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Abstract

The cardinal stages of macroautophagy are driven by core
autophagy-related (ATG) proteins, whose ablation largely abolishes
intracellular turnover. Disrupting ATG genes is paradigmatic of
studying autophagy deficiency, yet emerging data suggest that ATG
proteins have extensive biological importance beyond autophagic
elimination. An important example is ATG7, an essential autophagy
effector enzyme that in concert with other ATG proteins, also regu-
lates immunity, cell death and protein secretion, and independently
regulates the cell cycle and apoptosis. Recently, a direct association
between ATG7 dysfunction and disease was established in patients
with biallelic ATG7 variants and childhood-onset neuropathology.
Moreover, a prodigious body of evidence supports a role for ATG7 in
protecting against complex disease states in model organisms,
although how dysfunctional ATG7 contributes to manifestation of
these diseases, including cancer, neurodegeneration and infection,
in humans remains unclear. Here, we systematically review the
biological functions of ATG7, discussing the impact of its impair-
ment on signalling pathways and human pathology. Future studies
illuminating the molecular relationship between ATG7 dysfunction
and disease will expedite therapies for disorders involving ATG7
deficiency and/or impaired autophagy.
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Introduction

The degradation of encapsulated cytoplasmic material via the

endolysosomal system provides a first-principle definition of

autophagy. Numerous specialised autophagy pathways have been

discovered and categorised, including macroautophagy, which can

be selective or non-selective, and other variants such as chaperone-

mediated autophagy (CMA) and microautophagy. CMA recognises

protein substrates with KFERQ motifs and translocates these to lyso-

somes (Kaushik & Cuervo, 2018). Microautophagy involves the

direct engulfment and destruction of cytoplasmic substrates by lyso-

somal membrane invagination (Schuck, 2020). Macroautophagy

(hereafter, “autophagy”) remains the most widely studied pathway.

During autophagy, a transient double-membrane-bound autophago-

some engulfs cytoplasmic constituents, eventually fusing with acidic

endolysosomal compartments where hydrolysis degrades cargo

(Yorimitsu & Klionsky, 2005).

The fundamental morphological and molecular signatures of

autophagy have remained largely unchanged over the past 10 years

(Levine & Kroemer, 2008, 2019). Autophagy functions constitutively

under basal conditions (Mizushima et al, 2004), but can be induced

further by a number of stimuli, including starvation, hypoxia and

DNA damage (Kroemer et al, 2010). This triggers the de novo nucle-

ation of a phagophore, a double-membrane cup-shaped structure

that matures via the incorporation of supplementary lipids (Naka-

mura & Yoshimori, 2017). A variety of cytoplasmic cargoes, includ-

ing organelles, microbes and cytotoxic protein aggregates can be

sequestered within this transient structure (Johansen & Lamark,

2020). Autophagy can be a non-selective or selective process

(Mizushima & Komatsu, 2011). “Bulk” autophagy involves the non-

selective sequestration of cytoplasmic material, ensuring the degra-

dation of long-lived proteins and replenishment of essential building

blocks. During selective autophagy, specific cellular components are

decorated with specialised signals that recruit the autophagic

machinery to the target entity for elimination. Selectivity is

conferred upon the pathway by LC3-interacting region (LIR) motifs

[(W/F/Y)XX(L/I/V)]) that are present within cargo or specialised

adaptor proteins, enabling them to interact with ATG8 proteins that

are embedded within the inner and outer membrane of the phago-

phore (Martens & Fracchiolla, 2020). Following cargo sequestration,

the leading edges of the double-membrane structure fuse to generate
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an autophagosome which merges with acidic compartments of the

endolysosomal system. After the inner autophagosomal membrane

is degraded, the resident lysosomal acid hydrolases degrade the

autophagic cargo which is then recycled (Koyama-Honda et al,

2017) (Fig 1A).

In the 1990s, pioneering studies using yeast genetic screens

helped to define the molecular basis of autophagy (Tsukada &

Ohsumi, 1993; Harding et al, 1995). This approach led to the identi-

fication of autophagy-related (ATG) genes, and whilst the exact

number is debated, approximately 20 of these are “core” ATG genes,

conserved across eukaryotes and encoding proteins essential for

both non-selective and selective autophagy (Tsukada & Ohsumi,

1993). Auxiliary ATG proteins enhance the autophagic process and/

or participate in selective autophagy, though degradative autophagy

in any case requires functional lysosomal proteins (Tanaka et al,

2000). One of the key molecular signatures of autophagy is ATG8

lipidation, a process whereby ATG8 is conjugated to phos-

phatidylethanolamine (PE) embedded in the emerging phagophore,

thus enabling ATG8 to become an integral part of the autophagic

membrane (Martens & Fracchiolla, 2020). ATG8 lipidation is a

particularly important event because ATG8 facilitates several stages

of autophagy including phagophore expansion, cargo recruitment,

autophagosome transport and lysosomal fusion. In mammals, there

are six ATG8 homologues, classified in the LC3 or GABARAP

protein subfamilies.

A large body of evidence has demonstrated that ATG proteins

contribute to a diverse range of biological processes that extend far

beyond autophagy (Levine & Kroemer, 2019). ATG7 is one such

multifaceted core ATG protein that drives the cardinal stages of clas-

sical degradative autophagy through ATG8 lipidation. ATG7 also

makes pivotal contributions to innate immunity via LC3-associated

phagocytosis, unconventional protein secretion, receptor recycling,

exocytosis of secretory granules and modulation of p53-dependent

cell cycle arrest and apoptosis (Mizushima & Levine, 2020;

Mizushima, 2020) (Figs 1 and 2). This review will describe the role

of ATG7 in these pathways, and the breakthrough genetic models

that have led to our understanding of how ATG7 deficiency affects

mammalian physiology. We will explore the association of impaired

ATG7 activity with human pathologies including neurodegenera-

tion, cancer and infection and pay particular attention to the

recently identified recessive congenital disorder of autophagy

caused by inherited ATG7 dysfunction leading to neurological mani-

festations (Collier et al, 2021). Recent breakthroughs in delineating

the role of ATG7 in cell biology and human disease have important

implications for the development of therapeutics that regulate

autophagy. Whereas activation of autophagy provides an attractive

therapeutic approach to treat human neuropathology where

impaired autophagy is implicated, evidence has also emerged that

autophagy inhibition can improve cancer treatment outcomes

(Mizushima & Levine, 2020).

Biological functions of ATG7

Classical degradative autophagy
ATG7 impairment classically renders cells and tissues as “autophagy

deficient”, and the study of autophagy has underpinned the majority

of ATG7-focused research (Komatsu et al, 2005; Komatsu et al,

2007a; Matsumoto et al, 2008; Collier et al, 2021). During autop-

hagy, the phagophore membrane is enriched with phos-

phatidylethanolamine (PE), an abundant phospholipid that has been

reported to positively regulate autophagic activity (Rockenfeller

et al, 2015). PE is important because it acts as the anchor for recruit-

ment of cytosolic ATG8 to the emerging phagophore membrane

(Fig 1B). There are two mammalian ATG8 subfamilies encoding six

homologues to yeast atg8 protein. The first, LC3, has three

Glossary

Autophagic flux
The amount of autophagic degradation or activity that occurs
over a specific time, typically referring to non-selective (bulk)
degradation or “macroautophagy”. Flux is typically measured by
treating cells or tissues with various compounds that inhibit or
activate autophagy. Autophagic turnover occurs at steady state
within mammals.
Autophagosome
A transient double-membrane-bound organelle that sequesters
cytoplasmic cargo and fuses with the endolysosomal system whose
hydrolytic enzymes degrade its constituents.
Autophagy conjugation system
The group of proteins (including ATG3, ATG4, ATG5, ATG7, ATG10 and
ATG12) that drive the lipidation of ATG8 homologues.
Autophagy
A homeostatic and developmental process that drives the delivery of
damaged or unwanted cytoplasmic material to the endolysosomal
system for degradation.
Biallelic
When both copies of an individual gene are affected by DNA variants.
Complex disorder
A disorder that cannot be explained by variants affecting a single
gene. These are thought to be caused by the interactions between
variants on a number of genes and environment.

