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Abstract

Human antibody 4E10 targets the highly conserved membrane-proximal external region (MPER) of the HIV-1
transmembrane glycoprotein, gp41, and has extraordinarily broad neutralizing activity. It is considered by many to be a
prototype for vaccine development. In this study, we describe four subjects infected with viruses carrying rare MPER
polymorphisms associated with resistance to 4E10 neutralization. In one case resistant virus carrying a W680G substitution
was transmitted from mother to infant. We used site-directed mutagenesis to demonstrate that the W680G substitution is
necessary for conferring the 4E10-resistant phenotype, but that it is not sufficient to transfer the phenotype to a 4E10-
sensitive Env. Our third subject carried Envs with a W680R substitution causing variable resistance to 4E10, indicating that
residues outside the MPER are required to confer the phenotype. A fourth subject possessed a F673L substitution previously
associated with 4E10 resistance. For all three subjects with W680 polymorphisms, we observed additional residues in the
MPER that co-varied with position 680 and preserved charged distributions across this region. Our data provide important
caveats for vaccine development targeting the MPER. Naturally occurring Env variants described in our study also represent
unique tools for probing the structure-function of HIV-1 envelope.
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Introduction

The membrane-proximal external region (MPER) of gp41 is an

attractive target for HIV vaccine development [1,2,3,4,5]. It is

highly conserved across group M HIV-1, it is not glycosylated, and

its deletion renders the envelope non-fusogenic [6,7]. The HIV-1

MPER is also the target of broadly neutralizing monoclonal

antibodies including 4E10, 2F5 and Z13e1; 4E10 being the most

broadly reactive neutralizing antibody to HIV-1 described to date.

Human antibodies 2F5 and 4E10 were derived directly from

chronically infected persons, indicating that these broad specific-

ities can be elicited in vivo [8,9,10,11,12,13]. With the recent

limited performance of a major T-cell based vaccine trial [14,15],

there is renewed interest in vaccines that elicit neutralizing

antibodies targeting conserved regions of Env such as the MPER

[1,2,3,4,16,17,18].

Monoclonal antibody 4E10 neutralizes almost all Group M

primary isolates in pseudotyped virus assay systems [19,20]. The

core epitope for this mAb has been crudely defined as

N671W672F673D674I675T676 (HXB2 numbering), though W680 has

been implicated as critical to 4E10 binding in several studies

[12,21,22,23]. Naturally occurring polymorphisms are extremely

rare for all three crucial residues (W672F673W680), with substitution

frequencies of 0.07%–0.43% per site (based on 2811 gp41

sequences in the 2009 LANL database). Studies of recently and

chronically infected persons failed to detect naturally occurring

resistance to 4E10 [19,20] and antibodies to 4E10 epitopes are also

very rare [24,25]. Only one study has identified a subject with
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intrinsic 4E10 resistance that correlated with a natural polymor-

phism in the epitope sequence (F673L) [26], though another study

identified phenotypically resistant virus without genotypic changes

in the MPER regions [27]. Additionally, human passive immuno-

therapy trials using a combination of mAbs including 4E10 did not

select for 4E10-resistant virus [28,29,30], and generation of resistant

virus during in vitro passage is difficult and only partially successful

[31]. For these reasons, many consider the induction of 4E10-like

specificities to be an important component in the development of a

protective vaccine [1,2,4,5,20,23,32,33]. However, there have been

limited in vivo trials of this mAb [28,29,30,34,35,36,37] and

naturally occurring 4E10-like specificities appear to be rare.

Therefore, little is known about potential escape paths from

4E10-like antibodies and the associated mechanisms.

In this study, we describe four subjects chronically infected with

subtype C HIV-1 from whom we isolated envelopes resistant to

neutralization by mAb 4E10. In all four cases, 4E10 resistance was

associated with rare polymorphisms at positions 673 and 680 in

the MPER. One subject transmitted a 4E10 resistant virus to her

infant in utero. Co-variation analysis and site-directed mutagenesis

showed a relatively conserved pattern of MPER substitutions

associated with mutation at position 680, but also revealed that

residues outside the MPER are important in conferring the 4E10-

resistant phenotype. Our data show that MPER polymorphisms

conferring resistance to broadly neutralizing anti-MPER antibod-

ies occur naturally, are ‘‘fit’’ enough to transmit, and thus should

be considered as a potential escape path if this region of Env is

included in a vaccine. Our data also provide corroborating

evidence for several hypotheses about Env structure/function, as

well as the mechanism of 4E10 binding/neutralization.

