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A B S T R A C T   

Background: Chromosome analysis is laborious and time-consuming. Automated methods can 
significantly increase the efficiency of chromosome analysis. For the automated analysis of 
chromosome images, single and clustered chromosomes must be identified. Herein, we propose a 
feature-based method for distinguishing between single chromosomes and clustered chromosome. 
Method: The proposed method comprises three main steps. In the first step, chromosome objects 
are segmented from metaphase chromosome images in advance. In the second step, seven features 
are extracted from each segmented object, i.e., the normalized area, area/boundary ratio, side 
branch index, exhaustive thresholding index, normalized minimum width, minimum concave 
angle, and maximum boundary shift. Finally, the segmented objects are classified as a single 
chromosome or chromosome cluster using a combination of the seven features. 
Results: In total, 43,391 segmented objects, including 39,892 single chromosomes and 3,499 
chromosome clusters, are used to evaluate the proposed method. The results show that the 
proposed method achieves an accuracy of 98.92% by combining the seven features using support 
vector machine. 
Conclusions: The proposed method is highly effective in distinguishing between single and clus
tered chromosomes and can be used as a preprocessing procedure for automated chromosome 
image analysis.   

1. Introduction 

Chromosome analyses, such as chromosome number counting, karyotyping [1] and aberration scoring [2,3], are laborius and 
time-consuming. Automated methods can significantly increase the efficiency of chromosome analysis. In recent years, many methods 
[4] have been developed to analyze chromosome images automatically. Most methods used to automatically analyze chromosomes are 
based on a single chromosome. However, chromosome clusters comprising many single chromosomes typically appear in chromosome 
images, which necessitates a different algorithm for analyzing the chromosome clusters. Hence, single and clustered chromosomes 
must be identified to perform automated chromosome image analysis. 

Studies have been conducted pertaining to methods by which single chromosomes can be distinguished from clustered chromo
somes. Some of the relevant studies are briefly introduced below. 
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Rahimi et al. [5] proposed a neural network classifier with nine features to separate single chromosomes from clustered chro
mosomes. They used 178 images (109 single chromosomes and 69 chromosome clusters) to evaluate the proposed method. The ac
curacy of the proposed method was reported to be 73%. 

Yan et al. [6] proposed an automatic chromosome-counting algorithm. In this method, the area was used as a criterion to 
distinguish between single and clustered chromosomes. A segmented object with an area greater than twice the average area was 
considered a chromosome cluster. 

Jahani et al. [7] proposed a method for identifying overlapping and touching chromosomes using morphological operators. The 
skeleton was extracted by applying a thinning procedure to each segmented object; subsequently, the end points were extracted from 
the skeleton. Any segmented object with more than two end points was considered a chromosome cluster, and the proposed method 
was evaluated using 904 segmented objects (776 single chromosomes and 128 clustered chromosomes). The identification accuracies 
of the clustered and single chromosomes were 96% and 99%, respectively. 

Moallem et al. [8] proposed a method similar to that proposed by Jahani et al. [7], which uses the number of end points in the 
skeleton to identify chromosome clusters. This method was evaluated using 1930 segmented objects (1695 single chromosomes and 
235 clustered chromosomes), and the detection accuracies of the clustered and single chromosomes were 86.4% and 98.5%, 
respectively. 

Uttamatanin et al. [9] proposed a rule-based classification method for metaphase selection. In this method, the segmented objects 
were classified into four classes, and the third class was characterized as a chromosome cluster. The classification accuracy of chro
mosome clusters was 89.44%. 

Minaee et al. [10] proposed a geometry-based approach for chromosome segmentation. In the method, three geometric indicators 
were used to detect chromosome clusters: the ratio of the minor axis length to the major axis length of the surrounding ellipse (sur
rounding ellipse method), the ratio of the area in the original image to that in its convex hull (convex hull method), and the number of 
end points in the skeleton for each segmented object. 