Conditional knockout
When a gene and its protein are selectively eliminated or depleted
from a specific tissue.
LC3-associated phagocytosis
A process whereby extracellular material (e.g. a pathogen) is engulfed
into an LC3-positive single-membrane structure that is delivered to
the endolysosomal system for degradation.
LIR motif
The LC3-interacting region (LIR) motif [(W/F/Y)XX(L/I/V)] is an amino
acid sequence within proteins that enable them to interact directly
with ATG8 homologues.
Recessive
Heritable characteristics that have an effect when a variant that
controls the characteristic is present on both copies of a single gene.
The same variant could be present on both alleles, or each allele
could harbour a different variant that together has an effect.
Selective autophagy
Refers to a growing number of pathways that target specific cargo
(e.g. mitochondria) for autophagic elimination. These pathways rely
on specific adaptors that interact with both the cargo and
autophagosome-bound ATG8 homologues.
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members, LC3A, LC3B and LC3C, and the second, GABARAP, repre-

sents the remaining three homologues, GABARAP, GABARAPL1

and GABARAPL2 (Lee & Lee, 2016). By convention, ATG8 refers to

both LC3 and GABARAP subfamilies, and upon lipidation becomes

“ATG8-PE”. Whereas conjugated GABARAP is similarly referred to

as “GABARAP-PE”, the lipidated form of LC3 is termed “LC3-II”.

Lipidation of ATG8 remains an important marker for evaluating

levels of autophagy in tissue and cells (Mizushima et al, 1998, 2010;

Ichimura et al, 2000). In mammalian cells, levels of LC3 lipidation

in particular are used to estimate autophagic flux via immunoblot-

ting, yet this should not detract from the biological importance of

GABARAP proteins.

A

B C

D

Figure 1. ATG7 drives the fundamental stages of degradative autophagy.

(A) An overview of classical degradative autophagy showing the early, middle and late stages of the process. (B) Phagophore expansion is stimulated by ATG7, which
facilitates ATG8 lipidation through its E1-like enzymatic activity. (C) ATG8 lipidation is also critical for selective autophagy and (D) contributes to the late stages of
autophagy.
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ATG8 lipidation is a multistep process, driven by the E1-like

enzymatic activity of homodimeric ATG7 (Tanida et al, 1999, 2001;

Komatsu et al, 2001) (Fig 1B). First, the protease ATG4 exposes the

C-terminus glycine residue of ATG8, generating form I (e.g. LC3-I)

(Kirisako et al, 1999). This form is then activated by ATG7 via

adenylation, before it is transferred to ATG3 where it is conjugated

Figure 2. Overview of the autophagy-related and autophagy-independent biological functions of ATG7.

Through its E1-like enzymatic activity, ATG7 drives the conjugation of phosphatidylethanolamine (PE) to LC3-I in a process termed “lipidation”, generating LC3-II which is
important for a number of physiological pathways beyond degradative autophagy. Independently of its E1-like enzymatic activity, ATG7 modulates P53 activity, thus
affecting cell cycle arrest and apoptosis via control of gene expression. ROS = reactive oxygen species. Adapted from Levine and Kroemer (2019).
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to PE to generate form II (e.g. LC3-II) (Tanida et al, 1999; Ichimura

et al, 2000; Taherbhoy et al, 2011) which localises to both the inner

(IAM) and outer autophagosomal membranes (OAM), and is subse-

quently degraded upon autolysosome formation (Kabeya et al,

2004). ATG7 is also involved in a second autophagy conjugation

reaction that supports ATG8 lipidation. During this reaction, ATG12

is adenylated by ATG7 then transferred to ATG5 via E2-like enzyme

ATG10, generating ATG5-ATG12 conjugates (Mizushima et al, 1998;

Shintani et al, 1999; Tanida et al, 1999; Yamaguchi et al, 2012)

which are restricted to the OAM and removed prior to sealing of the

autophagosome (Koyama-Honda et al, 2013). Although LC3-II can

be generated in vitro in the presence of ATG3, ATG7, LC3, ATP and

liposomes containing PE, ATG5-ATG12 forms a complex with

ATG16L that promotes LC3 lipidation in vivo (Mizushima et al,

1999, 2003; Kuma et al, 2002; Hanada et al, 2007; Lystad et al,

2019). Evidence currently suggests that WIPI2 localises to PI3P-rich

regions of the phagophore membrane, recruiting the ATG5-ATG12-

ATG16L1 complex that binds ATG3, which transfers activated ATG8

to membrane-bound PE. Oxidation of ATG3 and ATG7 facilitates

autophagy inhibition (Frudd et al, 2018).

Endogenous ATG7 deletion prevents ATG8 lipidation, so ATG7

knockout (KO) models are commonly used to study the biological

significance of the autophagy conjugation systems. ATG8 has

diverse roles in the autophagy pathway (Lee & Lee, 2016; Johansen

& Lamark, 2020). First, mammalian LC3-II is important for

autophagosome maturation, with levels of lipidated LC3 correlating

with the extent of autophagosome formation (Kabeya et al, 2004)

and autophagic structures generated in the absence of ATG8 homo-

logues are smaller (Nguyen et al, 2016). It was recently demon-

strated that attachment of ATG8 to the phagophore membrane

stimulates membrane deformation, leading to expansion of this

structure and underpinning efficient autophagosome formation

(Maruyama et al, 2021). Blockade of mammalian ATG8 lipidation

through ATG3 deletion caused delayed autophagosome maturation

and a significant reduction in the success rate of autophagosome

formation (Tsuboyama et al, 2016). In fact, a number of proteins

involved in the early and late stages of autophagy have LIRs, empha-

sising the ability of ATG8 family proteins to coordinate multiple

stages of the autophagic process (Martens & Fracchiolla, 2020)

(Fig 1D). Beyond autophagic membrane expansion, ATG8 homo-

logues facilitate transport of autophagosomes along microtubules

via interactions with motor proteins via adaptor proteins and contri-

bute to the binding of autophagosomes to lysosomes (Lorincz &

Juhasz, 2020; Martens & Fracchiolla, 2020). LC3B can also be phos-

phorylated to regulate autophagosome transport (Nieto-Torres et al,

2021). Moreover, loss of ATG7 impairs inner autophagosomal

membrane (IAM) degradation after autophagosome–lysosome fusion

(Tsuboyama et al, 2016). Consequently, autophagy is severely

impaired by ATG7 deletion as evidenced in yeast, mouse and

humans (Tanida et al, 1999; Komatsu et al, 2005; Luhr et al, 2018).

One of the most widely studied aspects of ATG8 lipidation is its

requirement for selective autophagy which is currently defined by

the recognition, sequestration and elimination of specific cytoplas-

mic cargo. This selectivity is achieved through the interaction of

cargo with ATG8 via LIR motifs within specific receptors that act as

“eat-me” signals for damaged or excess cellular components

(Johansen & Lamark, 2020) (Fig 1C). Cargo types include organelles

such as mitochondria (termed mitophagy), endoplasmic reticulum

(ER-phagy or reticulophagy) and peroxisomes (pexophagy), proteins

and protein aggregates (aggrephagy), and intracellular pathogens

(xenophagy). Consequently, selective autophagy is an important

homeostatic mechanism, preventing the accumulation of dysfunc-

tional organelles, cytotoxic aggregates and providing innate immune

support, as well as a developmental tool facilitating the removal of

mitochondria from maturing reticulocytes, cardiomyocytes, kidney

cells and ocular tissues, for example (Sandoval et al, 2008;

Mortensen et al, 2010; McWilliams et al, 2016, 2019; Esteban-

Martinez et al, 2017). LIR motifs can be regulated through masking

and activating/inhibitory phosphorylation to prevent promiscuous

cargo sequestration under conditions where the autophagic degrada-

tion of that substrate or organelle has not been stimulated (Chen

et al, 2014, 2016; Lv et al, 2017; Wei et al, 2017). Autophagic

sequestration of mitochondrial proteins can also be regulated by

acetylation (Webster et al, 2013). Although the fundamental mecha-

nisms driving cargo selection are shared between ATG8 homo-

logues, there is evidence of homologue-specific autophagy adaptor

proteins (Wirth et al, 2019).

