with the natural gamma cycle that lies on the left-hand side of the

PLOS COMPUTATIONAL BIOLOGY Phase-locking patterns in neural networks underlying effective communication

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009342 May 18, 2022 19 / 41

https://doi.org/10.1371/journal.pcbi.1009342


Arnold tongue (T1/T� = 0.845), and we consider a distractor that has a frequency T1/T2 = 1.2

(T2/T� = 1.04, thus, it lies on the right-hand side of the Arnold tongue). Recall that we have

seen in Section 2.4 that inputs with higher frequency communicate more effectively, so we will

explore whether this is maintained when we add the distractor. We computed the average

changes in the maximum firing rate of the E-cells Δα, half-width of the E-volley Δσ and average

firing rate D�a over several cycles in the presence of a distractor with strength A2 = 0.1 and for

varying A1 (see Fig 7D). We repeated the computations fixing the strength of the primary (A1

= 0.1) and varying A2 (see Fig 7E). We can observe that increasing A1 from 0 (stimulus off) to

0.1 increases significantly the firing rate synchronization within the E-population (described

by an increase in Δα and a decrease in Δσ) in the presence of a the distractor (Fig 7D), suggest-

ing that information about stimulus state described by the input strength might be efficiently

transmitted. However, increasing the strength of the distractor when the primary input is pres-

ent affects very little the firing rate of the E-cells both in terms of average firing rate and sharp-

ening of the E-volley (very small variation of the factors Δα, D�a and Δσ in Fig 7E), suggesting

that this input is ignored. Remarkably, in all cases, the average firing rate of the E-cells over a

Fig 7. Effects of the disruptor on the E-cell evoked response for some representative trails. Three different types of entrainment inside 1:1 phase-locking region

corresponding to (A) T1/T� = 0.845, (B) T1/T� = 0.93 and (C) T1/T� = 1. (Top) Time evolution of the excitatory firing rate re for system (1)-(2) in the absence of

perturbation (dashed yellow curve), when the network is entrained by the primary input (dashed-dotted orange curve) and when both the primary input and the

distractor are present (solid red curve) for a time duration of 6T1. (Bottom) The primary input (solid black) and the distractor (dashed black) correspond to inputs of

von Mises type with A1 = A2 = A = 0.1, κ1 = κ2 = 2 and a frequency relationship T2/T1 = 1.2. (D, E) Factors Δα, Δσ and D�a describing changes in the E-cell evoked

response for the case T1/T� = 0.845 (primary on the left-hand side of the Arnold tongue) and T2/T� = 1.2T1/T� = 1.04 (distractor on the right-hand side of the Arnold

tongue) when (D) the amplitude of the primary A1 is varied from 0 to 0.2 while keeping the amplitude of the distractor fixed at A2 = 0.1 and (E) viceversa. We have

computed the mean and standard deviation of these factors over 10 cycles of the primary input.

https://doi.org/10.1371/journal.pcbi.1009342.g007
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cycle shows little modulation by the strength of the primary and distractor, thus producing lit-

tle encoding.

This result suggests that the network is capable to detect changes in the strength of a target

periodic input, while ignoring simultaneously active distracting periodic inputs, if the fre-

quency of this input is higher than the natural gamma cycle. Again these predictions might be

tested in the presence of noise using tools from information theory (see supporting informa-

tion S1 Appendix for preliminary results and the Discussion).

2.5.5 Selective communication and switching between identical input streams. When

the E-I network receives two identical input streams, we have already identified a range of fre-

quencies, for which the target network oscillates coherently (phase-locked) with both of them.

Interestingly, the system presents bistability between two possible phase relationships. We

want to explore whether these two phase relationships correspond to the network responding

differently to each input, suggesting selective communication. Finally, we will study how the

network may switch between these two possible phase relationships, thus suggesting a mecha-

nism for switching between attended inputs [16].

Consider an oscillatory E-I neural network entrained by two identical input streams Ai

pi(t), i 2 {1, 2} of the form (15) with Ai = 0.1 located in anti-phase (see, for instance, Fig 8A and

panel C in S7 Fig left). This situation occurs in the 1:2 Arnold tongue (see Fig 3F and S4 Fig),

and similarly, in the case of two identical inputs with a particular period relationship with the

natural gamma cycle T/T� (those values such that the rotation number ρ = 1 in Fig 5B). Notice

that in the latter case, the 1:1 phase-locking between the target network and the first input is

not disrupted by the addition of a secondary one.

Given a solution corresponding the network being entrained at a particular phase relation-

ship by two identical inputs, we establish that the closest input volley in time to the E-volley

corresponds to the primary input and the other one to the secondary (see Fig 8A). We will

explore what is the contribution of each input to the output firing rate, by means of modifying

the input strength. We vary the strength of the primary input A1 away from 0.1, while keeping

the distractor fixed (A2 = 0.1). We observe that the synchronization of the E-cells decreases

when A1 decreases from 0.1 (Δα decreases and Δσ increases, see Fig 8B), until the primary

input is too weak and the distractor takes over (this corresponds to values of A1� 0.06 in Fig

8B). However, when we repeat the same process but keeping the primary input fixed at A1 =

0.1 and varying the amplitude of the distractor, we observe that the response of the E-cells

shows the opposite trend. That is, decreasing the strength of the distractor increases the syn-

chronization properties of the E-cells (Δα increases and the Δσ decreases, see Fig 8C). Based

on this observation, we interpret that the network responds to the primary, because the pri-

mary amplifies the oscillations of the target network, while the distractor interferes in the com-

munication of the primary (reduces the amplification effect of the primary). For the other

phase relationship, the problem is symmetrical and the role of both inputs is reversed. The

mean firing rate barely changes in both cases (see D�a in Fig 8B and 8C).

We study the effects of a brief/short stimulus (a pulse) to the entrained network. Brief sti-

muli could transiently lengthen or shorten the cycle period (i.e. phase shifting) and force the

oscillator to switch phase-locking, thus producing a change in the role played by the inputs. To

quantify these effects, we consider the periodic solution for the perturbed 8-dimensional

model (1)-(2) with g(t) = A1p1(t) + A2p2(t) and apply a square wave pulse of amplitude 1.5 and

duration 2 ms (i.e. brief and short stimulus) to the E-cells. In Fig 8 we show, for a particular

case, the change in phase (blue curve) and in the effective input (black solid/dashed line), as a

function of the phase t/T of the entrained oscillator at which the pulse is applied. See Methods.

Solid line denotes no change in effective input—the oscillator responds to the same input

stream after the pulse—and dashed line denotes a change—the oscillator responds to the other

PLOS COMPUTATIONAL BIOLOGY Phase-locking patterns in neural networks underlying effective communication

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009342 May 18, 2022 21 / 41

https://doi.org/10.1371/journal.pcbi.1009342


input stream after the pulse. Note that the phase shift is positive almost for all phases, meaning

that a pulse typically causes a phase advance (i.e. the E-volley occurs earlier). Notice that there

is a small range of phases (between 0.4 and 0.8 approximately) for which a square wave pulse

produces a switch in the effective input. This interval corresponds to phases of the cycle for

which the I-volley just passed and the next E-volley has not arrived yet (see, for instance, Fig

8F). Notice that the phase shift is close to zero if the pulse arrives at the same time as the I-vol-

ley (see, for instance, Fig 8E).