Materials and Methods

Subject Data
All subjects were part of the Zambia Exclusive Breastfeeding

Study (ZEBS), a clinical trial to prevent mother to child HIV-1

transmission [38]. HIV-1 infected women were enrolled antena-

tally and their children were followed for 24 months. All the

women and infants in this analysis received a single peripartum

dose of nevirapine as per the Zambian government guidelines at

that time. Twenty transmitting mothers were identified, based on

sample availability and quality, for genotypic and phenotypic

analysis of maternal and infant envs. In total, out of 20

transmission-pairs analyzed, we identified four subjects (three

transmitting mothers and one infant recipient) with rare

polymorphisms in their MPERs associated with resistance to

mAb 4E10. All other subjects harbored phenotypically 4E10-

sensitive Envs with commonly observed MPER sequences.

All women signed informed consent. ZEBS was approved by

Human Subjects Committees at the investigators’ institutions in

the US (Boston University, Columbia University, University of

Alabama, Birmingham and Childrens Hospital Los Angeles) and

by the University of Zambia Research Ethics Committee.

Laboratory specimens were completely anonymized and unlinked.

Cloning and Sequencing
Complete gp160 envelopes were cloned directly from plasma or

cells for all study subjects as previously described by Derdeyn et al.

[39], with the addition of multiple independent PCRs performed

at or near limiting dilution to prevent re-sampling [40]. Cloned

envelopes were sequenced bi-directionally and sequences were

assembled and edited using the Sequencher software (Gene

Codes), MacVector (MacVector Inc), and the Los Alamos

National Laboratory (LANL) website tools (http://www.hiv.lanl.

gov/content/sequence/LOCATE/locate.html).

All chromatograms were visually inspected during assembly and

any with dual peaks were excluded. In the event that multiple

clones were generated and sequenced from a single PCR product,

nucleotide alignments were examined and if clones were identical

or nearly identical only one representative sequence was retained

for further analysis. All sequences were compared against the

HIV-1 database using ViroBLAST [41]. Sequences were also

aligned in MUSCLE v3.7 [42] and refined manually in MacClade

v4.08 software (Sinauer Associates, Inc., Sunderland, MA). A

maximum likelihood tree was calculated in PhyML v3.0 [43]

using the online tool DIVER (http://indra.mullins.microbiol.

washington.edu/cgi-bin/DIVER/diver.cgi), which implemented

the evolutionary model GTR+I+G. The tree was rooted with

subtype B reference sequence HXB2. Upon examination of the

tree, sequences from each mother/infant pair were observed to

cluster separately from every other pair, thus suggesting a lack of

inter-patient or reference strain contamination.

Cells, Inhibitors, and Other Reagents
293T cells were obtained from the American Type Culture

Collection (ATCC), and TZM-bl cells were obtained from the

AIDS Research and Reference Reagent Program, Division of

AIDS, NIAID, NIH: (catalogue #8129) courtesy of Dr. John C.

Kappes, Dr. Xiaoyun Wu and Tranzyme Inc [44,45,46,47,48]:

both were maintained in Dulbecco’s Modified Eagles Media

(DMEM) (Fisher Scientific) supplemented with 10% Fetal Bovine

Serum (Gemini Bio-products), 100 U/mL penicillin-streptomycin

(Gibco), and 2mM L-Glutamine (Gibco) at 37uC with 5% CO2.

The following plasmids were obtained through the AIDS Research

and Reference Reagent Program, Division of AIDS, NIAID, NIH:

env clone Du422 (SVPC5) (catalogue #11308, Genebank Acces-

sion# DQ411854) from Drs. D. Montefiori, F. Gao, C. William-

son, and S. Abdool Karim [49], and the backbone plasmid

pSG3DEnv (catalogue #11051) from Drs. John C Kappes and

Xiaoyun Wu [45,50]. TZM-bl cells expressing FccRI were kindly

provided by Dr. David Montefiori and Dr. Gabriel Perez [48,51].