Autophagy-related functions
Autophagy-related functions of ATG7 involve membrane trafficking

events that are dependent on LC3 lipidation. Consequently, these

processes require the activity of other core ATG proteins that drive

lipidation of ATG8 homologues, including ATG3, ATG5 and ATG12

—members of the autophagy conjugation system (Mizushima,

2020) (Fig 1). This includes the innate immune process LC3-

associated phagocytosis (LAP) (Heckmann & Green, 2019; Inomata

et al, 2020) (Fig 2). During LAP, extracellular pathogens, dead/dy-

ing cells and other extracellular substrates are recognised by cell

surface receptors then endocytosed, generating an intracellular

single-membrane structure called the phagosome. Then, LC3-II,

generated in an ATG7-dependent manner, is recruited to the phago-

some in a process dependent on NOX2-derived ROS (Sanjuan et al,

2007; Martinez et al, 2015). This structure, the LAPosome, is now

decorated with LC3-II and able to fuse with lysosomes for elimina-

tion (Sanjuan et al, 2007). A related process, termed entosis, is also

dependent on LC3 lipidation. During entosis, viable cells are

engulfed by epithelial cells. This process is regulated by the cell

being engulfed, after which this cell undergoes non-apoptotic cell

death driven by autophagosomes and lysosomes of the host cell (a

process termed “non-cell autonomous autophagy”). When autop-

hagy in the host cell is inhibited, the engulfed cell largely undergoes

apoptosis (Florey et al, 2011), whereas others have been observed

to divide inside the host cell, or escape into culture (Overholtzer

et al, 2007). Tumour cells can also undergo entosis (Overholtzer

et al, 2007; Fais & Overholtzer, 2018).

The activities of ATG7 can also be non-degradative. For example,

LAP also facilitates Toll-like receptor 9 (TLR9) trafficking and

converges with the classical autophagy pathway to regulate IFN-

alpha production (Henault et al, 2012). ATG7-mediated LC3 lipida-

tion is also required for the exocytic release of cathepsin K by osteo-

blasts (DeSelm et al, 2011), and LC3-positive lysozyme-containing

granules are released by Paneth cells upon infection (Bel et al,

2017). Related to this, autophagosomes facilitate the unconventional

secretion of proteins including IL1B and ferritin in response to lyso-

somal damage (Kimura et al, 2017), and loss of ATG7 causes accu-

mulation of mucin granules in Goblet cells (Patel et al, 2013).
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Autophagosomes are also able to sequester TBC1D5, thus freeing

the retromer complex to mediate the return shuttling of GLUT1

transporters to the plasma membrane from endosomes (Roy et al,

2017). As part of the autophagic machinery, ATG7 is also involved

in regulating the switch between apoptosis and necrosis (Goodall

et al, 2016). This important study demonstrated that the necrosome

(a protein complex that leads to rapid plasma membrane rupture

and inflammation) can assemble on autophagosomes at selective

autophagy receptor p62 sites and that loss of p62 can switch cell

death mechanisms towards apoptosis.

Autophagy-independent functions
ATG7 also participates in cellular functions that are independent of

its E1-like enzymatic activity. Consequently, these functions do not

require the other ATG machinery required for autophagy-associated

signalling. A number of autophagy-independent functions of ATG7

have been described, with two involving modulation of p53 activity.

Upon starvation, Atg7 has been reported to interact with p53 to

inhibit the expression of pro-apoptotic genes Noxa, Puma and Bax.

Accordingly, Atg7-null mouse embryonic fibroblasts demonstrated

augmented DNA damage under basal conditions. The proliferation

of Atg7-null cells proceeded at a far greater rate than control cells

due to diminished p53-mediated p21 expression, which usually

promotes cell cycle arrest (Lee et al, 2012). In another study, Atg7

was also shown to repress the pro-apoptotic properties of caspase 9

(Han et al, 2014). An isoform of ATG7 that lacks E1-like enzymatic

activity has also been discovered, and this variant cannot lipidate

ATG8 homologues (Ogmundsdottir et al, 2018). The biological func-

tion of this intriguing isoform is unknown, but it may negatively

regulate autophagy by potentially disrupting the formation of func-

tional ATG7 homodimers.

Mouse models of Atg7 deficiency

A prodigious body of evidence, largely attained through studying

mouse genetic models, has demonstrated that faithful ATG7 func-

tion is essential for the development, maintenance and adaptation

of mammalian tissues (Xiong, 2015). Embryonic Atg7 deletion in

mice results in perinatal lethality, and the subsequent characterisa-

tion of conditional Atg7 deficiency in mice has illuminated the

contribution of ATG7 to mammalian physiology (Table 1). It is

notable that manipulation of other core Atg genes causes similar

phenotypes to those observed in Atg7 KO models, supporting the

role of autophagy in these discoveries. Here, we discuss these key

genetic mouse models, exploring the phenotypic and cellular conse-

quences of endogenous inhibition of mammalian ATG7.

Systemic or whole-body Atg7 deletion
Similarly to the majority of other core Atg genes, systemic knockout

of Atg7 in mice causes death within 24 h after birth (Komatsu et al,

2005). The neonatal lethal phenotype is recapitulated across other

core Atg genes, including Atg5 (Kuma et al, 2004). It was then

demonstrated that neural reconstitution of Atg5 activity in Atg5-null

mice prevents neonatal death (mice die between 8 weeks and

8 months after birth), revealing that neural dysfunction is the

primary cause of perinatal death in whole-body knockout animals.

This is possibly due to a suckling defect (Yoshii et al, 2016),

although Atg7- and Atg5-null mice died before wild-type mice, even

under non-suckling conditions (Kuma et al, 2004; Komatsu et al,

2005). Conditional models such as tamoxifen-inducible whole-body

Atg7 deletion in adult mice impaired glucose metabolism, causing

death 2–3 months post-knockout due to neurodegeneration, and

fasting these mice caused fatal hypoglycaemia (low blood glucose

levels) and cachexia (muscle wasting) (Karsli-Uzunbas et al, 2014).

Amino acid levels were also diminished in Atg7 KO mice (Komatsu

et al, 2005). A combination of defective LAP and autophagy may

underlie the susceptibility of inducible adult Atg7 KO mice to Strep-

tococcus infection (Karsli-Uzunbas et al, 2014). Adult mice with

concurrent Atg7 and p53 deletion have similar lifespan to p53 KO

mice, and the double KO mice died from neurodegeneration without

the tumour development that was observed in p53 KO mice (Yang

et al, 2020). The double KO mice were more resistant to fasting, and

liver and brain injury was decreased due to protection against apop-

tosis and DNA damage (Yang et al, 2020).

Central nervous system
Perhaps the most striking physiological effects of Atg7 deficiency

manifest in the central nervous system, where conditional Atg7 KO

caused neurodegeneration resulting in premature death (Komatsu

et al, 2006). Mice also displayed an ataxic phenotype caused by

selective vulnerability of cerebellar Purkinje neurons to Atg7 defi-

ciency (Komatsu et al, 2006; Komatsu et al, 2007b) and beha-

vioural abnormalities that are recapitulated in mice with myeloid-

specific Atg7 deletion via impaired microglial synaptic refinement

(Kim et al, 2017). Other regions in the brain affected by Atg7 dele-

tion include the hypothalamus through impaired lipolysis and

glucose homeostasis (Coupe et al, 2012; Kaushik et al, 2012), the

forebrain via phosphorylated tau accumulation (Inoue et al, 2012b;

Nilsson et al, 2013), and midbrain dopaminergic neurons through

dysregulated presynaptic neurotransmission (Hernandez et al,

2012). Mice with neural stem cell-specific Atg7 KO were resistant

to stress-induced cognitive deficits due to impaired cell death (Jung

et al, 2020). It was also found that p62-positive neuronal inclusions

hallmark defective autophagy in Atg7-deficient brain models

(Komatsu et al, 2007a). This discovery cannot be overstated, as it

provided a direct link between autophagy and the accumulation of

proteinaceous inclusions that are characteristic of human neurode-

generative pathology.