We simulate the full microscopic model to support and illustrate these results. A pulse per-

turbation of the full microscopic model at phase 0.3 does not entail a change in the effective

input (oscillator still responds to the dash-lined input after the pulse is applied in Fig 8E),

while at phase 0.5 it does cause a change in the effective input (oscillator responds to the solid-

lined input after the pulse is applied in Fig 8F), as predicted by the reduced model.

Fig 8. Selective communication and switching between attended stimulus. (A) Time evolution of the excitatory and inhibitory firing rate re (red), ri (blue),

respectively for system (1)-(2) receiving two identical inputs of von Mises type in antiphase (κ1,2 = 2 and T = T1,2 = 0.84T�, A1,2 = 0.1). We establish that the closest input

volley to the E-volley corresponds to the primary input (black solid curve), and the other one to the distractor (black dashed curve). (B, C) Factors Δα, Δσ and D�a

describing changes in the E-cell evoked response (B) when the amplitude of the primary A1 is varied from 0.1 to 0 while keeping the amplitude of the distractor fixed at

A2 = 0.1 and (C) viceversa. We have computed the mean and standard deviation of these factors over 10 cycles of the primary input. (D) Phase Response Curve (solid

blue) obtained by applying square-wave perturbations of amplitude 1.5 and duration 2 ms at different phases of the periodic solution in panel A. The plot also shows if

the (entrained) oscillator remains in the same periodic solution before and after the pulse administration (black solid line) or if the oscillator switches to a different

solution where the roles of the primary and distractor are exchanged (dashed black line). (E, F) Simulations of the full spiking QIF model showing the response of the

network to a square-wave current delivered at two different phases of the cycle: (E) t/T = 0.3, for which no switching between attended stimuli occurs, and (F) t/T = 0.5,

for which switching occurs. Each panel shows (from top to bottom), for a time interval of 150 ms, the two identical von Mises inputs in antiphase (solid and dashed

black) with the mean firing rates of the E-cells (red) and I-cells (blue) of the full spiking QIF model, the corresponding raster plot and the time at which the square-wave

pulse is applied. We have integrated the full network of QIF neurons for 1000 ms. At time 200 ms we apply the two inputs of von Mises type. The square-wave pulse is

applied at time 200 + 23T + t ms.

https://doi.org/10.1371/journal.pcbi.1009342.g008
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2.6 Oscillations close to the Hopf bifurcation

Thus far we have observed that the timing and shape of the I-volley in the gamma cycle plays a

relevant role in implementing several aspects of the CTC theory. To emphasize better this role,

we explore how CTC theory implements in a different type of gamma cycle. More precisely,

we consider oscillations arising from the PING mechanism but closer to the Hopf bifurcation

curve in the parameter space ð�I exte ;
�I exti Þ (see Fig 2A). Thus, for parameters as in (6) and tonic

currents to the E and I-cells �I exte ¼ 8:4, �I exti ¼ 0, respectively, the system (1)-(2) presents oscilla-

tions at a frequency 1/T� = 1/30.5� 32.78Hz (lower gamma range) of the form shown in Fig

9A. Notice that E/I-volleys are wider and lower for this oscillation than the ones considered

along this paper with �I exte ¼ 10 (compare with Fig 3A).

Moreover, we also compute the iPRC for this oscillator (see Fig 9B). The iPRC takes both

positive and negative values, as opposed to the oscillator with �I exte ¼ 10 (compare with Fig 3B).

This means that this oscillator may be entrained by either faster or slower periodic inputs. This

is the typical behavior for oscillations close to a Hopf bifurcation [31].

We perturbed this oscillator with a periodic input g(t) = Ap(t), with p(t) of von Mises type

with κ = 2 (see Eq (15)) and applied the phase reduction method described in Section 2.2. The

rotation numbers for the stroboscopic map (9) as a function of the relative frequency (T/T�)

Fig 9. PING oscillations close to a Hopf bifurcation. (A) Temporal evolution of firing rate, mean membrane potential and synaptic variables over a cycle of a PING

oscillation for system (1)-(2) corresponding to external current �I exte ¼ 8:4 (close to the Hopf bifurcation curve in Fig 2A). (B) Infinitesimal Phase Response Curve

(iPRC) of the cycle in Panel A for perturbations in the direction of the variables Ve and Vi (red and blue curves, respectively) and to both of them (purple curve). Note

that the iPRC ZVe
þ ZVi

is both positive and negative. (C) Rotation numbers of the stroboscopic map (9) for a von Mises input (15) with coherence κ = 2 applied in the

direction of Ve and Vi, as a function of the ratio between the intrinsic period of the E-I network T� and the input period T and different amplitude values A. (D, E, F)

Time evolution of the mean firing rates of the E-cells (red) and I-cells (blue) along the unperturbed (dashed curves) periodic orbit for the system (1)-(2) and perturbed

(solid curves) with the coherent von Mises input with A = 0.05 and relative frequency T/T�: (D) 0.9, (E) 1 and (F) 1.07. The period of the oscillators has been

normalized to 1.

https://doi.org/10.1371/journal.pcbi.1009342.g009
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are plotted in Fig 9C for different amplitude values. The visible plateaus, corresponding to

rational rotation numbers (ρ = p/q), are centered about the point T/T� = p/q and extend

towards both sides. Therefore, the oscillator can be entrained by faster (i.e. T/T� < p/q) and

slower inputs (i.e. T/T� > p/q), as expected from the iPRC shape. Notice that the largest pla-

teaus correspond to 1:1 and 2:1 phase-locking (ρ = 1 and ρ = 2, respectively) and they grow as

the amplitude A increases.

Since the rotation numbers in Fig 9C have been computed using the phase reduction

approach, the phase-locking predictions may not be accurate for the perturbed 8-dimensional

mean-field model (1)-(2), specially when the amplitude increases. Indeed, we observe that the

actual phase-locked solutions do not extend as far to the right (towards lower input frequen-

cies), rather they extend a little to the left (towards higher input frequencies) than predicted by

the phase reduction. Thus, for A = 0.05, the phase reduction identifies 1:1 phase-locking for T/

T� 2 [0.883, 1.11], but the actual computation finds synchronized solutions for T/T� 2 [0.861,

1.07].

Even if 1:1 phase-locking for low input frequencies does not extend as far to the right as pre-

dicted, we still find entrained solutions for inputs with frequencies lower than the network

intrinsic frequency (T/T� > 1). It is interesting to explore how is the response in the target net-

work for low input frequencies, compared to those with high input frequencies. We look for

periodic solutions of the perturbed mean-field model (1)-(2) along the 1:1 phase-locking pla-

teau for A = 0.05. For T/T� = 0.9 (high input frequency) the entrained oscillator shows a signif-

icant increase of the firing rate activity of both E and I-cells (compare solid and dashed lines in

Fig 9D). As the frequency of the input becomes more similar to the natural gamma cycle, the

E-volley becomes lower and wider (see Fig 9E and 9F for T/T� = 1 and T/T� = 1.07, respec-

tively). This is because the E-cells activate due to both, the intrinsic properties of the network

and the input volley, the latter arriving shortly after the E-cells start to activate but before they

can trigger inhibition. Thus, the inputs with low frequencies contribute to widen the E-volley,

but without increasing its maximum significantly (the E-cells become less coherent). For larger

values of T/T� we do not find periodic solutions anymore.

