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� Abstract: Background: Lysine lipoylation which is a rare and highly conserved post-translational 

modification of proteins has been considered as one of the most important processes in the biological 

field. To obtain a comprehensive understanding of regulatory mechanism of lysine lipoylation, the key 

is to identify lysine lipoylated sites. The experimental methods are expensive and laborious. Due to 

the high cost and complexity of experimental methods, it is urgent to develop computational ways to 

predict lipoylation sites. 

Methodology: In this work, a predictor named LipoSVM is developed to accurately predict lipoylation 

sites. To overcome the problem of an unbalanced sample, synthetic minority over-sampling tech-

nique (SMOTE) is utilized to balance negative and positive samples. Furthermore, different ratios of 

positive and negative samples are chosen as training sets. 

Results: By comparing five different encoding schemes and five classification algorithms, LipoSVM 

is constructed finally by using a training set with positive and negative sample ratio of 1:1, combining 

with position-specific scoring matrix and support vector machine. The best performance achieves an 

accuracy of 99.98% and AUC 0.9996 in 10-fold cross-validation. The AUC of independent test set 

reaches 0.9997, which demonstrates the robustness of LipoSVM. The analysis between lysine lipoy-

lation and non-lipoylation fragments shows significant statistical differences. 

Conclusion: A good predictor for lysine lipoylation is built based on position-specific scoring matrix 

and support vector machine. Meanwhile, an online webserver LipoSVM can be freely downloaded 

from https://github.com/stars20180811/LipoSVM. 
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1. INTRODUCTION 

 Protein post-translational modifications (PTMs) refer to 
the chemical modifications of proteins after translation. 
Studies have shown that the production of PTMs mainly 
through the splicing of the peptide chain backbone, adds new 
groups to specific amino acid side chains, or chemically 
modifying existing groups [1]. PTMs play key roles in regu-
lating various biological functions, such as protein activity, 
stability and interaction profiles [2]. Lysine is not only the 
most modified amino acid but it is also the amino acid that is 
affected by a wide range of PTMs among the 20 standard 
amino acids [3]. Common lysine post-translational modifica-
tions include acetylation [4], methylation [5], ubiquitination 
[6], sumoylation [7] and phosphorylation [8].  

 Lipoylation is one of the rare PTMs that involves the 
covalent attachment of lipoamide to a lysine residue via an 
amide bond [9-12]. Different from other post-translational 
modifications that rely on local amino acid motifs, lipoylated 
substrate is not significantly affected by conservative amino 
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acid mutations on both sides of modified lysine [13]. So far, 
only four lipoylated multimeric metabolic enzymes have 
been found in mammals and one in bacteria [14, 15]. Despite 
the rare occurrence, it plays an important role in many key 
metabolic processes and protein interactions. For example, 
AoDH which is the only lipoylated protein complex found in 
bacteria plays roles in the catabolism of the acetoin energy 
storage molecule in acetyl-CoA and acetaldehyde [16]. And 
the lipoylated enzyme KDH regulates the binding of a surro-
gate carbon source to glucose in the TCA cycle, catalyzing 
the removal of alpha-ketoglutaric acid to form succinyl-CoA 
[17]. In addition, many studies have demonstrated that lipoy-
lated complexes are inextricably linked to disease, including 
Warburg effect [18-20], HIV infection [21, 22] and herpesvi-
rus [23]. Based on the various studies mentioned above, it is 
evident that deciphering the biological function of lipoy-
lation may help in revealing the underlying molecular causes 
of these diseases. In addition, lipoylation with high evolu-
tionary conservation and lipoylated enzymes are critically 
linked to the development of disease and the maintenance of 
health [14, 15]. Based on the above findings, it is evident 
that deciphering the biological functions of lipoylation may 
help in revealing the underlying molecular causes of these 
diseases. And understanding the mechanism of lipoylated 
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complexes is critical, which helps in the diagnosis and treat-
ment of diseases. 

 The first condition for understanding the mechanism of 
lipoylation is to identify the lipoylation sites. Traditional 
molecular biology and biochemistry techniques, such as nu-
clear magnetic resonance spectroscopy [24], protein purifica-
tion [25], and western blotting using antibody against lipoic 
acid [14] provide valuable insights into the function of lipoy-
lated proteins. Moreover, mass spectrometry provides a 
means of studying the lipoylation status of specific lysine 
residues in different cell types, tissues and biological envi-
ronments [26]. All of these methods have the drawbacks of 
low throughput, extensive time-consumption and high-cost. 
Hence, it is necessary to predict the lipoylation sites through 
computational approaches that are convenient and high 
throughput. 