Liver
Atg7-deficient mice demonstrated an impaired fasting response and

enlarged livers, as well as the accumulation of abnormal organelles

and p62 and ubiquitin-positive inclusions (Komatsu et al, 2005,

2007a). Impaired lipid metabolism, leading to increased cholesterol

and triglyceride content, also contributes to liver injury (Singh

et al, 2009a). Initially, it was thought that autophagy is required for

progression of liver tumours to malignancy, as Atg7 KO caused

adenoma formation but no cancerous tumours were detected

(Takamura et al, 2011). However, a subsequent study reported that

liver-specific Atg7 deletion causes hepatocellular carcinoma at

12 months (Lee, Noon, et al, 2018), with the authors commenting

that this may be because of differences in genetic background and

microbial environment.

Accumulation of p62 in liver appears to play an important role in

pathology. P62 primarily acts as an adaptor protein in autophagy,
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but is also involved in the non-canonical regulation of the activity of

oxidative stress-inducible transcription factor NRF2 (Sanchez-

Martin & Komatsu, 2018). P62 competitively interacts with KEAP1,

which usually binds NRF2 to prevent its nuclear translocation.

Thus, p62 accumulation enhances the release of NRF2, initiating an

antioxidant transcriptional response (Inami et al, 2011). Although

p62 accumulates in both Atg7 KO liver and brain, only hepatic

phenotypes are rescued by concurrent p62/SQSTM1 or NFE2L2 (en-

coding NRF2) deletion, defining tissue-specific mechanisms underly-

ing Atg7-related pathology (Komatsu et al, 2007a, 2010; Takamura

et al, 2011). In support, antioxidant gene expression is upregulated

in Atg7 KO liver but not brain (Komatsu et al, 2006; Matsumoto

et al, 2008). It has also been shown that concurrent deletion of Atg7

and Yap, which like p62 is degraded via autophagy, prevents hepa-

tomegaly and tumorigenesis (Lee et al, 2018b). The p62-KEAP1-

NRF2 axis is maintained in these double KO livers, suggesting that

even within individual tissues multiple mechanisms may contribute

to pathogenesis.

Skeletal muscle
Atg7 is required in skeletal muscle for development, basal home-

ostasis and adaptation. Loss of Atg7 in embryonic or adult skeletal

muscle caused loss of muscle mass and strength, with abnormal

mitochondria, swollen sarcoplasmic reticulum, internalised nuclei

and vacuoles notable (Masiero et al, 2009). Faithful Atg7 function

also protected mice against exercise-mediated mitochondrial

dysfunction (Lo Verso et al, 2014). Conversely, skeletal muscle-

specific Atg7 deletion is protective against diet-induced obesity and

diabetic phenotypes. Basal mitochondrial dysfunction in Atg7-

deficient skeletal muscle activates the integrated stress response via

Atf4 which promotes Fgf21 expression, stimulating fatty acid oxida-

tion (Kim et al, 2013).

Circulatory system
Atg7 appears to protect against diabetic cardiomyopathy. High-fat

diet feeding of mice with cardiac-specific Atg7 deletion exacerbated

lipid accumulation and diastolic dysfunction, leading to systolic

dysfunction (Tong et al, 2019). However, Atg7 is dispensable for

protection against physiological energetic stress via starvation or

ischaemia (Saito et al, 2019). Loss of Atg7 in vascular smooth

muscle accentuated basal Ca2+ concentrations and heightened sensi-

tivity to depolarisation (Michiels et al, 2015). Cultured Atg7-

deficient smooth muscle cells showed diminished survival and

proliferation although they demonstrated increased resistance to

oxidative stress-induced cell death, reportedly due to increased

NRF2 nuclear translocation and antioxidant gene expression (Groo-

taert et al, 2015; Osonoi et al, 2018). Endothelial-specific Atg7 dele-

tion did not affect vessel architecture or capillary density but did

Table 1. Overview of Atg7-deficient mouse models.

Knockout Phenotypes References

Whole body (embryonic) • Perinatal lethal Komatsu et al (2005)

Whole body (adult) • Neurodegeneration

• Susceptibility to infection

Karsli-Uzunbas et al (2014)

Central nervous system • Neurodegeneration

• Ataxia

• Behavioural abnormalities

Kim et al (2017), Komatsu et al (2006), Komatsu et al (2007b)

Liver • Liver enlargement

• Multiple adenomas

Komatsu et al (2007a), Komatsu et al (2005)

Skeletal muscle • Loss of muscle mass and strength

• Impaired exercise adaptation

Lo Verso et al (2014), Masiero et al (2009)

Circulatory system • Diabetic cardiomyopathy

• Susceptible to ischaemic injury

Saito et al (2019), Tong et al (2019)

Pancreas • Premature death

• Hyperglycaemia

• Insulin deficiency

• Endotoxin-induced chronic pancreatitis

Xia et al (2020), Zhou et al (2017)

Adipose • Loss of white adipose tissue mass

• Insulin sensitivity

Singh et al (2009b), Zhang et al (2009b)

Haematopoiesis • Severe anaemia

• Inability to reconstitute irradiated mice

Mortensen et al (2010), Mortensen et al (2011)

Bone • Reduced bone mass

• Short tibia and femur

Li et al (2018)

Intestine • Susceptible to infection Inoue et al (2012b)

Ear • Early-onset hearing loss Zhou et al (2020)

Eye • Retinal degeneration Zhang et al (2017)
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impair adrenaline-mediated von Willebrand factor release leading to

extended bleeding times (Torisu et al, 2013). Atg7-deficient endothe-

lial cells also exhibited diminished fatty acid storage (Altamimi

et al, 2019) and augmented endothelial to mesenchymal transition

(Singh et al, 2015).

Pancreas
In the pancreas, loss of Atg7 causes premature death due to declin-

ing exocrine and endocrine function (Zhou et al, 2017). Atg7 dele-

tion also appears to increase susceptibility to endotoxin-induced

chronic pancreatitis (Xia et al, 2020). Atg7 maintains islet architec-

ture, glucose tolerance and serum insulin levels and is important for

islet homeostasis and compensatory pancreatic responses to high-fat

diet (Ebato et al, 2008; Jung et al, 2008; Himuro et al, 2019). Atg7-

deficient beta cells accumulate dysfunctional organelles, and

impaired proliferation and increased apoptosis cause hypergly-

caemia and insulin deficiency (Jung et al, 2008).

Adipose tissue
Mice with adipose-specific Atg7 deletion demonstrated impaired

metabolic homeostasis. Loss of Atg7 led to a reduction of 80% of

white adipose tissue mass, which acquired brown adipose tissue

features including accumulation of mitochondria (Singh et al, 2009b;

Zhang et al, 2009b). Tissue demonstrated increased beta-oxidation

and diminished hormone-induced lipolysis, supporting the finding of

altered lipid metabolism in other Atg7-deficient models (Singh et al,

2009a) and leading to attenuation of basal fatty acid plasma concen-

tration and increased insulin sensitivity (Singh et al, 2009b; Zhang

et al, 2009b). Loss of Atg7 from brown adipose tissue also elevated

mitochondrial content and insulin sensitivity (Kim et al, 2019).