To better identify the aspects related to CTC theory, we compute the factors Δτ and D�a (as

well as Δα and Δσ) introduced in Section 2.4 to measure the timing of the inhibition and the

changes in the excitatory firing rate due to the perturbation, respectively. We have computed

such magnitudes for the solutions in the 1:1 phase-locking region for amplitudes A = 0.025,

A = 0.05, A = 0.075 and A = 0.1 in Fig 10). The factor Δτ indicates that the input volley pre-

cedes inhibition (0< Δτ< 0.5) for frequencies higher than the natural gamma cycle and

decreases as the input frequency decreases (T/T� increases) indicating that the input volley

overlaps with inhibition when the input frequency is close to the natural gamma cycle (Δτ� 1

and below 1) (see Fig 10A). Accordingly, the factor D�a measuring the increase in the overall

firing rate also reduces as T/T� increases up to 1 and only for the largest amplitudes (see Fig

10B), and the E-volley becomes wider (Δα decreases, see Fig 10C, and Δσ increases, see Fig

10D). Interestingly, for values T/T� above 1, the average firing rate increases again (Fig 10B)

because the E-volley becomes wider (Δσ is above 1), thus causing a decrease in the firing syn-

chronization within the E-population.

3 Discussion

In this paper we have studied several hypotheses of the CTC theory, namely, the conditions for

optimal phase-locking so that communication is effective and selective communication. The

idea of communication considered in this paper assumes that an oscillatory input from a pre-

synaptic group produces changes in the firing rate of an oscillatory post-synaptic group, by
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means of entraining the target network appropriately. Our approach considers a network of

E-I cells oscillating in the gamma range, whose macroscopic dynamics can be exactly described

by a low-dimensional mean-field model. In the communication setting of CTC theory, the E-I

network receives external time-periodic input from an oscillating pre-synaptic population. We

vary the amplitude, frequency and coherence (how concentrated are inputs in a cycle) of the

external input and determine the conditions under which phase-locking between the input

and the target population occurs. We emphasize that we explore in detail how the phase rela-

tionship that emerges contributes to communication, measured as the change in the firing rate

of the target network due to the perturbation. We observe that inputs with higher coherence

Fig 10. Input effects on the E-cell evoked response for entrained network close to a Hopf bifurcation. Factors (A) Δτ, (B) D�a, (C) Δα and (D) Δσ describing

changes in the E-cell response within the 1:1 phase-locking region for orbits calculated along the amplitudes A = 0.025 (dark blue curves), A = 0.05 (blue curves),

A = 0.075 (green curves) and A = 0.1 (yellow curves). Factors are computed for periodic solutions of the system (1)-(2) perturbed by a von Mises type of input with κ =

2. Notice that the periodic solutions are found for smaller intervals than those predicted by the rotation number using the phase reduction (see Fig 9C).

https://doi.org/10.1371/journal.pcbi.1009342.g010
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can entrain the network for a wider range of frequencies. As a novelty, we identify the fre-

quency relationship between the input and the natural gamma cycle as a relevant parameter

for effective communication. Indeed, inputs with higher frequency than the natural gamma

cycle result in a better communication because they produce an amplification of the oscilla-

tions of the firing rate of the E-cells of the target network. Thus, information about a stimulus

can be encoded in the strength of a periodic input and more effectively transmitted if the input

frequency is higher than the natural gamma cycle. Moreover, the information is better trans-

mitted and detected in the synchronization of the post-synaptic population of the E-cells

rather than in the average firing rate of the E-population. We then focus on the response of the

E-I network when it receives input streams in the gamma frequency range from two different

pre-synaptic populations. We find that the entrainment by higher input frequencies is more

robust to distractors, even for highly coherent distractors.

We stress that the use of mean field models of low dimension allows for mathematical anal-

ysis. In particular, we have identified semi-analytically the oscillatory states in the parameter

space by means of the phase reduction formalism, which reduces the study of the dynamics of

the full model to a 1-dimensional equation defined on the circle (oscillator). Studying the

dynamics on the circle has two clear advantages. On one hand, it drastically reduces the

dimensions and, on the other hand, one can take advantage of classical results in dynamical

systems theory to describe the dynamics [36]. In particular, we compute the rotation number

and the synchronization index to identify the synchronized states and phase-locking patterns.

Thus, we can provide equations that describe the boundaries of the phase-locking regions

(Arnold tongues) in the parameter space (see Eqs (21) and (22) in Methods), when we vary the

frequency, amplitude and coherence of the external input. Even if these equations need to be

solved using numerical methods, except for the case κ!1, these are easier and faster to com-

pute than considering the full model, which would result in more complicated and costly com-

putations (see [24] for the case of Wilson-Cowan equations). Our mathematical analysis

confirms that, in general, phase-locking occurs through a tilted Arnold tongue (bent towards

higher input frequencies) as observed in computational studies of spiking neurons [18].

Indeed, only faster inputs can entrain the network because the input volley can only evoke an

excitatory response and end the gamma cycle if it arrives under sufficiently low inhibition

[37].

Besides, we have provided more details about the entrainment by higher frequency inputs.

Namely, we have observed that increasing the amplitude of the stimulus enlarges and also

shifts the range of frequencies that entrain the network towards lower values, while increasing

the coherence enlarges the range without shifting it (see Fig 3D and 3E). Thus, our results con-

firm semi-analytically previous computational studies on spiking networks claiming that E-

cells in the PING target network show preferential phase-locking to periodic inputs with

higher coherence. This phenomenon was referred to as ‘coherence filtering’ in [37].

It is hypothesized that E-I networks generating gamma rhythms automatically produce an

optimal phase relationship because when a sufficiently strong excitatory pulse is delivered to

the network, it generally elicits an I-volley (indirectly in the case of PING). If the frequency of

the forcer is approximately the frequency of the receiver, the inhibition from the I-volley wears

off just when the next input volley is due to arrive. Thus, the entrainment automatically sets up

an optimal phase relationship for CTC [20, 37]. In this paper, we have gone beyond this result

and provided a quantitative description of this optimality in terms of the effects in the E-cell

evoked response (maximum and coherence) of the target network, as well as the robustness of

the entrainment to distractors. In our study we have found that the phase difference is not the

same for all frequencies that are capable of entraining the E-I network (in line with [18]), and

this has consequences for communication. Indeed, those inputs with higher frequencies
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precede the I-volley by far, resulting in a strong amplification of the activity of the E-cells in

the target network due to input perturbations. Actually, the firing rate of the target network

increases mildly compared to the increase in the network coherence (spike synchronization

within network). In contrast, those inputs with frequencies similar to the receiver step on the

I-volley, thus having a weaker effect onto the activity of the E-cells or, even, decreasing the

coherence of the E-cells of the target network. Interestingly, this finding is independent of the

coherence of the input. Thus, synchrony of the source network does not necessarily produce

higher firing in the target network.

In our study, we have also explored the effects of input frequency and coherence in selective

communication, the phenomenon in which a target network entrains and responds to only

one of several input streams. This mechanism is conjectured to implement selective attention,

the process in which subjects focus on a particular object of the environment while ignoring

the others. In this context, experimental studies in visual cortex have shown that when two sti-

muli are presented in the receptive field of a neuron, it can respond to either input depending

on which is attended to [14, 40]. Indeed, selective attention is associated with an increase in

coherence of spiking and in spectral power of oscillations in the gamma frequency band [14,

41, 42].