Kubola et al. [11] proposed a technique for counting chromosome numbers. This method, which is similar to that proposed by 
Jahani et al. [7], uses the endpoints and intersection points of a skeletonized chromosome image to identify chromosome clusters. The 
method was evaluated using 300 segmented chromosome images (100 single chromosomes, 100 clusters with two chromosomes, and 

Fig. 1. Overall scheme of the proposed method.  
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100 clusters with more than two chromosomes). The detection accuracies were 100%, 100%, and 79.12% for single chromosomes, 
clusters with two chromosomes, and clusters with more than two chromosomes, respectively. 

Yilmaz et al. [12] proposed an improved chromosome segmentation method. This method is similar to that proposed by Minaee 
et al. [10] for detecting chromosome clusters, which includes the convex hull method, the skeletonization method, and a comparison of 
area and number of objects after a segmented object is eroded. 

Arora et al. [13] proposed an approach for chromosome segmentation using region-based active contours. In this method, 
segmented objects were classified as single or clustered based on their features, including length, area, and circularity. 

Lin et al. [14] proposed a framework for identifying chromosome clusters using 11 geometric features and machine learning al
gorithms. The method was evaluated using 633 samples (528 chromosome instances and 105 chromosome clusters) and demonstrated 
a classification accuracy of 96.21%. In addition, Lin et al. [15] proposed a method for chromosome cluster-type identification. This 
method can classify chromosome clusters into touching, overlapping, and touching-overlapping chromosome clusters. 

Although many relevant methods have been proposed, how to increase the classification performance of single and clustered 
chromosomes is still a worthwhile issue. Herein, we propose a novel method that uses seven features to identify single and clustered 
chromosomes. In our method, some of the features are designed based on concepts inspired by previous studies, whereas others are 
developed based on our observations of the characteristics of the junction between chromosomes. Five classifiers are used and 
compared to combine the seven features. The discriminative performances of the seven features and their combination are evaluated 
using large datasets. 

2. Materials and methods 

2.1. Image database 

The proposed method was evaluated using 1038 metaphase chromosome images obtained from the Institute of Nuclear Energy 
Research in Taiwan. All chromosome images were of the color JPEG format and were obtained using a microscope (Zeiss, Imager Z2) 
equipped with an objective len providing 64 × magnification and a scanning system (Metasystems, Metafer4) with an image size of 
1360 × 1024 pixels. A color JPEG image comprises red (R), green (G), and blue (B) components. Each pixel value (R, G, and B) in the 
color JPEG images was converted into a grayscale value between 0 and 255 for further analysis. Higher and lower pixel values cor
responded to the background (bright regions) and foreground (dark regions) in the images, respectively. 

2.2. Overall scheme of proposed method 

Fig. 1 shows the overall scheme of the proposed method for distinguishing between single and clustered chromosomes. The method 
comprises three steps. In the first step, chromosome objects are segmented from the metaphase chromosome images in advance. In the 
second step, seven features are extracted from each segmented object. Based on the extracted features, the segmented objects are 
classified as either a single chromosome or a chromosome cluster in the final step. The procedures and definitions of these features are 
described in detail below. 

2.3. Chromosome segmentation 

A chromosome image and its histogram in terms of the grayscale values are shown in Fig. 2(a) and (b), respectively. The histogram 

Fig. 2. (a) Metaphase chromosome image; (b) histogram of Fig. 2(a) and threshold used to segment the chromosomes; and (c) segmented objects 
corresponding to Fig. 2(a). 
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contains two major clusters: one with a lower value corresponding to the chromosomes or foreground, and the other with a higher 
value corresponding to the background. The threshold between the two clusters must be determined in advance to segment the 
chromosomes. In this study, the threshold was determined by the mean value of the two clusters, as shown in Fig. 2(b). For the 
chromosomes, a grayscale value with the maximum number Peakfore was searched between 0 and 100. Subsequently, Peakbkg was 
searched between 150 and 255 for the background. The threshold was calculated as (Peakfore + Peakbkg)/2. A binary image of the 
chromosome candidates was obtained by segmenting pixels with values less than the threshold, as shown in Fig. 2(c). Subsequently, 
the segmented objects, including single and clustered chromosomes, were classified based on their features. 