Haematopoiesis
The role of Atg7 in the haematopoietic system has been extensively

investigated. Atg7 is required for erythroid differentiation by

contributing to mitochondrial clearance during erythrocyte matura-

tion (Zhang et al, 2009a; Cao et al, 2016). Although removal of the

endoplasmic reticulum and ribosomes was unaffected by Atg7 dele-

tion, subsequent accumulation of damaged mitochondria caused

severe anaemia (Mortensen et al, 2010). Atg7 deficiency also caused

apoptosis induced by mitochondrial damage in mature T lympho-

cytes leading to lymphopenia (Mortensen et al, 2010). Another

study reported that T-cell-specific Atg7 deletion impairs IL-2 and

IFN-y production and impairs stimulated proliferation but does not

induce apoptosis (Hubbard et al, 2010). ER content and calcium

stores were increased in Atg7-deficient T cells, impairing cellular

calcium influx (Jia et al, 2011). Haematopoietic stem cell-specific

Atg7 KO caused death within weeks, with haematopoietic stem and

progenitor cells demonstrating increased ROS, mitochondrial mass,

proliferation and DNA damage (Mortensen et al, 2011). Lymphoid

and myeloid progenitor production was impaired, and Atg7-

deficient stem cells were unable to reconstitute the haematopoietic

system of irradiated mice (Mortensen et al, 2011). Myeloid-specific

Atg7 KO did not affect metabolism but did increase inflammasome

activation, ROS production and IL1B release after palmitic acid and

lipopolysaccharide treatment (Lee et al, 2016). Atg7 is required for

normal monocyte differentiation and acquisition of phagocytic func-

tion by macrophages (Jacquel et al, 2012). In B cells, Atg7 deletion

caused selective loss of B1a B cells through impaired self-renewal.

Atg7-deficient B1a B cells accumulated dysfunctional mitochondria

and exhibited diminished expression of metabolic genes, which was

not as severe in the less autophagy-dependent B2 B cells (Clarke

et al, 2018).

Bone
Chondrocyte-specific Atg7 deletion induced ER type II procollagen

storage, driving the aberrant formation of the Col2 fibrillary network

in the extra cellular matrix, despite normal Col2 levels (Cinque et al,

2015). This led to diminished tibial and femoral lengths in Atg7-

deficient mice. Interestingly, pharmacological activation of autop-

hagy rescued phenotypes in Fgf18- or Fgfr4-deficient mice, suggest-

ing that autophagy is activated by FGF signalling in bone (Cinque

et al, 2015). Different models have suggested that chondrocyte-

specific Atg7 deletion induces apoptosis and decreases chondrocyte

proliferation (Vuppalapati et al, 2015; Kang et al, 2017). CHOP dele-

tion partially reversed impaired chondrocyte dysfunction, implicat-

ing the PERK-ATF4-CHOP axis and thus supporting the role of ER-

related stress in pathophysiology (Cinque et al, 2015; Kang et al,

2017). Loss of Atg7 from osteoblasts caused a decrease in bone mass

during development and adulthood due to diminished osteoblast

formation and matrix mineralisation, as well as increased numbers

of osteoclasts (Li et al, 2018). Like other Atg7-deficient bone models,

ER stress was upregulated. Relief from ER stress using phenylbutyric

acid remedied bone-related phenotypes in several Atg7-deficient

models, placing endoplasmic reticulum dysfunction at the heart of

pathology (Kang et al, 2017; Li et al, 2018).

Intestine
Deletion of Atg7 from the intestinal epithelium disrupts Paneth cell

morphology and affects Paneth cell granule size, morphology and

number (Cadwell et al, 2009; Wittkopf et al, 2012). Although histo-

logical analysis of the small intestine revealed no changes after

ATG7 deletion, mice demonstrated increased expression of pro-

inflammatory genes and accentuated endotoxin-induced inflamma-

tory responses due to increased NF-kB activity (Cadwell et al, 2009;

Fujishima et al, 2011; Inoue et al, 2012a). Atg7-deficient mice were

also susceptible to Citrobacter rodentium infection and infected mice

displayed increased disease burden, possibly due to impaired LAP

(Inoue et al, 2012a). Loss of Atg7 from intestinal antigen presenting

cells elevated mitochondrial ROS production and TH17 inflammation

(Ravindran et al, 2016). Related to this, Atg7 deletion from intestinal

stem cells increased oxidative stress, altered gut–microbiota interac-

tions, and impaired DNA repair, contributing to the induction of

p53-mediated apoptosis (Trentesaux et al, 2020). Consistent with

liver and brain models, concurrent p53 deletion reduced cell death

(Trentesaux et al, 2020; Yang et al, 2020).

Eye and ear
A number of other important Atg7-deficient mouse models have

been studied. Outer hair cell Atg7 deletion resulted in accumulation

of dysfunctional mitochondria, causing profound early-onset hear-

ing loss (Zhou et al, 2020), and Atg7 deficiency in retinal pigmented

epithelia predisposed mice to retinal degeneration (Zhang et al,

2017). Interestingly, organelle degradation is normal in the develop-

ing lens of autophagy-deficient mice and instead depends upon

PLAAT (phospholipase A/acyltransferase) phospholipases (Mor-

ishita et al, 2021).
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Non-mammalian models of atg7 deficiency

Studies using other models of Atg7 deficiency support numerous

findings in mouse models. Atg7 KO Drosophila melanogaster (fruit

flies) have reduced lifespan, are sensitive to nutrient and oxidative

stress and demonstrate an ataxic-like phenotype associated with

degenerating neurons (Juhasz et al, 2007). In Caenorhabditis

elegans (nematode roundworm), atg7 is required for longevity in

the dietary restriction eat-2 mutant (Jia & Levine, 2007), but not in

the insulin-resistant daf-2 longevity model (Hashimoto et al, 2009).

Morpholino atg7 knockdown in Danio rerio (zebrafish) causes aber-

rant cardiac morphogenesis, increasing the number of dead cells

and attenuating organism survival (Lee et al, 2014).

ATG7 in human disease

Dysfunctional autophagy has been predicted to underpin a number

of human diseases (Fig 3). Given that autophagy-deficient mice

manifest profound neurodegenerative phenotypes, it has been

proposed that impaired autophagy in humans may underlie

neurodegenerative conditions including Alzheimer’s disease (AD),

Parkinson’s disease (PD) and amyotrophic lateral sclerosis (ALS)

(Fujikake et al, 2018). The relationship between autophagy and

cancer is particularly complex, and aberrant autophagic activity is

proposed to play a context-specific role in human carcinogenesis

(Long & McWilliams, 2020). Involvement of ATG7 in cancer is

further complicated by its autophagy-independent ability to modu-

late cell cycle arrest and apoptosis mediated by the tumour

suppressor p53 (Lee et al, 2012). The role of ATG7 in LC3-

associated phagocytosis suggests that ATG7 deficiency may lead to

increased susceptibility to infection, supported by the predisposi-

tion of Atg7-deficient mice to infection (Inoue et al, 2012a; Karsli-

Uzunbas et al, 2014). Until we recently discovered a series of

patients harbouring pathogenic, biallelic ATG7 variants, there was

no direct link between ATG7 and human disease. This section will

describe the clinical nature of these patients and assess the contri-

bution of ATG7 dysfunction to complex human disorders.

Childhood-onset neurological disease
Congenital disorders of autophagy are an emerging group of inborn

errors of metabolism, primarily affecting the central nervous system

with common involvement of the cerebellum and corpus callosum

(Teinert et al, 2020). Although the genetic aetiology underpinning

these conditions is expanding, congenital autophagy disorders

remain incredibly rare. In fact, deleterious variants affecting only

five core autophagy genes have been reported, including ATG5,

WIPI2, WDR45, WDR45b and ATG7 following the very recent

description of twelve patients from five, unrelated families harbour-

ing deleterious, biallelic ATG7 variants (Haack et al, 2012; Saitsu

et al, 2013; Kim et al, 2016; Suleiman et al, 2018; Jelani et al, 2019;

Collier et al, 2021).