Previous modeling studies [22, 37] have observed that higher coherence and frequency lend

a competitive advantage to an oscillatory pre-synaptic neuronal population to entrain a target

oscillating network. Here, we have gone a step further since we have explored how these two

properties interact with each other and, interestingly, we have observed that coherence affects

little, compared to frequency. Indeed, the higher the frequency of the primary stimulus that

entrains the network, the more robust to desynchronization by disruptors. The distractor

(regardless its coherence) can easily break the synchronization of the network with a low fre-

quency primary input, but not for a high frequency one. When the primary input has a much

higher frequency than the natural gamma cycle (leftmost regions of the 1:1 Arnold tongue),

the position of the I-volley in the cycle makes the entrainment more robust since most of the

distractor volleys arrive when inhibitory cells are active. In contrast, for input frequencies simi-

lar to the natural gamma cycle (rightmost regions of the 1:1 Arnold tongue), the position of

the I-volley lies close to the primary volleys, thus some of the distractor volleys arrive when

inhibition is low, eliciting a response of the E-cells that disrupts synchronization with the pri-

mary, even for low coherence distractors. This result is in agreement with the experimental

results in the visual cortex [40], where V1 sites processing relevant stimuli have its gamma

peak frequency higher than the irrelevant V1 sites and higher than the target sites in V4.

As a novelty, we are able to identify not only the effects of the disruptor regarding the

phase-locking but also on the evoked response of the E-cells (see Section 2.5.4). We have

shown examples where the information encoded in the strength of the input with high fre-

quency is still transmitted to the output firing rate of the E-cells, because the disruptor does

not affect the firing rate properties of the E-cells, thus preserving effective communication.

Our results are obtained for a deterministic system, but might provide insight into causal

interpretation of results in systems with noise based on tools from information theory and cor-

relations [43, 44]. We present some preliminary computations of mutual information in the

supporting information, but more elaborated techniques such as partial information decom-

position could be used to elucidate how much information about a secondary stimulus

(encoded in the strength of the distractor input) is present in the firing rate of the E-cells and

how is the interaction with the primary input, thus exploring the sinergy and redundancy in

the information. This could be an interesting subject of research for future work, as well the

study of other settings with more than two inputs to identify and quantify more complex inter-

actions and explore other communication strategies such as multiplexing [45–47].
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We have also explored how phase shifting can act as a mechanism for stimulus selection. In

line with [25], an appropriate optogenetic pulse applied at the right phase can cause switching

between the attended inputs. Our results show that the appropriate phases are after the inacti-

vation of the I-volley but before the activation of the E-volley.

The mathematical formalism based on the phase equation used herein requires that the

inputs received by the target network are weak, particularly, because a strong perturbation

may displace and keep the trajectory far away from the limit cycle [31, 33]. In our study, during

the time between input volleys, the displaced trajectories relax back to the original unperturbed

oscillator (see panel B in S2, S4 and S5 Figs), therefore allowing for a good prediction based on

the phase reduction. Indeed, the predictions on synchronized states obtained from the phase

reduction in Figs 3 and 9 were validated computing the corresponding periodic orbit for the

reduced mean-field model (1)-(2), showing very good agreement. In addition, we emphasize

that in our previous study on Wilson-Cowan equations [24] we did not assume that inputs

were weak, and we detected regions in the parameter space showing bistability between syn-

chronous and asynchronous regimes, as well as between different types of entrainment. The

method used herein was not designed though to detect bistability in the forced network, there-

fore the existence of bistability or other dynamical features in the strong coupling regime

remains a challenging topic for further studies. Techniques based on the phase-amplitude

description might be useful to tackle larger amplitude perturbations [48–50].

Changes in excitability are generated by the interaction between excitation and inhibition,

and the frequency and phase relationship between E and I volleys can be tuned by means of

changes in tonic drive. In our previous work with Wilson-Cowan equations [24], the dynamics

of the oscillating firing rates of the E and I populations resembled those of the E-I network

considered herein when �I exte ¼ 8:4. Namely, the E and I volleys are less coherent and they

spread along the whole cycle (see Fig 9A). Moreover, the oscillation frequency of the network

falls in the lower range of gamma oscillations (around 32Hz). Notice that, in this case, the

oscillations are close (in parameter space) to a Hopf bifurcation (see Fig 2A) and the iPRC is of

Type II (taking both positive and negative values). Thus, as opposed to the case with �I exte ¼ 10,

the target oscillating network can synchronize to both faster and slower incoming periodic

inputs (see Fig 9B). Noticeably, in this case the prediction by the phase reduction is less accu-

rate for the slowest inputs. This case makes clear the different effect of lower and higher fre-

quency inputs than the natural gamma cycle in the activity of the target network. Indeed,

higher input frequencies tend to increase both the firing rate and coherence of the network

while lower ones tend to make it less coherent (see Fig 10).

We acknowledge the fact that gamma-band rhythms observed in experimental data do not

show regular oscillatory behavior, but they are rather irregular and episodic [51, 52]. In [21]

the authors consider an E-I network showing irregular and episodic gamma rhythms and

observe that this assumption enables a target population to be correlated to two independent

sources that differ either in frequency or in phase. Notice that in this case correlations are used

to measure entrainment and synchronization between neural populations. We believe that the

conclusions obtained for regular oscillations can though provide the substrate to explain sev-

eral mechanistic phenomena in the irregular case. For instance, we have observed that it is pos-

sible to switch the entrainment between two different sources by means of pulses delivered at

the proper phases of the cycle. This could be an interesting subject of research for future work.

In this paper we have mainly focused on the interactions between two neuronal groups

oscillating in the gamma range, but we have not discussed the interaction of gamma with other

rhythms, namely beta (13–30 Hz), alpha (8–13 Hz) and theta (4–8 Hz) [35, 37]. The interplay

between different frequency rhythms may definitely have an important role for
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communication and cognition [9, 37, 53–55] and the methods discussed herein may contrib-

ute to unveil possible mechanisms. Namely, a thorough study of the solutions emerging in the

p:1 phase-locking regions, where the input is p times slower than the intrinsic oscillatory fre-

quency. We have studied the 2:1 phase-locking regions and observed that the slow input mod-

ulates the E/I-volleys of the gamma cycle, in a similar or different way depending on the

frequency relationship between both rhythms T/T� and the input coherence (see S3 Fig right

and S5 Fig).

Finally, we would like to discuss other aspects of CTC that have not included in this study.

In the E-I network considered, even if the excitatory inputs synapse to both E and I cells, the

effect of the input on the activity of the I-cells is mild compared to the E-cells. However,

exploring the input effects of inputs onto the inhibitory cells (see for instance [56]) in a differ-

ent PING regime or in the case of gamma oscillations generated by means of the ING (Inter-

neuron Network Gamma) mechanism [4], will provide insight into the dynamics of

oscillations and transmission of information. For example, input to the I-cells have been pro-

posed as a mechanism for phase-shifting in models of cortical networks [25]. Finally, our set-

ting can be extended to networks of two populations to explore bidirectional communication

[43, 10, 29, 57, 58] and delays [44] and its main differences with the unidirectional communi-

cation setting explored in this paper.

4 Methods

4.1 Neuron models

We consider a population of N neurons with all-to-all coupling, subdivided into a population

of Ne excitatory and Ni inhibitory cells, whose individual voltage dynamics are modeled by a

Quadratic Integrate-and-Fire (QIF) model [59], i.e.,

t _Vj ¼ V2
j þ Zj þ Ij ; if Vj � Vth then Vj ¼ Vreset ; j ¼ 1; . . . ;N ; ð10Þ

where Vj is the voltage of the j-th neuron, τ is the time constant, ηj is a constant bias current

and Ij is an input current accounting for external (time-dependent) stimuli and the excitatory/

inhibitory synapses of the network. The threshold and reset voltages are taken Vth = −Vreset!