 In this work, a widely used algorithm SVM is imple-
mented to construct predictors. To reduce the negative im-
pact of unbalanced data on classifier performance, the posi-
tive samples were oversampled by synthetic minority over-
sampling (SMOTE) [27]. Subsequently, different ratios of 
positive and negative samples are selected as training sets, 
respectively. And five different encoding schemes including 
bi-profile Bayes (BPB), AAindex, position-specific scoring 
matrix (PSSM), BLOSUM62 matrix and binary are imple-
mented. In addition, comparisons with other algorithms K-
Nearest Neighbor (KNN), Decision Tree, Logistic Regres-
sion (LR) and Naive Bayes show the effectiveness of Sup-
port Vector Machine (SVM) in predicting lipoylation sites in 
proteins. A comparison with existing tools has been imple-
mented to demonstrate the effectiveness of LipoSVM. A 
flowchart of the LipoSVM is given in Fig. (1). 

2. MATERIALS AND METHODS 

2.1. Benchmark Dataset 

 575 proteins with 593 experimentally annotated lysine 
lipoylation sites were retrieved from UniProt (http:// 
www.uniprot.org/) by searching the keywords "lipoylation" 
and "lipoylated protein". These proteins are scanned by a 
sliding window whose center is lysine (K). The missing ami-
no acids are filled with pseudo amino acid "X". In this work, 
the optimal window length is 17. As a result, 593 lipoylated 
fragments and 2183 non-lipoylated fragments are obtained. 
A fragment was assigned with experimentally validated ly-
sine lipoylation site in positive dataset S + or in negative da-
taset S��. In general, the training set with high homology 
could cause over-fitting which impairs the generalization of 
a predictor. Therefore, if there are more than 40% of residues 
if the two compared fragments are same, only one of them 
should be retained. After removing the redundant fragments, 
53 positive and 1028 negative fragments were obtained 
(Supplementary Table 1).� 

2.2. Feature Constructions 

 As existing machine-learning algorithms cannot process 
sequence samples directly, therefore, to represent the biolog-
ical sequence samples with an effective mathematical ex-
pression is an essential step [28]. In this work, bi-profile 
Bayes (BPB), AAindex, position-specific scoring matrix 

(PSSM), BLOSUM62 matrix and binary are utilized to con-
vert protein fragments into vectors with different dimen-
sions. 

2.2.1. Bi-profile bayes (BPB) 

 BPB is also known as the bilateral Bayes algorithm 
which was proposed by Shao et al. [29]. It encodes positive 
and negative samples with the position information of amino 
acids. First, according to the known positive and negative 
samples, a frequency matrix FP of each amino acid at each 
position in the positive samples and a frequency matrix FN 
at each position of the negative samples are obtained. FP is 
calculated as follows: 
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where ���� is the frequency of i-th amino acid in j-th position 

for a given positive dataset. � is the length of a protein frag-

ment. FN can be obtained in the same way. 

2.2.2. Physicochemical and Biochemical Properties 

 AAindex is a database of numerical indices representing 
various physicochemical and biochemical properties of ami-
no acids and the pairs of amino acids [30]. There are 566 
entries in amino acid index database (http://www.genome.jp/ 
dbget-bin/www_bfind?aaindex). In some instances, the val-
ues are not reported for all amino acids [30]. Thus, 14 com-
mon physicochemical properties (Supplementary Table 2) 
from Amino Acid Index Database are selected for the char-
acterization of amino acids.  

2.2.3. Position-specific Scoring Matrix (PSSM) 

 To obtain information about sequential evolution, the 
position-specific scoring matrix [31] can be utilized. By 
combining matrix ����� obtained via two-sample t-test [32] 
with position weight matrixes �� and ��, the following 
PSSM matrix which is used for encoding can be constructed 
(the detailed process is shown in Supplementary S3). 
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where ���� can be calculated as follows: 
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 If ����>0, the probability that the ��th amino acid in the 

��th position appears in the positive fragments is greater. 

Otherwise, it is more likely to be in the negative fragments. 