Patients with recessive ATG7 variants are primarily affected by

neurological abnormalities including mild-to-severe intellectual

disability, ataxia and tremor (Collier et al, 2021). Brain magnetic

resonance imaging (MRI) revealed cerebellar hypoplasia and a thin

posterior corpus callosum in all patients who had been assessed,

highlighting the selective vulnerability of these regions to ATG7

deficiency. Assessment of patient skeletal muscle with undetectable

ATG7 protein revealed myopathic changes, including subsarcolem-

mal accumulation of p62 and evidence of inflammation. Related to

this, the patient cohort also displayed neuromuscular abnormalities

including loss of muscle mass and strength. Ocular dysfunction,

predominantly optic atrophy, is commonly displayed by patients,

and there was evidence of endocrine dysfunction and behavioural

abnormalities. In more severe cases, patients have seizures and are

wheelchair bound due to spastic paraplegia, and one patient died

during childhood.

Biochemical profiling of patient fibroblasts revealed severely

diminished ATG7 protein levels. Mechanistically, this manifested

with impairments in autophagic flux, evidenced by both diminished

LC3-II accumulation and decreased cargo sequestration activity.

Complementation of atg7 KO Saccharomyces cerevisiae and ATG7

KO mouse embryonic fibroblasts by missense Atg7 variants, which

were predicted to interfere with ATG7 homodimerisation, failed to

rescue autophagy to wild-type levels, thus consolidating variant

pathogenicity. Remarkably, two siblings studied survived into adult-

hood despite undetectable ATG7 causing a near absence of autop-

hagic flux and severely attenuated long-lived protein degradation,

supporting the idea that human life is compatible, in exceptional

circumstances, with loss of a nonredundant core autophagy protein.

Moreover, ATG7 patients with dramatic reduction in autophagic

activity are now approaching population life expectancy.

These findings consolidated the importance of autophagy in

human health, providing a direct link between dysfunctional autop-

hagy and neurological disease in multiple families. A key question

that has arisen from this study is as follows: How do humans

compensate for loss of classical degradative autophagy? Based on

logical assumptions derived from studies on mouse Atg5/Atg7, it

was thought that loss of ATG7—or any of the nonredundant core

ATG genes—would not be compatible with human survival. Studies

using autophagy-dependent cancer cell lines have demonstrated that

they can adapt to autophagy inhibition through increasing

mitochondrial-derived vesicle production and inducing NRF2 signal-

ling (Towers et al, 2019, 2021). Moreover, an ATG7/ATG5-

independent autophagy pathway driven by RAB9 has also been

described (Nishida et al, 2009). This pathway was also suggested to

contribute to mitophagy (Hirota et al, 2015; Saito et al, 2019), and

the delineation of other molecular signatures of this pathway will

enhance our understanding of its role in human intracellular degra-

dation. It has also been reported that FIP200 clustering enables

selective autophagy in the absence of LC3 lipidation (Ohnstad et al,

2020). Continued clinical assessment of these patients will provide

further insight into the role of ATG7 in human homeostasis and

disease. The future identification of additional individuals with

inherited ATG7 impairments will reveal the spectrum of clinical

phenotypes associated with ATG7 dysfunction. This is important

because the patients described so far do not demonstrate predictable

clinical outcomes. This is exemplified by the discrepancy between

clinical and biochemical phenotypes whereby patients with the most

severe clinical presentations demonstrated the mildest biochemical

impairment of autophagy. These approaches will also help to ascer-

tain whether ATG7-deficient individuals are at altered risk of

diseases such as neurodegeneration, cancer and infection compared

with the general population, improving our understanding of

complex human disorders.
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Adult neurodegeneration
Neurodegeneration is characteristic of autophagy-deficient mouse

models, yet the relationship between defective autophagy and

human neurodegeneration has been more challenging to reconcile

(Suomi & McWilliams, 2019). Strong evidence supporting the patho-

logical involvement of autophagy includes the presence of large

p62/SQSTM1- and ubiquitin-positive inclusions, hallmarks of autop-

hagy deficiency, in AD, PD and ALS brain tissues (Kuusisto et al,

2001; Mizuno et al, 2006). In support, these structures often contain

autophagy cargo including TDP-43, hyperphosphorylated tau, SOD1

and alpha-synuclein (Menzies et al, 2017). The discovery of patients

harbouring recessive ATG7 variants has resolved a long-suspected

convergence of neuropathology between humans and model organ-

isms with defective autophagy (Collier et al, 2021). Longitudinal

assessment of patients harbouring these pathogenic variants will

inform whether and how their neuropathological status changes
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Figure 3. ATG7 in human disease and therapeutics.

(A) Patients harbouring biallelic ATG7 variants display childhood-onset disease, causing neurological, muscular and ocular dysfunction through impaired autophagy. In
contrast, there is no direct link between ATG7 and adult-onset neurodegeneration, infection or cancer, although recent developments in our understanding of these
diseases and ATG7 function have implicated aberrant ATG7 activity in their aetiology. (B) This has implications for therapeutic approaches. Whereas neurological
phenotypes may be remedied by induction of ATG7 activity, inhibition of ATG7 may help increase the efficacy of anti-cancer treatments.
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over time. It is notable that one patient (71 years old) has developed

late-onset dementia decline, yet further studies are warranted before

this can be attributed to ATG7 deficiency.

Despite this, mutations in several genes that participate at multi-

ple steps of autophagy have been implicated in familial neurodegen-

eration (Menzies et al, 2017; Suomi & McWilliams, 2019). However,

there is evidence that the contribution of selective autophagy

proteins to neurodegeneration may extend beyond their involve-

ment in selective mechanisms alone. For example, dysfunction of

the mitophagy-associated protein PINK1/PARK6 is implicated in PD

pathogenesis, yet mouse, fly and even non-human primate models

have demonstrated that basal mitophagy is unaffected by endoge-

nous inactivation of the Pink1-Parkin pathway (Lee et al, 2018a;

Marcassa et al, 2018; McWilliams et al, 2018a,b; Yamada et al,

2018; Yang et al, 2019; Wrighton et al, 2021). Rather, there is

evidence that divergent mechanisms of impaired immune regulation

contribute to acute PD-like phenotypes. An important example is

that intestinal infections trigger the manifestation of authentic PD-

like characteristics in Pink1 KO mice, with locomotor dysfunction

rescued by L-DOPA treatment (Matheoud et al, 2019).

These data support an emerging theory proposing that a combi-

nation of triggers, facilitators and aggravators may affect Parkin-

son’s disease risk (Johnson et al, 2019). In short, triggers (e.g. viral

infection) initiate disease but facilitators (e.g. genetic variant) may

drive the spread of pathology, before the progressive loss of health

due to aggravators (e.g. impaired autophagy). Given the often

sporadic nature of other complex neurodegenerative conditions, it is

reasonable to postulate that this may be true for these disorders,

too, though the underlying mechanisms may differ between them.

Although no direct links between ATG7 dysfunction and neurode-

generation have been demonstrated, polymorphisms within the

ATG7 promoter region have been suggested to contribute to

sporadic Parkinson’s disease, yet their impacts on promoter activity

were modest (Chen et al, 2013). Recently, it was reported that ATG7

protein levels are reduced in post-mortem frontotemporal lobe brain

tissue from ALS patients compared with controls, though causality

in human subjects has not yet been proven (Donde et al, 2020).

ATG7 variants may also provide disease-modifying effects, as it has

been reported that the p.Val471Arg (NP_ 006386.1) polymorphism

is associated with earlier onset (by 4–6 years) of Huntington’s

disease (Metzger et al, 2010, 2013). These studies support the future

consideration of ATG7 dysfunction as an aggravator of neurodegener-

ation, contributing to disease progression, rather than as a trigger of

neurodegeneration. However, further research will be undoubtedly

required to define the role of ATG7 in human neurodegeneration.