1, (in numerical simulations, we will set them to Vth = −Vreset = 500). Heterogeneity in the

system is introduced by assuming that the parameters ηj are distributed according to a Lorent-

zian distribution with half-width Δ and centered at �Z,

LðZÞ ¼
1

p

D

ðZ � �ZÞ
2
þ D

2
: ð11Þ

The input current Ij consists of a common external input for all neurons and synaptic cur-

rent due to recurrent connexions in the circuit. For the excitatory ensemble, the input is

expressed as

Ie ¼ Iexte þ teSee � teSei ; ð12Þ

while for the inhibitory one as

Ii ¼ Iexti þ tiSie � tiSii : ð13Þ

We have omitted the subindex j (labeling each neuron in the population) because all the

neurons in the same population receive the same input current. The subscript indicates

whether it corresponds to the excitatory (E) or the inhibitory (I) population. The variable Sab
models the synaptic current from the pre-synaptic population b to the post-synaptic
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population a, where a, b 2 {e, i}. The dynamics of the synaptic currents are described by a lin-

ear differential equation of the form

tsb
_Sab ¼ � Sab þ Jabrb ; ð14Þ

where a, b 2 {e, i}. Here, tsb is the synaptic time constant of population b, Jab the synaptic

strength from population b to population a, and rb the firing rate of population b, which is

computed as

rbðtÞ ¼
1

Nb

XNb

n¼1

X

k

dðt � tnk Þ;

where δ(t) is the Dirac delta function and tnk are the firing times of neuron n.

In [26, 29], one can find the details of the derivation of the reduced mean field model (1)-

(2) that provides an exact description (in the thermodynamic limit) of the macroscopic quanti-

ties of the spiking model described above, namely, the mean firing rate ra and membrane

potential Va.

4.2 Inputs

To model the excitatory input drive to the E and I cells, Iexte ðtÞ and Iexti ðtÞ, respectively (see

Eq (5)), we consider a periodic function g(t) = Ap(t), for which we can modulate its coherence,

that is, how synchronized are the spikes of the pre-synaptic population providing periodic

input. To do so, we use the von Mises probability density function (also known as the circular

normal distribution) and define the T-periodic function p(t) as

pðtÞ ¼ a
ek cos

2p
T ðt� mÞð Þ

TI0ðkÞ
; for t 2 ½0;TÞ; ð15Þ

where I0(x) is the modified Bessel function of order 0. The parameter μ is the mean and κ is

the temporal coherence (κ = 0 corresponds to a uniform distribution and as κ increases the

distribution becomes more concentrated about the angle μ. In the limit case, κ!1, the dis-

tribution becomes a delta function). See Fig 3C. The parameter α is chosen as α = T so that the

temporal average over one period is 1. That is,

1

T

Z T

0

pðtÞdt ¼ 1: ð16Þ

When only one input is present, we fix μ = 0 and we vary the coherence κ and the period T.

We also consider the case when the E and I populations receive two input streams of the

form (15), one referred to as the primary stimulus and denoted by A1p1(t), and the other as the

distractor and denoted by A2p2(t). The mean, temporal coherence and period of the i-th input

will be denoted by μi, κi and Ti, respectively.

When both inputs have the same period (T1 = T2 = T), we place the second input to be in

antiphase with respect to the first one, that is μ2 = T/2. However, when the periods are differ-

ent, the last criterion is not well-defined. Therefore, we implement the following rule: we place

the peak of the input with largest period between two consecutive peaks of the input with

shortest period. That is, if T2� T1, then m2 ¼
T1

2
, whereas if T1 > T2, m2 ¼

T2

2
.
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4.3 Phase reduction

For an oscillating E-I network, the 8-dimensional system (1)-(2) has a hyperbolic attracting

limit cycle Γ of period T�. The limit cycle can be parametrized by the phase variable θ, such

that θ(t) = t + θ0(mod T�) and there exists a function g : ½0;T�Þ ! R8
such that

gðyðtÞÞ ¼ ðreðtÞ;VeðtÞ; SeeðtÞ; SeiðtÞ; riðtÞ;ViðtÞ; SieðtÞ; SiiðtÞÞ;

parametrizes the periodic orbit Γ.

We apply an external periodic input g(t) to the limit cycle Γ in the direction given by the

vector v 2 R8
. If the external periodic drive g(t) is weak, i.e. |g|� 1, we can reduce the study of

the dynamics of the perturbed system to a single equation for the phase variable, given by

dy
dt
¼ 1þ gðtÞ½ZðyÞ � v�; ð17Þ

where the function Z : ½0;T�Þ ! R8
is the infinitesimal Phase Response Curve (iPRC). The

iPRC measures the oscillator’s phase shift due to an infinitesimal perturbation applied at dif-

ferent phases of the cycle [31]. Notice that Z(θ) is a vector of 8 components, thus, the i-th com-

ponent (Zi) corresponds to the phase shift due to an infinitesimal perturbation applied in the

direction of the i-th variable (i.e. v ¼~ei). It is well known that the iPRC is the periodic solution

of the so-called Adjoint Equation [31], given by

dZ
dt
¼ � MT g tð Þð ÞZ ; ð18Þ

subject to the normalization condition

ZðtÞ �
d
dt
ðgðtÞÞ ¼ 1; ð19Þ

where the matrix M(γ(t)) is the linearization of the system (1)-(2) around the limit cycle Γ.

4.4 Rotation number

The existence of periodic points for the stroboscopic map (9) defined on the circle is given by a

well known result in the context of circle maps [36, 60]. Let f : S1
! S1

be a map on the circle,

orientation preserving and regular enough, then the lift of f is a continuous function �f : R!
R that satisfies pð�f ðxÞÞ ¼ f ðpðxÞÞ, where π(x) = x mod T� (i.e. the phase on the circle). Then,

the rotation number ρ of the map f is defined as

rðf Þ≔ lim
n!1

�f nðxÞ � x
n

; ð20Þ

for any x 2 R. Importantly, the limit above always exists and does not depend on the initial

point x, nor the lift �f chosen.

There are two important results to characterize the dynamics of the map f using the rotation

number. If ρ is rational (ρ = p/q with p; q 2 N), then there exists a q-periodic point of the map

f, that is, a solution of fq(θ) = θ mod T�. If, by contrast, ρ is irrational, then the orbits of f fill

densely the circle and there are no periodic points.

We use the numerical procedure described in [61] to compute the rotation number of the

stroboscopic map (9) in Figs 3D, 3E, 5B and 9C. We have used N = 750 iterations, and the

error is of order 10−6.
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4.5 Arnold tongues

The boundaries of the Arnold tongues correspond to the locus of a saddle node bifurcation

[62] of the stroboscopic map (9) in the (T, A)-parameter space.

The saddle node bifurcation curves, corresponding to the boundaries of the p : q Arnold

tongue, can be numerically computed by identifying the points (θ, T, A) such that the follow-

ing two conditions hold:

PqðyÞ ¼ yþ pT�;

@Pq

@y
ðyÞ ¼ 1:

8
><

>:
ð21Þ

Notice that, although not specified, the stroboscopic map P depends on the parameters T
and A. Moreover, since we take modulus T�, we can omit the term pT� in the above equation.