2.2.4. BLOSUM62 Matrix 

 BLOSUM matrices have belonged to the most common 
substitution matrix series for protein homology search and 
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sequence alignments [33]. The essential characteristics of 
protein evolution can be learned the from analysis of aligned 
protein sequences. Thus, a row of BLOSUM62 matrix is 
applied to represent an amino acid. 

2.2.5. Binary 

 The small range of amino acids around the lipoylation 
site is the main sequence feature of lysine lipoylated frag-
ment and has been shown to be useful for predicting lipoy-
lation sites [34]. These amino acids can be represented by 
binary encoding. Therefore, each of the 21 amino acids (20 
amino acids plus the pseudo amino acid "X") are encoded as 
a 21-dimensional vector containing only 0 and 1. 

2.3. Imbalance Data Processing 

 The imbalance of positive and negative samples in the 
training set has a massive impact on predictor performance. 
In the process of data preprocessing, over-sampling and un-
der-sampling are the common means to deal with the unbal-
anced issues. Since only 53 positive samples are obtained, 
therefore, the oversampling method is preferred. SMOTE is 
a powerful oversampling method that has achieved great 
success in solving class imbalance [35]. The pseudo-code of 
the SMOTE algorithm is shown in Supplementary S4. The 
number of positive samples reaches 212 after SMOTE. Then, 
50 positive and 50 negative samples are randomly selected 
as the independent test set. 

2.4. Algorithm 

 Support Vector Machine (SVM) is a universal classifica-

tion algorithm and it is widely used in the field of biological 

computing [36, 37]. The main idea of SVM is to find a hy-

perplane that maximizes the distance between classification 

boundary points. For a given training dataset 

� � �� � �� � � ����� � � � �� � �
�� �� � ���� ��where � 

is the number of training set, �� represents sample label. 

Then the optimal hyperplane, 

�� � � �
�
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where � represents the weight vector, � denotes that the bias 

is constructed in division samples. The kernel function such 

as linear kernel function, polynomial function, radial basis 

function (RBF), and sigmoid kernel function [38] are needed 

to map data into high-dimension space. LIBSVM is utilized 

to construct the predictor. C-support vector classification (C-

SVC) is chosen as a formulation, and RBF is chosen as the 

kernel function. The built predictor for lysine lipoylation 

with SVM is called LipoSVM. 

2.5. Model Evaluation 

 In general, performance evaluations of predictors in sta-
tistical prediction are K-fold cross-validation test, jackknife 
test, and independent dataset test [37]. 10-fold cross-
validation and an independent dataset test are chosen to vali-
date these models. To obtain a reliable estimation, the 10-
fold cross-validation is repeated 10 times.  

 Accuracy (Acc), specificity (Sp), sensitivity (Sn), area 
under the ROC curve (AUC) and Matthews Correlation Co-
efficient (MCC) are widely-accepted measurements [39]. In 
the following formula, accuracy indicates that the percentage 
of the test set should be correctly predicted. The specificity 
(also called the true negative rate) represents the proportion 
of negatives that are correctly predicted. The sensitivity (also 

 

Fig. (1). The computational framework of the predictor. Step 1, a window of various lengths with center lysine (K) is used to extract frag-

ments from lipoylated proteins. Step 2, five different encoding schemes described in Section 2.2 are utilized to code fragments. Step 3, 

SMOTE is applied to oversampling. Step 4, the different ratios of positive and negative training sets are used to train models. Step 5, Lipo-

SVM is adopted to predict independent test samples. 
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called the true positive rate or the recall) measures the pro-
portion of positives that are correctly predicted. The MCC is 
considered a balanced measure and can be used even if the 
size of the class is very different. 
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where TP denotes the number of true positive samples, TN 
denotes the number of true negative samples, FP denotes the 
number of falsepositive samples, FN denotes the number of 
false-negative samples. 