The following drugs and antibodies were obtained from the

AIDS Research and Reference Reagent Program, Division of

AIDS, NIAID, NIH: HIV-1 gp41 Monoclonal Antibody (4E10)

from Dr. Hermann Katinger (catalogue #10091); TAK-779 from

Takeda Chemical Industries, Ltd. (catalogue #4983); T-20 Fusion

Inhibitor from Roche (catalogue #9845). mAb 4E10 was also

purchased directly from Polymun Scientific.

ELISA peptides (.95% pure by HPLC) were synthesized as

described previously [9,33] at The Scripps Research Institute (P.

Dawson), recombinant gp41 (HxB2, amino acids 541–682) was

purchased from Vybion (Ithaca, NY), and M41xt (gp41JR-FL,

amino acids 535–681) was produced as a C-terminal fusion to the

maltose-binding protein (MBP) in Escherichia coli and purified on an

amylose column [52].

Neutralization Assay
Neutralization of pseudotyped virus was measured as the

reduction of luciferase activity after infection of TZM-bl cells in

the presence of varying concentrations of antibody or drug, as

previously described [39]. In summary, pseudotyped virus was

produced in 293T cells by co-transfection of an env plasmid and

the pSG3DEnv backbone. Pseudotyped virus was incubated for

1 hr with 5-fold dilutions of the test antibody/drug and then

added to TZM-bl cells in a 96 well plate format in the presence of

16 mg/mL DEAE-dextran. Two days later, cells were lysed and

analyzed using a Promega Luciferase kit (Promega, Madison WI)

4E10-Resistant Primary HIV-1
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and a FLUOstar luminometer (BMG Labtech). Relative infectivity

was expressed as a percentage of the drug-free control.

Site-directed mutagenesis
The Quikchange II Multi-Site directed mutagenesis kit

(Stratagene) was used to create the G680W reversion mutant

and the constructs SVPC5-KGQI, SVPC5-KWKI, and SVPC5-

NRQL. Mutagenesis was confirmed by full-length bi-directional

sequencing.

Statistical Analysis
Fifty percent inhibitory concentration (IC50) for each drug was

calculated by using the data points immediately above and below

50% infectivity using the POWER function in Excel (Microsoft).

IC50 results were averaged between at least two independent

assays. Since phenotypic data were not normally distributed, the

Wilcoxon rank-sum test or the Kolmogorov-Smirnov test was used

to compare IC50 values.

HIV-1/HIV-2 Chimera Neutralization
The HIV-1/HIV-2 Env chimeras 7312A (HIV-2 Env), 7312-

C1 (HIV-2 Env with subtype B HIV-1 MPER), and 7312-C1C

(HIV-2 Env with HIV-1 subtype C MPER) have been previously

described [24]. Neutralization experiments were conducted using

heat inactivated plasma or cell-free breast milk supernatant from

subject 16M as previously described [24].

ELISA Testing
96-well microplates (eBioscience) were incubated with test

peptide or recombinant protein overnight at 4uC (100 ng/well).

Plates were washed with TPBS (PBS containing 0.01% Tween 20)

and blocked for 1 hr with 4% non-fat dry milk (NFDM) in TPBS.

Plasma or mAb samples were serially diluted in 1% NFDM/TPBS

and added to the antigen-coated wells. After 1 hr, bound antibody

was probed with a peroxidase-conjugated goat anti-human IgG

Fab (Sigma) diluted 1:1000 in 1% NFDM/TPBS. Bound

conjugate was detected using TMB substrate (Pierce) and the

colorimetric signal measured at 450 nm.

HIV-1 neutralization assay using FccRI-transgenic TZM-bl
cells

Pseudotyped HIV-1JR-FL was added to serially diluted (1:3) IgG

variants (starting at 10 mg/ml) or human serum samples (starting

at a 1:40 dilution) and incubated at 37uC, for 1 hr. TZM-bl or

TZM-blFccRI cells were then added (1:1 by volume) at 16104

cells/well in a final concentration of 10 mg/ml DEAE-dextran, as

described previously [51]. After 48 hr incubation the cells were

washed, lysed and developed using luciferase assay reagent

according to the manufacturer’s instructions (Promega). Lumines-

cence was measured using an Orion microplate luminometer

(Berthold Detection Systems).

Nucleotide Sequence Accession Numbers
All env sequences were submitted to GenBank under accession

numbers GU939049 to GU939171.

Results

While characterizing functional env genes from a cohort of 20

mother-infant transmission pairs, we identified clones in 3

transmitting mothers that were highly resistant to mAb 4E10.