The equations above describe a 1-dimensional curve inR3
, that can be computed using a

continuation method. The continuation method is a numerical procedure by which one can

find a curve inRn defined implicitly by a set of (nonlinear) equations G(w) = 0, where G :

Rnþ1 ! Rn is regular enough. Notice that this corresponds to a system with n nonlinear equa-

tions with n + 1 variables. The method to find the curve combines a tangent-like approxima-

tion as in the Keller’s (pseudo-arclength) method and a modified Newton method (based on a

minimization problem with a restriction) to refine it. More precisely, starting from an initial

solution w0 lying on the curve, G(w0) = 0, the method consists in making a prediction for the

next point on the curve by moving along the tangent line to the curve at the point w0. Then,

we correct the approximate point successively by means of a modified Newton method. Since

the number of variables is higher than the number of equations, we need to impose the addi-

tional condition that the norm of the correction must be a minimum. We solve this problem

using Lagrange multipliers. The details of the method can be found in [61, 63].

In our case, the problem consists of three variables (θ and the parameters T and A, after

allowing them to evolve according to _T ¼ _A ¼ 0) and the two Eq (21). Let w = (θ, T, A) be the

unknowns and ~Φtðy;T;AÞ be the extended flow associated to the phase Eq (8) when T and A
are treated as variables, and ~P the associated stroboscopic map. Therefore, we define the func-

tion G as

GðwÞ ¼ Gðy;T;AÞ ¼

~Pqðy;T;AÞ � y

@~Pq

@y
ðy;T;AÞ � 1

0

B
@

1

C
A ¼

~FqTðy;T;AÞ modT� � y

@ ~FqT

@y
ðy;T;AÞ modT� � 1

0

B
B
@

1

C
C
A : ð22Þ

To start the method we must provide an initial seed provided by the rotation number.

Notice that the Newton method requires to compute the differential of the map P, which will

be computed using variational equations [63]. Moreover, variational equations involve the

computation of the derivative of the iPRC, which is only known numerically for a discrete set

of points. Taking advantage of the periodic behaviour of the iPRC, we have used the FFT algo-

rithm to compute the derivatives efficiently.

In the case of pulsatile inputs (κ!1), the input p(t) becomes a sum of delta functions, i.e.

pðtÞ ¼ T
X

i�0

dðt � tiÞ;

where ti = t0 + iT, 0� t0� T. The factor T is included because p(t) was chosen to have average
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1 over one period (see Eq (16)), i.e.

1

T

Z T

0

pðtÞdt ¼
1

T
T
Z T

0

dðt � t0Þdt ¼ 1:

Thus, the stroboscopic map at time T given in Eq (9) can be written explicitly as:

ynþ1 ¼ yn þ T þ AT ZeiðynÞ;

where Zei ¼ ZVe
þ ZVi

. Therefore the map has fixed points (modulus T�) as long as θn+1 = θn +

T�, which yields

AZeiðynÞ ¼
T�

T
� 1:

Denoting Zmax and Zmin the maximum and minimum values of the iPRC Zei, respectively, we

have that the left-hand side and right-hand side borders of the 1:1 Arnold tongue are given,

respectively, by the curves

T�

T
¼ 1þ AZmax;

T�

T
¼ 1þ AZmin:

Similarly, using that p : q phase-locking corresponds to q-periodic orbits of the stroboscopic

map P (equivalently, fixed points of the map Pq) after p turns, we need to impose the condition

yn þ pT� ¼ yn þ qðT þ AT ZeiðynÞÞ:

Thus, the curves corresponding to the left-hand side and right-hand side borders of the p: q
Arnold tongue are given, respectively, by the expressions

T�

T
¼

q
p
ð1þ AZmaxÞ;

T�

T
¼

q
p
ð1þ AZminÞ:

4.6 Measures of phase-locking and E-cell evoked response

We present four magnitudes that contribute to the description of the phase relationship

between the input and the entrained network and describe the changes in firing rate of the E-

cells due to the periodic perturbation. These magnitudes are computed for qT-periodic orbits

of the perturbed system (1)-(2) with a given function g(t) = Ap(t) of period T, whose existence

is guaranteed in the p : q phase-locking regions.

The magnitude Δτ computes the normalized time difference between the maximum of the

I-volley ri and the maximum of the external perturbation p(t), that is,

Dt ¼
tinh � tp

T
; ð23Þ

where tinh and tp denote the time where the maximum of ri(t) and the perturbation p(t) are

achieved over a cycle of period T, respectively. Notice that if Δτ lies in the interval [0, 0.5), then

inhibition follows the input, which may allow an increase of the activity of the E-cells of the

target network. In contrast, if Δτ lies in the interval [0.5, 1), then inhibition precedes the input

and the latter may be ignored, bringing on a small or negligible effect onto the activity of the

E-cells of the target population.

In the 1:2 phase-locking region, where there are two peaks of the perturbation p(t) per one

of the inhibitory firing rate ri(t), Δτ measures the distance between the peak of ri(t) and the
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preceding input peak (see, for instance, panel A in S3 Fig). Notice that Δτ lies in the interval [0,

1). If Δτ> 0 but close to 0, the inhibition immediately follows the first peak and precedes by

far the second one. If Δτ< 1 but close to 1, inhibition immediately precedes the second peak

and follows by far the first one. For intermediate values of Δτ� 0.5, the I-volley is equidistant

from both input peaks.

The effects of the perturbation onto the activity of the E-cells of the target population can

be measured as well. We define D�a as the ratio between the time-average (over a single period

[0, qT)) of the excitatory activity for the perturbed case (A 6¼ 0), �RA
e , and the time-average of

the excitatory activity for the unperturbed case (A = 0), �R0
e , in the following way

D�a ¼
�RA
e

�R0
e

;with �RA
e ¼

1

qT

Z qT

0

rAe ðsÞ ds and �R0

e ¼
1

T�

Z T�

0

r0

e ðsÞ ds ; ð24Þ

being rAe ðtÞ (resp. r0
e ðtÞ) the first component of the periodic solution for the perturbed (resp.

unperturbed) system.

Notice that if D�a > 1, the external oscillatory input increases the response of the excitatory

receiving population. However, the effects of the perturbation onto the receiving population

might be also described in terms of enhancement of synchronization in the receiving popula-

tion. To measure so, we compute the quantities Δα measuring the changes in the maximum

and Δσ measuring changes in the half-width.

Following [24], we define Δα as the ratio between the maximum of the excitatory activity

re(t) for the perturbed case (A 6¼ 0), RA
e , and the maximum of the excitatory activity re(t) for the

unperturbed case (A = 0), R0
e , that is,

Da ¼
RA
e

R0
e

: ð25Þ

Notice that if Δα> 1, the external oscillatory input increases the maximal response of the

excitatory receiving population. Indeed, we may think that changes in the peak height indicate

whether the external forcing synchronizes (Δα> 1) or desynchronizes (Δα< 1) the spikes of

the target circuit.

The factor Δσ provides the rate change of the half-width of the E-volley due to the external

stimulus. It is defined as

Ds ¼
HWA=qT
HW0=T�

; with HWA ¼
1

2
ðtA

2
� tA

1
Þ; ð26Þ

where tA
2

and tA
1

correspond to the two times (tA
1
< tA

2
) at which the firing rate is equal to half of

its maximum (rAe ¼
1

2
ðrA;max

e þ rA;min
e Þ). Notice that since we will deal with oscillators of different

periods, we must normalize the time difference by its corresponding period.