3. RESULTS AND DISCUSSION 

3.1. Performance of LipoSVM 

 To obtain an optimal predictor, different parameters in-
cluding window size, proportion of positive and negative 
samples, penalty factor and kernel parameter have been ad-
justed. The results show that when the window length is 17 
(determined by the highest MCC value), the performance is 
optimal in 10-fold cross-validation (Table 1). Since the ratio 
of positive samples to negative samples in the training set is 
about 1:6, positive and negative samples from 1:1 to 1:6 as 
training sets were randomly selected. The results show that 
the variance of MCC between different encoding schemes is 
the smallest when the ratio is 1:5. However, when the ratio is 
1:1, model with PSSM encoding scheme has better perfor-
mance than others (Table 2, Fig. 2) which further indicates 
the necessity to mitigate the impact of category imbalance. 
Furthermore, the AUC value of independent test set reaches 
to 0.9997 which demonstrates the generalization perfor-
mance of LipoSVM (Fig. 3). 

3.2. The Comparison of Different Features 

 In this work, five encoding schemes which contain evolu-
tionary information, sequence location information, amino 
acid composition information, and physicochemical proper-

ties are applied to encode protein fragments. BPB is utilized 
to obtain a 34-dimensional feature vector, a 238-dimensional 
feature vector through 14 physicochemical properties from 
AAindex. Along with a 17-dimensional feature vector by 
PSSM and a 357-dimensional feature vector by binary or 
BLOSUM62 matrix encoding scheme. As shown in Table 2 
and Fig. (2), the contribution of different encoding schemes 
to classifier performance is discrepant. Although the model 
is optimal under PSSM and 1:1 ratio, the variance of MCC 
between different ratios is the largest in this encoding meth-
od. In contrast, the variance of MCC of BLOSUM62 matrix 
is the smallest, followed by BPB, Binary and AAindex. The 
results show that it is pivotal to express the biological se-
quences with mathematical expressions that truly reflect 
their intrinsic correlation with prediction targets. 

3.3. Analysis between Lysine Lipoylation and Non-
Lipoylation Fragments 

 To intuitively understand the difference between positive 

and negative samples, the composition of various amino ac-

ids in lipoylated and non-lipoylated fragments is calculated 

(Fig. 4). Besides, Two Sample Logo [32] is used to analyze 

the occurrence of amino acide around lysine lipoylation and 

non-lipoylation (Fig. 5) sites. From Fig. (4), it can be ob-

served that there is a certain difference in the percentage of 

the amino acids between the lipoylated and non-lipoylated 

fragments. Among the lipoylated protein fragments, valine 

(V) has the highest proportion, followed by glutamic (E) and 

Serine (S), while non-lipoylated protein fragments have the 

highest percentage of lysine (K), followed alanine (A) and 

glutamic (E). It is clear that valine (V) and lysine (K) ratios 

are significantly different in positive and negative samples, 

which are the key amino acids to distinguish positive and 

negative samples. From Fig. (5), it further illustrates that the 

compositional and positional information of lipoylated and 

non-lipoylated fragments show significant statistical differ-

ence. 

3.4. Comparison of Different Algorithms and the Existing 
Predictor LipoPred 

 To verify the effectiveness of the SVM algorithm, it was 
compared with other algorithms including K-Nearest Neigh-
bor (KNN), Decision Tree, Logistic Regression (LR) and

Table 1. Performance of various window lengths in a 10-fold cross-validation. 

- ACC (%) Sp (%) Sn (%) MCC AUC 

9 99.64 99.61 99.94 0.9889 0.9979 

11 99.85 99.84 98.77 0.9931 0.9989 

13 99.72 99.79 98.89 0.9819 0.9992 

15 99.86 99.84 99.96 0.9959 0.9995 

17 99.96 99.98 100.00 0.9990 0.9997 

19 99.92 99.97 99.40 0.9965 0.9964 

21 99.93 99.89 99.44 0.9968 0.9978 
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Table 2. Performance of models with different ratios and encoding schemes. 