2.4. Features for distinguishing between single and clustered chromosomes 

After the chromosomes were segmented, each segmented object was rotated toward the vertical position along its long axis for 
feature extraction, as shown in Fig. 3(a)–3(c). In each metaphase chromosome image, the segmented objects were organized based on 
their areas. The middle-sized segmented object was selected and used for normalization. Fig. 4 shows selected chromosome with a 
median size for normalization in a metaphase chromosome image. The seven features used in this study were designed based on the 
characteristics that differed between the single and clustered chromosomes. Because the correlation between those features is low, 
their combination can compensate for one another to improve the discrimination performance. The definitions of the seven features 
extracted from the segmented object are presented next. 

2.4.1. Normalized area 
The size of segmented objects is an important feature for distinguishing between single and clustered chromosomes. The area of a 

chromosome cluster is typically larger than that of a single chromosome, as shown in Fig. 5(a)–5(d). In this study, the area of each 
segmented object was normalized to the area of the middle-sized chromosome (Fig. 4) in each metaphase image. The normalized area 
An is formulated using Eq. (1) as follows: 

An =Ai/Amid (1)  

where Ai is the area of the segmented object and Amid is the area of the middle-sized chromosome. For a single chromosome, the 
normalized area An is approximately 1.0. By contrast, the normalized area of a chromosome cluster deviates significantly from 1.0. 

2.4.2. Area/boundary ratio 
For a chromosome cluster, some portions of the boundary vanish in the overlapping region, as shown in Fig. 6(a)–6(c). To detect 

this phenomenon, the area/boundary ratio Ra/b can be used, which can be formulated using Eq. (2) as follows: 

Ra/b =Ai
/

Nboundary (2)  

where Ai is the number of pixels in the segmented object area and Nboundary is the number of pixels in the segmented object boundary. 
The Ra/b for a chromosome cluster is larger than that for a single chromosome owing to the fewer boundary pixels of the former. 

2.4.3. Side branch index 
Based on our observations of overlapping chromosomes, when one chromosome is rotated vertically along its long axis, the other 

chromosomes are represented as side branches, as shown in Fig. 7(a) and (b). This information is valuable for detecting overlapping 
chromosomes. Hence, we used it to define a side branch index to detect overlapping chromosomes. To determine the index, each 
segmented object is rotated toward the vertical position in advance, as shown in Fig. 3, and the maximum width Wmax is obtained by 
searching the widths along the long axis, as shown in Fig. 7(b). Subsequently, the side branch index Wbranch is formulated using Eq. (3) 
as follows: 

Wbranch =Wmax/Wmid (3) 

Fig. 3. Segmented object rotated toward vertical position for feature extraction.  
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where Wmax is the maximum width of the segmented object and Wmid is the maximum width of the middle-sized chromosome (Fig. 4) in 
each metaphase image. Wbranch refers to the maximum width of each segmented object normalized to the maximum width of the 
middle-sized chromosome. For a single chromosome, the value of Wbranch is approximately 1.0. By contrast, the Wbranch value for 
overlapping chromosomes with a “side branch” is significantly higher than 1.0. 

2.4.4. Exhaustive thresholding index 
For a large portion of the touching chromosomes, the boundary between the chromosomes is clearly visible, as shown in Fig. 8(a). 

Clustered chromosomes with clear boundaries can be further separated via exhaustive thresholding, as shown in Fig. 8(c). In 
exhaustive thresholding, the threshold value is decreased at each iteration to determine whether the segmented object is divided into 

Fig. 4. Middle-sized chromosome (indicated by the arrow) used for normalization in metaphase image.  