Their clinical characteristics are presented in Table 1. One of

these women transmitted 4E10-resistant clones to her infant

(subjects 16M & 16B), while another transmitted a sensitive clone

(subject 12M). No usable specimen was available for the third

subject’s infant (subject 21M). A phylogenetic tree for all three

mothers and two of their infants is presented as Figure 1. Each pair

forms a distinct cluster, with infant sequences forming a sub-

branch off the maternal tree.

Subjects 16M & 16B
The majority of the Env clones (36/47) detected in Subject 16M

possessed a glycine at position 680 instead of the usual tryptophan

(W680G) and all tested clones were resistant to mAb 4E10

(IC50.100 mg/mL). The remaining clones had either a wild-type

W (2/47) or a W680R (9/47) substitution at this position (Figure 2A).

Both W680 and W680R clones were sensitive to 4E10 (IC50 3.3 mg/

mL and 6.6 mg/mL, respectively). One maternal clone had a

W672R substitution in addition to a W680G mutation and was

highly resistant to 4E10 (IC50.100 mg/mL)

This subject’s infant was HIV DNA PCR positive at birth.

Phylogenetic analysis of 13 infant envs revealed highly homoge-

neous quasi-species. All infant envelopes had a W680G substitu-

tion and were highly resistant to mAb 4E10 (IC50.100 mg/mL).

A maternal sample obtained 3 years after the enrollment sample

was available. By this time, the distribution of MPER substitutions

had changed; only 1 clone out of 15 had a W680G substitution

(IC50.50 mg/mL), while the remaining Envs had either a W (9/

15 clones) or an R (5/15 clones) at position 680. Clones with the

W were susceptible (IC50 0.7–5.7 mg/mL, median 3.6 mg/mL),

while the R clones were more resistant (IC50 35–.50 mg/mL,

median 48 mg/mL) relative to both contemporaneous W clones

and the early time-point R clone (Figure 2A). Unfortunately, no

longitudinal infant samples were available.

In an alanine scanning mutagenesis study, Zwick et al. showed

that substitution of a small, hydrophobic residue (A) at position

680 resulted in an ,2-fold increase in susceptibility to T20 [22].

Since our W680G Envs also contain a small, hydrophobic

substitution at this position, we tested the Envs from subject

16M for T20 susceptibility. The W680G Envs from this subject

were ,2-fold more susceptible to T20 than Envs with either a W

or R at position 680. While this difference did not reach statistical

significance (P = 0.097), we find it noteworthy that the same

Table 1. Clinical characteristics of study subjects.

Patient ID Plasma Viral Load Trans. Type* Maternal CD4 Baby 1st Positive PCR*

Subject 16 211,792 IUT 118 Birth

Subject 12 45,907 BMT 52 3 Months

Subject 21 128,120 BMT 55 4.5 Months

*Transmission type established by timing of the infant’s positive DNA PCR: In Utero Transmission (IUT) = HIV DNA positive at birth, Breast Milk Transmission (BMT) = HIV
DNA PCR positive at .1 month with negative HIV DNA PCR results prior to that timepoint.

doi:10.1371/journal.pone.0009786.t001
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phenotype was observed with both in vitro mutagenesis of a clade B

Env, and our naturally occurring clade C primary isolates.

We hypothesized that 4E10 escape mutations in this subject

were the result of antibody-mediated selective pressure. To test for

evidence of MPER targeted antibodies, we utilized an HIV-2/

HIV-1 chimera system. HIV-2 exhibits little to no cross-

neutralization with HIV-1, and mAb 4E10 does not neutralize

HIV-2. This lack of cross-reactivity was exploited by grafting the

subtype B and subtype C HIV-1 MPER consensus sequences into

HIV-2 Envs, rendering them sensitive to neutralization by 4E10

[24]. Plasma and breast milk supernatant from this subject were

tested against the chimeras; however, neutralization activity was

detected against neither the subtype B (7312A-C1) nor subtype C

(7312A-C1C) chimera, despite efficient neutralization of both by

the 4E10 mAb control (data not shown).