Ratio Encoding Schemes ACC (%) Sp (%) Sn (%) MCC AUC 

1:1 BPB 99.84±0.21 99.88±0.25 99.81±0.28 0.9969±0.0041 0.9989±0.0031 

AAIndex 99.91±0.14 99.88±0.23 99.94±0.18 0.9981±0.0028 0.9992±0.0008 

PSSM 99.98±0.18 99.96±0.09 99.99±0.24 0.9992±0.0013 0.9996±0.0027 

BLOSUM62 99.84±0.25 99.91±0.18 99.69±0.50 0.9969±0.0050 0.9979±0.0012 

Binary 99.81±0.31 99.89±0.22 99.63±0.63 0.9963±0.0062 0.9989±0.0011 

1:2 BPB 99.96±0.12 99.97±0.09 99.94±0.19 0.9991±0.0028 0.9997±0.0012 

AAIndex 99.75±0.39 99.99±0.02 99.26±1.16 0.9945±0.0087 0.9986±0.0018 

PSSM 99.67±0.19 99.51±0.28 99.98±0.11 0.9927±0.0042 0.9958±0.0013 

BLOSUM62 99.94±0.13 99.99±0.03 99.81±0.40 0.9986±0.0029 0.9979±0.0014 

Binary 99.96±0.12 99.97±0.09 99.94±0.19 0.9991±0.0028 0.9995±0.0020 

1:3 BPB 99.92±0.08 99.96±0.08 99.81±0.28 0.9979±0.0020 0.9983±0.0017 

AAIndex 99.83±0.11 99.98±0.06 99.38±0.39 0.9955±0.0029 0.9979±0.0032 

PSSM 99.95±0.12 99.93±0.14 99.99±0.04 0.9986±0.0027 0.9999±0.0021 

BLOSUM62 99.91±0.23 99.99±0.04 99.63±0.92 0.9975±0.0062 0.9979±0.0012 

Binary 99.95±0.07 99.99±0.05 99.81±0.28 0.9988±0.0019 0.9994±0.0032 

1:4 BPB 99.94±0.08 99.98±0.04 99.75±0.30 0.9981±0.0026 0.9987±0.0025 

AAIndex 99.92±0.11 99.99±0.02 99.63±0.56 0.9977±0.0035 0.9985±0.0013 

PSSM 99.97±0.05 99.97±0.06 99.99±0.09 0.9992±0.0015 0.9994±0.0011 

BLOSUM62 99.92±0.11 99.99±0.04 99.63±0.56 0.9977±0.0035 0.9978±0.0015 

Binary 99.88±0.16 99.99±0.06 99.38±0.83 0.9961±0.0052 0.9972±0.0026 

1:5 BPB 99.96±0.07 99.99±0.04 99.81±0.28 0.9985±0.0024 0.9992±0.0015 

AAIndex 99.96±0.08 99.99±0.05 99.75±0.49 0.9985±0.0030 0.9982±0.0036 

PSSM 99.94±0.05 99.92±0.06 99.99±0.04 0.9978±0.0018 0.9979±0.0012 

BLOSUM62 99.93±0.10 99.99±0.10 99.57±0.62 0.9974±0.0037 0.9977±0.0035 

Binary 99.96±0.07 99.99±0.08 99.75±0.41 0.9985±0.0024 0.9987±0.0026 

1:6 BPB 99.95±0.04 99.99±0.12 99.63±0.30 0.9978±0.0018 0.9979±0.0019 

AAIndex 99.89±0.14 99.98±0.04 99.38±0.87 0.9956±0.0053 0.9967±0.0024 

PSSM 99.91±0.00 99.90±0.00 99.99±0.04 0.9964±0.0000 0.9991±0.0012 

BLOSUM62 99.95±0.10 99.99±0.09 99.63±0.74 0.9978±0.0043 0.9978±0.0033 

Binary 99.97±0.04 99.99±0.06 99.79±0.29 0.9988±0.0017 0.9983±0.0019 

 
Naive Bayes. It can be seen from Table 3 that the model ob-
tained by SVM is superior to the model obtained by other 
algorithms. The models trained by KNN are the worst be-
cause KNN only relies on several points in the nearest 

neighbor to classify. Essentially, there is no training process. 
In addition, this predictor is superior to the existing predictor 
LipoPred [40] which with ACC 0.9994 and MCC 0.9930.  
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Fig. (2). The values of MCC with different ratio data sets and encoding schemes. The X-axis represents different encoding schemes, the Y-

axis has average values of MCC and the black bars represent standard error.

 

Fig. (3). ROC curve of an independent test set on 100 samples which are randomly selected from positive and negative samples. 

 

 

Fig. (4). The proportion of different amino acids between lysine lipoylation and non-lipoylation fragments. The X-axis represents different 

amino acids, and the Y-axis is the percentage of different amino acids. 
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Fig. (5). Two Sample Logo (p<0.05) of compositional bias around the lysine lipoylation and non-lipoylation sites. 

 

Table 3. Performance of models with different algorithms and encoding schemes. 