Fig. 5. Size comparison between single chromosome (left) and chromosome cluster (right).  
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more than one segment, as shown in Fig. 8(b) and (c). In this study, the minimum threshold value used to separate the potential single 
chromosome was calculated using formula 0.8 × Peakfore+0.2 × Peakbkg, as demonstrated similarly in Fig. 2(b). If a segmented object 
can be divided into many pieces via exhaustive thresholding, then it can be considered a chromosome cluster. However, some single 
chromosomes can be separated into many pieces via exhaustive thresholding, as shown in Fig. 8(d)–8(f). In this study, we defined an 
exhaustive thresholding index to overcome this problem. For a single chromosome divided into several pieces, the distance between 
the pieces on the chromosome is small. In contrast to the inner distance, the distance between touching chromosomes is relatively 
large. Based on this concept, the distance Dmass between the centers of mass of the divided pieces was used to distinguish between single 
and clustered chromosome, as shown in Fig. 8(g). The exhaustive thresholding index IET is defined as shown in Eq. (4): 

IET =Dmass/Wmid (4)  

where Dmass is the distance between the mass centers of the divided pieces and Wmid is the maximum width of the middle-sized 
chromosome described above. If the final number of pieces is 1 (no further division), then the value of Dmass is set to zero. If the 
number of divided pieces is greater than two, then the value of Dmass is the average of all distances between the mass centers. The 
exhaustive thresholding index IET indicates that the distance Dmass is normalized to the width of the middle-sized chromosome in each 
metaphase image. For a single chromosome, the value of IET is less than 1.0. By contrast, the IET value exceeds 1.0 for chromosome 
clusters with divided pieces. 

2.4.5. Normalized minimum width 
Touching chromosomes without a clear boundary cannot be detected via exhaustive thresholding (as described above). Other 

features must be designed to detect clustered chromosomes in which the chromosomes merge. Hence, the junction characteristics of 
the touching chromosomes were used to design the following features. 

When chromosomes are in contact without a clear boundary, the junction between chromosomes typically appears narrow, as 
shown in Fig. 9(a). The minimum width of a segmented object can be used to detect junctions between chromosomes. To achieve this, 
each segmented object was rotated toward the vertical position, and the minimum width Wmin was determined by searching along the 
long axis, as shown in Fig. 9(b). The minimum width Wmin was subsequently normalized to the middle-sized chromosome ‘s width 

Fig. 6. (a) Overlapping chromosomes and area/boundary ratio determined by (b) number of area pixels Ai divided by (c) number of boundary 
pixels Nboundary. 

Fig. 7. (a) Chromosome cluster segmented and rotated for determining (b) the maximum width Wmax in the vertical position.  
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(Wmid) to obtain the normalized minimum width Wn, which is expressed by Eq. (5) as follows: 

Wn =Wmin/Wmid (5) 

The normalized minimum width Wn can provide information regarding the narrowest section of a segmented object. 

2.4.6. Minimum concave angle 
In addition to the junction between the chromosomes in a cluster, as shown in Fig. 10(a), the centromere [16] is the narrowest 

section of a single chromosome, as shown in Fig. 10(c). A concave angle near the minimum width was used to distinguish the junction 
from the centromere. The nearby angle for a centromere is typically blunt (obtuse angle), as shown in Fig. 10(d), and the angle near the 
junction is typically an acute angle, as shown in Fig. 10(b). These concave angles provide more information regarding the minimum 
width. We defined an index, i.e., the minimum concave angle θmin, which was determined by selecting the minimum angle from the left 
and right concave angles, by Eq. (6) as follows: 

θmin =min
(
θleft, θright

)
(6) 

The minimum concave angle θmin and normalized minimum width Wn described above can be used to detect narrow junctions 

Fig. 8. (a) Touching chromosomes with visible boundary and (b) the corresponding segmentation and (c) exhaustive thresholding result; (d) single 
chromosome with an internal fissure and (e) its segmentation and (f) exhaustive thresholding result; (g) distance Dmass between centers of mass of 
the divided pieces. 
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between the touching chromosomes. 

2.4.7. Maximum boundary shift 
A distance shift was observed along the boundary in the junction between chromosomes, as shown in Fig. 11(a)–11(c). The 

Fig. 9. (a) Chromosome cluster segmented and rotated for determining (b) the minimum width Wmin in the vertical position.  