4.7 Vector strength

When a distractor of different frequency than the primary input is applied, the time-T1 map of

the solution of the phase Eq (8) does not satisfy the conditions to compute the rotation num-

ber, since the second input (the distractor) is not T1-periodic. In this case, we still regard the

phase in intervals of T1 time units (although they are now time-dependent) in order to analyse

whether the distractor disturbs the entrainment and by which amount. To do so, we compute

the synchronization index (SI) [38], also known as vector strength or Kuramoto order parame-

ter [39]. It is a measure of how clustered are the events over a cycle. To compute the SI one

associates to each event a vector on the unit circle with a phase angle and computes the mean
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vector. The SI is given by the length of the mean vector. That is,

Z ¼ rei� ¼
1

N

XN

j¼1

eiyj ; r ¼ jZj:

Notice that perfect clustering is obtained when r = 1, whereas if phases are scattered around

the circle, then r� 0 (see S6 Fig).

4.8 Computation of the phase shift of the numerical PRC

The Phase Response Curve in Fig 8D provides the phase shift due to the application of a square

wave current to the oscillation emerging in the E-I network (1)-(2) when entrained by two

identical inputs in anti-phase. It is computed as follows. For every phase t/T0 2 [0, 1) of the

oscillator, we apply a square wave current pulse (amplitude 1.5, duration 2 ms) and compute

PRC ¼ T0 � T1

T0
, being T1 the period of the first cycle after the pulse application and T0 the period

of the entrained oscillator.

The plot also shows, as a function of the phase, if the (entrained) oscillator switches between

attended stimulus. To detect whether there is a change in the effective input, we perform the

following steps:

1. Before applying the pulse (and once having converged to the periodic orbit) we measure, in

a single cycle, the time distance from the maximum of the excitatory firing rate, tbfe , to the

maximum of each input, tbfp1 and tbfp2. If tbfp1 or tbfp2 are larger than tbfe we consider the preceding

input peak. Finally, we take the difference between these two distances, that is,

dbf :pl ¼ ðtbfe � tbfp1Þ � ðtbfe � tbfp2Þ : ð27Þ

2. After applying the pulse, we integrate the whole perturbed system for long enough time (we

have used 30 periods T0) so that the transient effects have washed out. Then, we measure

again the time distance from the peak of the excitatory firing rate to the peak of each input

as in step 1. We take again the difference between these two time distances, keeping the

same orientation as in step 1:

daf :pl ¼ ðtafe � tafp1Þ � ðtafe � tafp2Þ : ð28Þ

A change of sign between dbf.pl and daf.pl (i.e. sgn(dbf.pl � daf.pl) = −1) will determine a change

in the oscillator’s effective input.

4.9 Numerical methods

Equations for the 8-dimensional system (1)-(2) and for the phase Eq (8) were integrated

numerically in Matlab using an explicit Runge-Kutta method of order 4–5 (ode45) with an

absolute tolerance ranging beween order 10−12 and 10−16.

Equations of the microscopic model consisting of Ne = Ni = 5000 QIF neurons were inte-

grated using an Euler method with time step Δt = 10−4. There is a refractory period for each

neuron of duration Tref = 2 � τe,i/Vth, where Vth = 500 is the voltage threshold and τe,i = 8 as in

[64].

The bifurcation diagram in Fig 2A was computed using the numerical bifurcation analysis

toolbox MATCONT (a MATLAB continuation package) [65, 66].

We used Matlab to analyse and plot the data.
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Matlab codes have been released and are available at https://github.com/david-reyner/

Matlab-Code.

Supporting information

S1 Fig. Phase-locking regions predicted using the phase reduction show good agreement

with actual ones. Boundaries of the phase-locking regions (Arnold tongues) between the

PING oscillation in Fig 3A and a von Mises input (15) with κ = 2 and varying amplitude factor

A and period ratio T/T�. Arnold tongues are computed using the phase reduction (dashed

curves) and by exhaustive computation of periodic orbits of perturbed system (1)-(2) (fulfilling

the corresponding p:q relationship with the input) until convergence fails (black curves).

(EPS)

S2 Fig. Representative periodic orbits within the 1:1 phase-locking region for coherent

inputs. (A) 1:1 phase-locking region (predicted by means of the phase reduction) between the

PING oscillation in Fig 3A and a von Mises input (15) with κ = 2 and varying amplitude factor

A and period ratio T/T�. (B) Projection onto the (re, Ve)-plane of 3 representative periodic

orbits of the perturbed system (1)-(2), corresponding to the crosses in Panel A (dashed curves

with same color as the crosses). Solid red line corresponds to the projection of the unperturbed

limit cycle. (C-E) Evolution of the firing rate variables re (red) and ri (blue) and the von Mises

input Ap(t) (green dashed line) over a single period T for the three representative orbits: (C)

left-hand side of the Arnold tongue (blue cross), (D) center of the Arnold tongue (turquoise

cross) and (C) right-hand side of the Arnold tongue (green cross). Blue and green circles indi-

cate the maximum of the I-cells firing rate and the input, respectively. The magnitude Δτ has

been pointed out with a double-head arrow.

(EPS)

S3 Fig. Entrainment properties within the 1:2 and 2:1 phase-locking regions. (A) Evolution

of the firing rate variables re (red) and ri (blue) and the von Mises perturbation for κ = 2

(dashed green) for a representative periodic orbit of the perturbed system (1)-(2) within the

1:2 (left) and 2:1 (right) phase-locking regions. (B-E) Factors describing changes in the E-cell

response within these phase-locking regions for orbits calculated along (equidistant) sections

A = ct of the corresponding Arnold tongues, indicated by the color of the curve (ranging from

dark blue, A = 0.01, to yellow, A = 0.2, with increments of size 0.01). The factors are: (B) Δτ,

describing the timing between inhibition and input volleys (normalized by the input period

T), (C) D�a, describing the rate change in the averaged firing rate, (D) Δα, describing the rate

change in the maximum of the (excitatory) firing rate, and (E) Δσ, describing the rate change

in E-volley half-width. See Methods. Additionally, the factors Δτ, Δα and Δσ within the 2:1

Arnold tongue are also shown for the oscillator’s second peak (dashed lines).

(EPS)

S4 Fig. Representative periodic orbits within the 1:2 phase-locking region for coherent

inputs. (A) 1:2 phase-locking region (predicted by means of the phase reduction) between the

PING oscillation in Fig 3A and a von Mises input (15) with κ = 2 and varying amplitude factor

A and period ratio T/T�. (B) Projection onto the (re, Ve)-plane of 3 representative periodic

orbits of the perturbed system (1)-(2) corresponding to the crosses in Panel A (dashed curves

with same color as the crosses). Solid red line corresponds to the projection of the unperturbed

limit cycle. (C-E) Evolution of the firing rate variables re (red) and ri (blue) and the von Mises

input Ap(t) (green dashed line) over two periods T for the three representative orbits: (C) left-

hand side of the Arnold tongue (blue cross), (D) center of the Arnold tongue (turquoise cross)

and (C) right-hand side of the Arnold tongue (green cross). Blue and green circles indicate the
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maximum of the I-cells firing rate and the preceding input volley, respectively. The magnitude

Δτ has been pointed out with a double-head arrow.