Algorithms Encoding Schemes ACC (%) Sp (%) Sn (%) MCC AUC 

SVM BPB 99.84±0.21 99.88±0.25 99.81±0.28 0.9969±0.0041 0.9989±0.0031 

AAIndex 99.91±0.14 99.88±0.23 99.94±0.18 0.9981±0.0028 0.9992±0.0008 

PSSM 99.98±0.18 99.96±0.09 99.99±0.24 0.9992±0.0013 0.9996±0.0027 

BLOSUM62 99.84±0.25 99.91±0.18 99.69±0.50 0.9969±0.0050 0.9979±0.0012 

Binary 99.81±0.31 99.89±0.22 99.63±0.63 0.9963±0.0062 0.9989±0.0011 

KNN BPB 98.84±0.21 99.69±0.41 99.99±0.14 0.9969±0.0041 0.9996±0.0001 

AAIndex 84.26±1.61 69.01±3.34 99.51±0.77 0.7198±0.0258 0.9603±0.0109 

PSSM 99.13±0.38 98.27±0.77 99.98±0.29 0.9829±0.0076 0.9959±0.0014 

BLOSUM62 90.99±1.31 81.97±2.62 99.99±0.36 0.8336±0.0224 0.9818±0.0049 

Binary 83.46±1.64 66.91±3.28 99.98±0.63 0.7092±0.0261 0.9648±0.0122 

Decision BPB 97.99±0.62 97.59±0.80 98.39±0.88 0.9600±0.0124 0.9804±0.0078 

Tree AAIndex 96.60±1.26 93.64±2.21 99.57±0.62 0.9339±0.0242 0.9674±0.0128 

PSSM 97.31±0.63 96.23±0.97 98.39±1.00 0.9466±0.0127 0.9743±0.0085 

BLOSUM62 97.72±0.96 95.86±1.89 99.57±0.39 0.9551±0.0184 0.9791±0.0087 

Binary 96.60±0.62 93.52±1.08 99.69±0.41 0.9339±0.0119 0.9684±0.0079 

Logistic BPB 99.91±0.20 99.88±0.25 99.94±0.18 0.9981±0.0039 0.9993±0.0017 

Regression AAIndex 99.51±0.25 99.01±0.49 99.98±0.83 0.9902±0.0049 0.9989±0.0102 

PSSM 99.54±0.21 99.07±0.41 99.97±0.48 0.9908±0.0041 0.9991±0.0076 

BLOSUM62 99.72±0.29 99.44±0.58 99.98±0.62 0.9945±0.0058 0.9994±0.0076 

Binary 99.94±0.12 99.88±0.25 99.99±0.07 0.9988±0.0025 0.9996±0.0108 

Naïve BPB 99.54±0.32 99.57±0.62 99.51±0.25 0.9908±0.0063 0.9995±0.0004 

Bayes AAIndex 98.73±0.59 99.81±0.28 97.65±1.16 0.9750±0.0116 0.9964±0.0043 

PSSM 99.96±0.72 99.99±0.04 99.99±0.35 0.9991±0.0140 0.9994±0.0091 

BLOSUM62 97.78±0.94 99.13±0.63 96.42±1.43 0.9560±0.0187 0.9949±0.0033 

Binary 98.86±0.59 99.99±0.14 97.72±1.17 0.9775±0.0115 0.9883±0.0061 
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CONCLUSION 

 Protein lysine lipoylation is a key post-transcriptional 

modification in cell regulation. To fully understand the mo-

lecular mechanisms of biological processes associated with 

lipoylation, a preliminary but critical step is to identify lipoy-

lated substrate and corresponding lipoylation sites. It is de-

sirable and necessary to achieve large-scale identification of 

lipoylated proteins through computational ways. To over-

come this challenge, SMOTE is first implemented to balance 

positive and negative datasets. Subsequently, the different 

ratios of positive and negative samples are selected as train-

ing sets. By comparing different encoding schemes and rati-

os, the optimal predictor LipoSVM is obtained. The compar-

ison with other classification algorithms and the existing 

predictor LipoPred for lysine lipoylation proves the effec-

tiveness of LipoSVM. The results show that machine learn-

ing can replace redundant experimental methods to identify 

acetylation sites with high accuracy and throughput, which 

contributes to the research of lipoylation proteins. 
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