Fig. 10. Narrowest sections corresponding to (a) the junction between touching chromosomes and (c) the centromere of a single chromosome; the 
concave angles near the minimum width for a (b) chromosome cluster and (d) single chromosome. 
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boundary was smooth for a single chromosome. By contrast, the boundary of a chromosome cluster showed an abrupt displacement 
near the junction. The shifting distance can be a useful indicator for detecting junctions. Hence, we defined another index, i.e., the 
maximum boundary shift Sn. To obtain the index, each segmented object was rotated vertically, and the maximum shifting distances of 
the left and right boundaries were determined, as shown in Fig. 11(c). The maximum Smax was selected from the left and right 
maximum boundary shifts using Eq. (7). 

Smax =max
(
Sleft

max, S
right
max

)
(7) 

Subsequently, the maximum shift Smax was normalized to the middle-sized chromosome’s width (Wmid) to obtain the maximum 
boundary shift Sn using Eq. (8) as follows: 

Sn = Smax/Wmid (8) 

A segmented object is considered a chromosome cluster if its Sn value is high. 

2.5. Classification 

After feature extraction, all the segmented objects were classified as either single or clustered chromosomes based on the features 
described above. In this study, five classifiers were used to classify the segmented objects: the decision tree (DT), linear discriminant 
analysis (LDA), quadratic discriminant analysis (QDA), support vector machine (SVM), and multi-layer perceptron (MLP). All clas
sifications were performed using a machine learning tool (scikit-learn) [17]. 

2.6. Evaluation method 

All segmented objects in the 1038 chromosome images, as described in Section 2.3, were classified as single or clustered chro
mosomes by two experts. In total, 43,391 segmented objects were divided into 39,892 single chromosomes and 3,499 clustered 
chromosome. The classification results were used as the gold standard for evaluating the proposed method. 

The dataset was randomly separated into training and testing data sets. A training dataset was used to train each classifier and 
create the model. After the model was established, the test set was sent to the model to obtain the classification accuracy. The per
formance of each classifier was evaluated via five-fold cross-validation. 

3. Results 

In this study, seven features were designed and used to classify the segmented objects into single and clustered chromosomes. The 
effectiveness of each feature was evaluated individually. Fig. 12(a)–12(g) show the distributions of the single and clustered chro
mosomes in terms of the feature values. The mean and standard deviation of each feature for the single and clustered chromosomes are 
summarized in Table 1. The values of An, Ra/b, Wbranch, IET, Wn, θmin, and Sn were 0.99 ± 0.42 and 2.29 ± 0.94, 3.52 ± 0.79 and 4.15 ±
0.58, 1.16 ± 0.24 and 2.23 ± 0.87, 0.02 ± 0.15 and 1.42 ± 1.07, 0.71 ± 0.17 and 0.50 ± 0.27, 125.33 ± 28.00 and 83.01 ± 39.20, 
and 0.20 ± 0.18 and 1.19 ± 0.78 for the single and clustered chromosomes, respectively. To some degree, all features can distinguish 
between single and clustered chromosomes. 

To combine the seven features for classification, five classifiers (DT, LDA, QDA, SVM, and MLP) were used and compared. Table 2 
presents a comparison of the classification performances of the five classifiers. The results show that the SVM with seven features 
demonstrated the best classification performance, with the highest accuracy of 98.92%. After training the SVM classifier, a hyperplane 
for separating the single and clustered chromosomes was obtained. The distance between each segmented object and the separating 
hyperplane is shown in Fig. 13. Single and clustered chromosomes can be separated successfully using an SVM with a combination of 
the seven features. 