Cancer
In human cancers, autophagy was first thought to be an anti-

tumorigenic process with ATG6/BECN1 haploinsufficiency detected

in approximately 45 to 70% of breast, ovarian and prostate cancers

(White, 2015). Yet, other core autophagy genes, including ATG7, are

rarely mutated in human cancers. It has instead become evident that

the relationship between cancer and autophagy is undoubtedly

complex, underpinned by the context-specific interactions of pro-

and anti-tumour properties of autophagy (Long & McWilliams,

2020). Whereas autophagy protects against tumour formation by

promoting genomic stability and inhibition of pro-oncogenic

inflammatory signalling, it also helps meet the accentuated metabolic

demands of tumour microenvironments that result from increased

proliferation (Zhong et al, 2016; Hewitt & Korolchuk, 2017). For

example, RAS transformed cancers increase autophagic flux, a mech-

anism that may also be important for invasion and metastasis (Guo

et al, 2011; Lock et al, 2011, 2014; Yang et al, 2011).

Because ATG7 promotes autophagy as well as cell cycle arrest

mediated by tumour suppressor gene P53 (Lee et al, 2012), there is a

logical expectation that altered ATG7 activity may underlie some

cancers. Liver-specific Atg7 deletion predisposes mice to liver

tumorigenesis, although these tumours were not reported to become

malignant (Takamura et al, 2011). However, a subsequent study

reported that Atg7-null mice develop hepatocellular carcinoma (Lee

et al, 2018b). Together, these data support a context-specific role of

ATG7 in carcinogenesis (perhaps driven by genetic and environmen-

tal cues including microbial exposure) and highlight that the rela-

tionship between autophagy and tumour formation and progression

are even more complex that initially thought. In fact, cell non-

autonomous mechanisms are also an important consideration

(Mizushima & Levine, 2020) and it was recently shown that tumour

growth is supported by autophagy via circulating arginine (Poillet-

Perez et al, 2018). Elegant research using a Drosophila melanogaster

malignant tumour model also supports the role of the non-cell auton-

omous autophagy which was shown to be induced in the tumour

microenvironment and in distal tissues (Katheder et al, 2017). In this

model, early-stage tumour growth and invasion was shown to be

dependent on local tumour microenvironment autophagy. Studies

have also been undertaken using murine cancer models. Conditional

inactivation of Atg7 inhibits intestinal pre-cancerous lesion forma-

tion in mice with monoallelic deletion of tumour suppressor gene

Apc (Levy et al, 2015) and prevents the growth of BrafV600E-driven

melanoma and lung tumours (Strohecker et al, 2013; Xie et al, 2015).

However, autophagy inhibition drives the accumulation of pre-

malignant pancreatic lesions in mice harbouring an activated onco-

genic Kras allele upon p53 inactivation (Rosenfeldt et al, 2013),

whereas p53 deletion-driven tumour formation (in the absence of

Kras activation) is protected against by autophagy inhibition (Yang

et al, 2020). Altogether, these studies demonstrated that the role of

autophagy may be intrinsically linked to the status of oncogenes and

tumour suppressors, as well as the metabolic microenvironment.

In humans, the link between ATG7 dysfunction and cancer

formation is only starting to emerge. Recently, familial cholangiocar-

cinoma (an aggressive cancer of the bile duct) has been associated

with ATG7 mutations (preprint: Greer et al, 2019). In this study, a

number of individuals harbouring inherited monoallelic ATG7 vari-

ants (interestingly including the p.Arg659* (NP_ 006386.1) variant

identified in Family 1 (Collier et al, 2021)) were discovered having

developed cholangiocarcinoma. Tumour analysis revealed somatic

loss of ATG7 affecting several family members, providing a strong

link between cancer formation and ATG7 dysfunction. This discov-

ery is particularly interesting given the prominent liver phenotypes,

including tumour formation, observed in Atg7-null mice (Takamura

et al, 2011; Lee et al, 2018b). In contrast, there is currently no

evidence for increased cancer susceptibility among patients harbour-

ing recessive ATG7 variants, nor in their family members with

monoallelic ATG7 variants, including those harbouring the

p.Arg659* mutation. Among the patients with biallelic ATG7 vari-

ants, a 71-year-old patient has developed an acoustic neuroma—a

benign brain tumour, but longitudinal studies in other patients will
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provide further insight into whether this is related to ATG7 defi-

ciency. Elsewhere, ATG7 polymorphisms associated with protective

or pro-carcinogenic properties have been reported (Yu et al, 2018;

Wang et al, 2019b), and elevation of ATG7 expression is associated

with some bladder and lung cancers (Sun et al, 2016; Zhu et al,

2017). Furthermore, ATG7 levels may also be of prognostic value in

breast cancers patients (Desai et al, 2013). In individuals where

inherited and somatic ATG7 variants are discovered, preclinical

mouse studies suggest that the genetic state of well-characterised

oncogenes and tumour suppressors should also be investigated.

This may facilitate a deeper understanding of the role of ATG7 in

these cancers—whether they underpin tumour growth or play a

supportive role in the later stages of disease.

Infection
Both autophagy and LC3-associated phagocytosis are involved in

the innate immune response that protects cells from invading patho-

gens (Levine et al, 2011; Heckmann et al, 2017). Although patho-

gens have evolved to modulate autophagic activity, even using it to

enhance their pathogenesis, evidence in adult mouse models

demonstrates that loss of Atg7 increases infection susceptibility

(Karsli-Uzunbas et al, 2014). However, the role of ATG7 in human

models of infection remains context-specific. ATG7 restricts

mycobacterium tuberculosis (Singh et al, 2006; Liu et al, 2020) and

human papillomavirus infection (Griffin et al, 2013) and limits

Chikungunya virus pathogenesis (Joubert et al, 2012). ATG7-

dependent autophagy is also stimulated upon infection with Influ-

enza A, leading to endogenous presentation of epitope on MHC class

II molecules (Deng et al, 2021). ATG7 also limits poliovirus infec-

tion; A defect in stimulus-induced autophagy was observed in

primary fibroblasts taken from a patient with poliomyelitis after

polio infection, with exome sequencing identifying a heterozygous

p.A388T (NP_006386.1) ATG7 variant (Brinck Andersen et al,

2020). On the other hand, HIV-1 hijacks autophagy to increase viral

yield, before HIV protein Nef acts as an anti-autophagic factor to

prevent HIV degradation (Kyei et al, 2009). It has also been shown

that autophagy selectively degrades Tat to restrict HIV-1 infection

(Sagnier et al, 2015). This autophagic dichotomy is observed in

hepatitis C virus (HCV) infection, too. ATG7 inhibition suppresses

HCV replication (Sir et al, 2008), but ATG7 activity enhances the

innate immune response in HCV-infected hepatocytes (Shrivastava

et al, 2011). Consistent with a role in regulating inflammatory

responses, inflammasome activity is enhanced in Atg7 KO mouse

infected with Pseduomonas aeruginosa, impairing pathogen clear-

ance, thus implicating ATG7 in sepsis pathogenesis (Pu et al, 2017).

Therapeutic approaches

Autophagy-modulating therapeutics are of broad interest and have

been studied in a number of settings (Fig 3). Evidence suggesting

that dysfunctional autophagy contributes to neurodegenerative disor-

ders has led to clinical studies assessing whether autophagy-inducing

compounds can improve neurological function and/or delay disease

progression. In contrast, essential autophagic activity in cancer cells

is predicted to maintain nutrient supply and prevent oxidative stress,

thus contributing to treatment resistance. Hence, inhibition of autop-

hagy may improve cancer treatment efficacy. The ability to modulate

ATG7 activity directly using drugs may therefore have widespread

implications. In cases where inherited ATG7 deficiency underlies

disease, alternative approaches may be more beneficial.

Treating ATG7 deficiency in neurological disorders
It is not unreasonable to anticipate that the number of patients iden-

tified harbouring biallelic, pathogenic ATG7 variants will increase,

and be associated with an ever-widening spectrum of clinical

presentations. The prevalent neurological phenotypes observed in

the patients identified to date suggest that restoring autophagic

function in nervous system would provide the optimal therapeutic

approach. This is supported by analogous models of autophagy in

Atg5-deficient mice wherein neural expression of Atg5 rescues peri-

natal lethality and extends life up to 8 months (Yoshii et al, 2016).