(EPS)

S5 Fig. Representative periodic orbits within the 2:1 phase-locking region for coherent

inputs. (A) 2:1 phase-locking region (predicted by means of the phase reduction) between the

PING oscillation in Fig 3A and a von Mises input (15) with κ = 2 and varying amplitude factor

A and period ratio T/T�. (B) Projection onto the (re, Ve)-plane of 3 representative periodic

orbits of the perturbed system (1)-(2) corresponding to the crosses in Panel A (dashed curves

with same color as the crosses). Solid red line corresponds to the projection of the unperturbed

limit cycle. (C-E) Evolution of the firing rate variables re (red) and ri (blue) and the von Mises

input Ap(t) (green dashed line) over a single period T for the three representative orbits: (C)

left-hand side of the Arnold tongue (blue cross), (D) center of the Arnold tongue (turquoise

cross) and (C) right-hand side of the Arnold tongue (green cross). Blue and green circles indi-

cate the maximum of the I-cells firing rate and the input, respectively. The magnitudes Δτ1,2

have been pointed out with double-head arrows.

(EPS)

S6 Fig. Phase distribution along the unit circle and synchronization index. Phases of

the (non-autonomous) stroboscopic map (at time T1) with two periodic inputs (primary

and distractor) of von Mises type with coherence κ1 = 2 and κ2 = 20 and amplitude factors

A1 = A2 = 0.1. The period varies: (A) T1/T� = 0.845 and T2 = T1, (B) T1/T� = 0.93 and T2 =

1.3T1 and (C) T1/T� = 1 and T2 = T1. (Left column) Distribution of the first 1000 phases along

the unit circle and (Right column) plot of the same phases (within the range [0, 2π]) as a func-

tion of the iterates. The values of the synchronization index for each case are: (A) 0.9850, (B)

0.9234 and (C) 0.0224 (see Fig 6). Three different outcomes are observed in the way the

phases are distributed: (A) the iterates converge to a single phase value, (B) the iterates jump

from one phase to another within a set of different phase values and (C) the phases fill densely

the circle.

(EPS)

S7 Fig. Simulations of the mean field model receiving a primary input and a distractor. Fir-

ing rate re (red) and inhibitory synaptic variable Sei (green) of the mean field model (1)-(2)

before and after applying a distractor to the entrained oscillator by the primary input. The pri-

mary input of von Mises type (solid black line) oscillates with a relative frequency of T1/T� =

0.845 (left column), T1/T� = 0.93 (middle column) and T1/T� = 1 (right column) with respect

to the unperturbed oscillator and it comes in the form of coherent pulses (κ1 = 2). The distrac-

tor is chosen to be as coherent as the first input (κ2 = 2). The frequency relationship between

the primary stimulus and the distractor is (A) T2/T1 = 0.5, (B) 0.75, (C) 1, (D) 1.2 and (E) 1.4.

The parameters have been chosen as in Fig 6 so that the plots herein illustrate the correspond-

ing predictions. The simulations consist in the integration of system (1)-(2) with the primary

stimulus for 25T1 cycles (only the last cycle is displayed). After that, the system is additionally

perturbed with a distractor for time 10 max(T1, T2) (only the first 5 cycles are shown).

(EPS)

S8 Fig. Simulations of the full spiking QIF model receiving a primary input and a distrac-

tor. Both inputs are of von Mises type with the same coherence (κ1 = κ2 = 2) and relative fre-

quency T2/T1 = 0.875. The parameters for the primary have been chosen within the 1:1 Arnold

tongue as in Fig 6: A1 = 0.1 and (A) T1/T� = 0.845 (left-hand side of the Arnold tongue), (B)

T1/T� = 0.93 (middle of the Arnold tongue) and (C) T1/T� = 1 (right-hand side of the Arnold

tongue). For each plot we show the von Mises inputs and the raster plots before (left column)
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and after (right column) applying the distractor at time 600 ms (each panel shows 200 ms of

integration time).

(EPS)

S1 Appendix. Mutual information between stimulus state (on/off) and the firing rate of

the E-cells.

(PDF)
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17. Sancristóbal B, Vicente R, Garcia-Ojalvo J. Role of frequency mismatch in neuronal communication

through coherence. J Comput Neurosci. 2014; 37(2):193–208. https://doi.org/10.1007/s10827-014-

0495-7 PMID: 24519733

18. Ter Wal M, Tiesinga PH. Phase Difference between Model Cortical Areas Determines Level of Informa-

tion Transfer. Front Comput Neurosci. 2017; 11:6. https://doi.org/10.3389/fncom.2017.00006 PMID:

28232796

19. Börgers C, Epstein S, Kopell NJ. Background gamma rhythmicity and attention in cortical local circuits:

a computational study. Proc Natl Acad Sci U S A. 2005; 102(19):7002–7007. https://doi.org/10.1073/

pnas.0502366102 PMID: 15870189

20. Börgers C, Epstein S, Kopell NJ. Gamma oscillations mediate stimulus competition and attentional

selection in a cortical network model. Proceedings of the National Academy of Sciences. 2008; 105

(46):18023–18028. https://doi.org/10.1073/pnas.0809511105

21. Saraf S, Young LS. Correlations in population dynamics in multi-component networks. bioRxiv. 2019.

22. Börgers C, Kopell NJ. Gamma oscillations and stimulus selection. Neural Computation. 2008; 20

(2):383–414. https://doi.org/10.1162/neco.2007.07-06-289 PMID: 18047409

23. Gielen S, Krupa M, Zeitler M. Gamma oscillations as a mechanism for selective information transmis-

sion. Biol Cybern. 2010; 103(2):151–165. https://doi.org/10.1007/s00422-010-0390-x PMID: 20422425
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64. Devalle F, Montbrió E, Pazó D. Dynamics of a large system of spiking neurons with synaptic delay.

Phys Rev E. 2018; 98:042214. https://doi.org/10.1103/PhysRevE.98.042214

65. Govaerts W, Kuznetsov YA, Dhooge A. Numerical Continuation of Bifurcations of Limit Cycles in

MATLAB. SIAM Journal on Scientific Computing. 2005; 27(1):231–252. https://doi.org/10.1137/

030600746

66. Dhooge A, Govaerts W, Kuznetsov YA. MATCONT:A MATLAB package for numerical bifurcation anal-

ysis of ODEs. ACM Transactions on Mathematical Software. 2003; 29(2):141–164. https://doi.org/10.

1145/779359.779362

PLOS COMPUTATIONAL BIOLOGY Phase-locking patterns in neural networks underlying effective communication

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009342 May 18, 2022 41 / 41

https://doi.org/10.1523/JNEUROSCI.4250-04.2005
http://www.ncbi.nlm.nih.gov/pubmed/15829648
https://doi.org/10.1073/pnas.2022097118
http://www.ncbi.nlm.nih.gov/pubmed/33723059
https://doi.org/10.1162/NECO_a_00786
https://doi.org/10.1162/NECO_a_00786
http://www.ncbi.nlm.nih.gov/pubmed/26496044
https://doi.org/10.3389/fncir.2013.00049
http://www.ncbi.nlm.nih.gov/pubmed/23616748
https://doi.org/10.1186/s13408-019-0075-2
https://doi.org/10.1186/s13408-019-0075-2
http://www.ncbi.nlm.nih.gov/pubmed/31385150
https://upcommons.upc.edu/handle/2117/328089
https://upcommons.upc.edu/handle/2117/328089
https://doi.org/10.1103/PhysRevE.98.042214
https://doi.org/10.1137/030600746
https://doi.org/10.1137/030600746
https://doi.org/10.1145/779359.779362
https://doi.org/10.1145/779359.779362
https://doi.org/10.1371/journal.pcbi.1009342