Fig. 11. (a) A chromosome cluster (b) segmented and rotated for determining (c) the maximum boundary shift in the vertical position.  
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4. Discussion 

In image feature analysis, the discriminating capability of the features significantly affects the classification results. In this study, 
we designed seven features based on the characteristics of a single chromosome and chromosome cluster. The usefulness of each 
feature was analyzed individually as follows: The results of the normalized area An indicate that the chromosome cluster was larger 
than a single chromosome. This shows that size is an important feature for distinguishing chromosome clusters from single 

Fig. 12. Distributions of single and clustered chromosomes in terms of the features: (a) Normalized area, (b) area/boundary ratio, (c) side branch 
index, (d) exhaustive thresholding index, (e) normalized minimum width, (f) minimum concave angle, and (g) maximum boundary shift. 

Table 1 
Mean and standard deviation of the features for single and clustered chromosomes.  

Feature Single Chromosome Chromosome Cluster 

Normalized Area (An) 0.99 ± 0.42 2.29 ± 0.94* 
Area/Boundary Ratio (Ra/b) 3.52 ± 0.79 4.15 ± 0.58* 
Side Branch Index (Wbranch) 1.16 ± 0.24 2.23 ± 0.87* 
Exhaustive Thresholding Index (IET) 0.02 ± 0.15 1.42 ± 1.07* 
Normalized Minimum Width (Wn) 0.71 ± 0.17 0.50 ± 0.27* 
Minimum Concave Angle (θmin) 125.33 ± 28.00 83.01 ± 39.20* 
Maximum Boundary Shift (Sn) 0.20 ± 0.18 1.19 ± 0.78* 

* Significant difference with single chromosome (p < 0.05). 
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chromosomes. The Ra/b was larger for the chromosome clusters because of the smaller boundary pixels due to the disappearance of the 
boundary in the overlapping region. The results of the side branch index Wbranch show that the value for a single chromosome was 
approximately 1.0, whereas the value for the chromosome clusters deviated significantly from 1.0. This implies that widths (side 
branches) of chromosome clusters are typically larger than those of single chromosomes. For the exhaustive thresholding index IET, the 
results show that the distance between the divided pieces inside a single chromosome was small, whereas it was relatively large for the 
divided chromosomes from the clusters. Based on the normalized minimum width Wn and minimum concave angle θmin, the results 
show that the junction between chromosomes indicated a narrow width and an acute angle. By contrast, for the narrowest region (the 
centromere) of a single chromosome, the nearby angle was large. To detect abrupt displacements near the junction, the maximum 
boundary shift Sn was determined; the result shows that the Sn value for the chromosome cluster was higher than that for a single 
chromosome. This implies that the boundary of a single chromosome is smooth, whereas that of a chromosome cluster typically ex
hibits significant shift along the boundary. In summary, all the designed features can be used to distinguish between single and 
clustered chromosomes. 

To combine the seven features for distinguishing clustered chromosome from single chromosome, we used five classifiers and 
compared their classification performances. The results show that the SVM performed the best, with an accuracy of 98.92%. In 
addition, the MLP and DT exhibited competitive results. This implies that the MLP and DT are also suitable classifiers for performing 
classification using the feature space comprising the seven features. The comparisons between the proposed and related methods are 
presented in Table 3. The proposed method was evaluated using a large data set and showed competitive performance compared with 
the related methods. 

In this study, size- or length-related features were normalized to the size or width of the middle-sized chromosome in each 
metaphase image. Chromosome clusters with excessively large or small feature values can be detected more easily compared with the 
middle-sized chromosome. For example, the values of An and Wbranch are approximately 1.0 for single chromosomes, and the 
segmented objects can be regarded as chromosome clusters if the feature values deviate significantly from 1.0. In addition, metaphase 
chromosome images can be acquired using microscope systems equipped with objective lens of different magnifications or scanning 
systems with different image sizes. This poses problems to size-related features, which can be solved through normalization. Hence, by 
adopting normalization, the proposed method can be readily applied to metaphase chromosome images obtained at different reso
lutions or magnifications. 