Such an approach in human patients, for example using adeno-

associated viral gene therapy, has been widely investigated, but

limitations must be overcome before this is a viable option (Wang

et al, 2019a). This approach has, however, yielded success for the

treatment of spinal muscular atrophy, a progressive motor neuron

disease (Mendell et al, 2017). Bypassing the requirement of ATG7

for LC3 lipidation offers an alternative strategy. Infection with

vaccinia, the live virus used in the smallpox vaccine, induces LC3

lipidation independently of ATG7 and ATG5 (Moloughney et al,

2011). Identifying the combination of viral and cellular factors driv-

ing non-canonical LC3 lipidation under these circumstances could

lead to the development of a viable therapeutic. In Drosophila mela-

nogaster, Uba1 functions in an Atg7/Atg3-independent autophagy

pathway that is dependent on Atg8, but this has not been described

in mammals (Chang et al, 2013). A different strategy would require

a deeper understanding of the molecular events that lead to pathol-

ogy. Studies using mice have demonstrated that liver injury in

Atg7-null mice can be remedied by p62/SQSTM1, NFE2L2, Yap or

p53 deletion, but the intracellular consequences of endogenous

human ATG7 inactivation in patient neural cells remain to be inves-

tigated (Komatsu et al, 2007a; Inami et al, 2011; Lee et al, 2018b;

Yang et al, 2020). It would also be interesting to uncover whether

ATG7-independent degradation pathways may compensate for

dysfunction of classical degradative autophagy. Of note, the RAB9-

dependent autophagy pathway, termed “alternative autophagy”,

does not require ATG7 or LC3 lipidation, yet further work is

required to understand both the molecular signatures and physio-

logical importance of this pathway, although progress is being made

(Nishida et al, 2009; Shimizu, 2018; Yamaguchi et al, 2020).

Preclinical mouse studies have suggested that enhancing ATG7

activity could help treat neurodegeneration (Donde et al, 2020). In

human neurodegenerative conditions where defective autophagy is

implicated, clinical trials have largely focussed on the use of

compounds that activate autophagy. Some of these enhance autop-

hagy via mTORC1 inactivation, including rapamycin (Mandrioli

et al, 2018), idalopirdine (Wilkinson et al, 2014; Matsunaga et al,

2019) and SB-742457 (Maher-Edwards et al, 2010), whereas others

(e.g. lithium (Sacca et al, 2015)) deliver remedy through TORC1-

independent mechanisms. Novel therapeutics that are able to

enhance the selective delivery of cytoplasmic constituents (includ-

ing mitochondria and mutant Huntingtin protein) to the autophago-

some have also been reported (Li et al, 2019; Takahashi et al, 2019).

It is unclear whether such approaches could meet the clinical

demands of ATG7-deficient patients.
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Targeting ATG7 to enhance cancer treatment
Although aberrant ATG7 activity is not known to commonly under-

pin human cancers, it has been theorised that disrupting autophagy

can improve the potency of anti-cancer therapeutics. A number of

clinical trials have used blocker of autophagy hydroxychloroquine

in combination with classical cancer therapies, yet results have been

mixed (Mulcahy Levy & Thorburn, 2020). Combining autophagy

inhibition with proteasomal inhibition has provided promise, with

this approach leading to prostate cancer cell death (Zhu et al, 2010).

Attenuating ATG7 function to sensitise tumour cells to cancer treat-

ments has also been investigated in preclinical models with some

success. ATG7 inactivation enhances the effectiveness of anti-cancer

therapeutics in lung and breast cancer cell treatment (Han et al,

2011; Desai et al, 2013; Yue et al, 2013). Moreover, endogenous

noncoding RNA molecules miR-17 and miR-137 diminish ATG7

expression, sensitising several cancer cell lines to chemotherapeu-

tics or low ionising radiation (Comincini et al, 2013; Zeng et al,

2015). Modulating the FoxO1/ATG7 axis may also provide a thera-

peutic opportunity. FoxO1 encodes a tumour suppressor gene that

drives cell death in human colon tumours via autophagy (Zhao

et al, 2010). In bladder cancer, tumorigenic growth is also attenu-

ated by FoxO1, yet this appears to be stimulated by ATG7 inhibition

(Zhu et al, 2017). Indeed, the effectiveness of targeting ATG7 activ-

ity may be dependent on the genetic status of tumour suppressors

and oncogenes. For example, whether autophagy promotes or

reduces pancreatic tumour growth in mice appears to be dependent

on p53 status (Rosenfeldt et al, 2013).

It is known that a number of cancer cell lines are highly

autophagy-dependent, and although they are generally resistant to

loss of autophagic function (e.g. through ATG7 deletion), there is

evidence that populations of cells are able to adapt to autophagy

inhibition by upregulating different cellular pathways including

NRF2 signalling (Towers et al, 2019). Interestingly, loss of LC3-

driven mitophagy via ATG7 deletion upregulates formation of

mitochondrial-derived vesicles, 70–150 nm structures that laterally

bud from mitochondria encapsulating selective cargo that can

deliver material to the endolysosomal system for degradation, or to

peroxisomes (Sugiura et al, 2014; Towers et al, 2021). These results

offer druggable targets under circumstances where autophagy-

dependent cancers resist autophagy inhibition that attempts to

enhance anti-cancer treatments. They may also offer insight into

how patients with inherited ATG7 variants are able to survive into

adult life. Overall, these findings reinforce the complexity underpin-

ning human cancers and support the delivery of context-specific

therapeutic approaches, whilst the development of high specificity

pharmacological inhibitors is also encouraging. This was demon-

strated recently whereby Vps34 inhibition improved immunother-

apy outcomes in preclinical models (Noman et al, 2020).

Concluding remarks

It has now been demonstrated that inherited ATG7 deficiency causes

congenital human disease hallmarked by neurodevelopmental

deficits (Collier et al, 2021). Remarkably, humans can survive with

mild–moderate neurological impairments despite undetectable

levels of ATG7 protein. Future investigations will hopefully reveal

which cellular pathways compensate for the absence of classical

degradative autophagy, contributing to the survival of these

patients. Recent advances suggest that mitochondrial-derived vesi-

cles and upregulated NRF2 signalling may be two mechanisms

by which autophagy-deficient cells are able to survive (Towers et al,

2019, 2021). Moreover, FIP200 clustering facilitates the bypass

of LC3 lipidation in autophagy and promotes selectivity (Ohnstad

et al, 2020).

Although the link between ATG7 and complex human disorders

remains mostly elusive, the increasing associations between altered

autophagy and complex human disorders suggest that directed

modulation of ATG7 could provide a promising therapeutic oppor-

tunity. Studies in mice suggest that the most appropriate therapeutic

approach when inherited ATG7 dysfunction underpins pathology

may involve targeted neural restoration of ATG7 expression or alle-

viating downstream molecular consequences that may drive disease

manifestation. In contrast, evidence suggests that disrupting autop-

hagy may improve anti-cancer therapeutics. Currently, inhibiting

autophagy largely involves targeting the endolysosomal system

leading to a broad impact on cellular homeostasis. Hence, there is a

crucial need to develop selective autophagy inhibitors. Given that

ATG7 has enzymatic activity, developing drugs that directly target

ATG7 represents an attractive therapeutic strategy and may lead

to more specific outcomes. For such approaches to be clinically

feasible, it will be important to understand how these treatments

affect the various biological pathways influenced by ATG7, and

more broadly, how these pathways interact across cellular space

and time.

Importantly, further analysis of ATG7-independent degradation

mechanisms will be key to understanding intracellular turnover in

humans and whether these pathways can compensate under

circumstances of autophagy dysfunction. The continued develop-

ment of disease models and sensitive tools to monitor ATG7 activity

in vivo will surely drive further progress in this exciting field.
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Pending issues

(i) Delineating how the autophagy-related and autophagy-
independent activities of ATG7 are regulated.

(ii) Investigating how defective autophagy impairs neural integrity.

(iii) Examination of how cells compensate for loss of classical
degradative autophagy.

(iv) Clarifying the role of ATG7 in complex disorders.

(v) Development of therapeutics that specifically target ATG7.
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