To overcome the limitations of the proposed method, misclassified cases were analyzed. Fig. 14 shows the primary types of single 
chromosomes misclassified as chromosome clusters, including highly bent chromosome (Fig. 14(a) and (b)), double-stranded chro
mosomes with long arms (Fig. 14(c)), and long chromosomes with middle fissures (Fig. 14(d)). For the highly bent and long-arm single 
chromosomes, the maximum width Wmax was overly large, which resulted in an extremely high value of the side branch index Wbranch. 

Table 2 
Classification results of the classifiers.  

Classifier Classification Accuracy (%) 

Decision Tree (DT) 98.23 ± 0.16 
Linear Discriminant Analysis (LDA) 97.90 ± 0.07 
Quadratic Discriminant Analysis (QDA) 96.08 ± 0.18 
Support Vector Machine (SVM) 98.92 ± 0.06 
Multi-layer Perceptron (MLP) 98.68 ± 0.11  

Fig. 13. Distributions of single and clustered chromosomes in terms of the distance to the separating hyperplane of SVM classifier.  
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Therefore, these types of single chromosomes were classified as clustered chromosomes. For a long single chromosome with a middle 
fissure, the segmented object was divided into two pieces via exhaustive thresholding. In this study, the distance between pieces was 
used to verify whether the pieces belonged to a single chromosome, based on the criterion that the distance is small. However, the 
distance between the mass centers of the pieces for a long single chromosome is relatively large, and these pieces are considered 
separate chromosomes. This causes the segmented object of a long chromosome to be misclassified as a cluster during exhaustive 
thresholding. 

By contrast, Fig. 15 shows the primary types of chromosome clusters misclassified as a single chromosome, including small 
chromosomes located in close proximity to each other (Fig. 15(a) and (b)) and chromosomes overlapping in a straight line (Fig. 15(c) 
and (d)). As described above, the distance between the divided pieces was used to determine whether the pieces belonged to a single 
chromosome or separate chromosomes for a segmented object in the exhaustive thresholding. For a segmented object in which small 
chromosomes are located in close proximity to each other, the distance between chromosomes separated by exhaustive thresholding is 
small. This causes the segmented object of the cluster to be misclassified as a single chromosome. In addition, the segmented object of a 
cluster, in which the chromosomes overlap in a straight line, is extremely similar to that of a single chromosome. If the area is not 
sufficiently large, then the segmented object of a cluster will be misclassified as a single chromosome because of the similar values of 

Table 3 
Comparison with related studies.  

Method Data set Accuracy 

Single Cluster 

Rahimi et al. [5] 109 69 73% 
Jahani et al. [7] 776 128 99% for single 

96% for cluster 
Moallem et al. [8] 1,695 235 98.5% for single 

86.4% for cluster 
Uttamatanin et al. [9] 6,409 994 89.44% for cluster 
Kubola et al. [11] 100 100 (n = 2) 

100 (n > 2) 
100% for single 
100% for cluster (n = 2) 
79.12% for cluster (n > 2) 

Lin et al. [14] 528 105 96.21% 
Proposed Method 39,892 3,499 98.92% 

n: number of chromosomes in a cluster. 

Fig. 14. Single chromosome misclassified as chromosome cluster by the proposed method.  
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the other features compared with those of a single chromosome. 
Although the proposed method exhibits satisfactory performance, some aspects can be considered for further improvement. Highly 

bent single chromosomes and double-stranded chromosomes with long arms exhibit features such as "side branches" and have high 
Wbranch values. The features of bent and long-arm single chromosomes must be designed appropriately to distinguish them from 
chromosome clusters. For the exhaustive thresholding index, we used only the distance between the divided pieces to distinguish 
between single and clustered chromosomes. This is insufficient for small chromosomes located in close proximity to each other and 
long single chromosomes with middle fissures. Other features of the divided pieces must be designed appropriately to accommodate 
these situations. However, the detection of clustered chromosomes that overlap in a straight line appears to be the most challenging 
task in the future. 

5. Conclusions 

The proposed method is highly effective in distinguishing between single and clustered chromosomes; thus, it can be used as a 
preprocessing procedure for automated chromosome image analysis. 
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