In order to further assess the plasma from subject 16M for

4E10-like activity, we performed an ELISA against two different

recombinant gp41 constructs, as well as a gp41 MPER peptide

(179-4). We found that plasma from 16M bound extremely well to

recombinant gp41 (.100-fold better than any of the mAb

controls). Her plasma bound MPER peptide 179-4 45-fold better

then the normal human plasma control. However, we also

observed relatively high binding to irrelevant control proteins

(hen egg white ovalbumin and human apolipoprotein A1), so these

data should be interpreted with some caution. When compared to

the mAb 4E10 positive control, plasma from 16M bound ,2-fold

less strongly to peptide 179-4 (Figure 3).

Perez et al. have reported that expression of FccRI on TZM-bl

cells strongly enhances neutralization of pseudotyped virus by

MPER-specific broadly neutralizing mAbs 4E10 and 2F5, and

that such enhancing activity is not observed with the gp120

targeted mAb 2G12, or most HIV+ plasmas (the exception was a

plasma shown to contain anti-MPER activity) [51]. We tested the

16M plasma for neutralization enhancement in this assay system,

finding none, despite observing a .35-fold reduction in IC50 for

mAb 4E10 (data not shown).

Subject 12M
The majority of the maternal envs (12/14) in this subject had a

W680R substitution, with a minor fraction (2/14) possessing the

wild-type W680. The W680R Envs had a wide range of

susceptibility to 4E10 (IC50 11 to .50 mg/mL), suggesting that

position 680 was not the sole determinant of 4E10 sensitivity for

this subject. Examination of the entire MPER did not reveal any

additional mutations associated with 4E10 sensitivity in the

W680R Envs. The W680 Envs were sensitive to 4E10 (IC50

2.4–2.6 mg/mL). Subject 12M’s infant was infected by breast milk

between 2 and 3 months of age. Phylogenetic examination

revealed a highly homogeneous infant env population. All infant

Envs (5/5) were sensitive to 4E10 (IC50 2.3–4.5 mg/mL), and were

wild type at position 680 (W) (Figure 2A).

Subject 21M
Subject 21M harbored predominantly wild type, 4E10-sensitive

virus (28/29 clones, IC50 12.0–26.4 mg/mL). A single 4E10-

resistant Env (IC50.50 mg/mL) was isolated from this subject

(Figure 2A). The 4E10-resistant clone had the F673L substitution

previously described by Gray et al [26]. Some of the previously

described F673L Envs also had substitutions in the lentiviral lytic

peptide – 2 (LLP-2) domain of the gp41 cytoplasmic tail. These

substitutions (E783A, T784I, G789V, T792L) were not present in

any of the envs from our subject. No infant sample was available.

MPER Sequence Analysis
Analysis of the MPER sequences from subjects 16M & 16B

revealed that three residues (positions 677, 683, and 686) varied

based on the identity of position 680 (Figure 2A). Some of these

substitutions were themselves extremely rare (,0.01%), suggesting

that they may be important compensatory mutations. The wild-

type W at position 680 was associated with a K at positions 677

and 683, and an I at position 686. The W680G mutation was

associated with a K at position 677, a Q at position 683, and an I

at position 686. The W680R mutation was associated with an N at

position 677, a Q at position 683, and an L at position 686. The

presence of an uncharged amino acid at position 680 (either W or

G) was associated with a charged residue (K) at position 677 and

either an uncharged Q or a charged K at position 683 (for 680G

Figure 1. Maximum-Likelihood phylogenetic tree of all env
sequences used in this study. HXB2 is used as an outgroup to root
the tree.
doi:10.1371/journal.pone.0009786.g001
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Figure 3. Binding ELISA results for subject 16Ms plasma. Binding ELISA testing subject 16Ms plasma against normal human plasma and four
monoclonal antibodies for binding to two gp41 constructs, one full-length MPER peptide, and two control peptides.
doi:10.1371/journal.pone.0009786.g003

Figure 2. Alignment of MPER sequence variants from all subjects described in this study. Sequences are aligned against HXB2 and a
subtype C consensus sequence derived from the 2007 LANL database. Numbering is based on HXB2. MSD denotes start of the Membrane Spanning
Domain. Consensus residues are color-coded by degree of conservation (red .98%, orange 90–97.9%, yellow 75–89.9%, green ,75%). In panel A,
IC50 for mAb 4E10 is expressed as a range for all functional clones tested for each MPER variant. Positions 677, 680, 683, and 686 are color-coded for
emphasis. In Panel B, Env protein sequences have been color-coded according to charge at positions 677, 680, and 683 (blue = basically charged
residue, yellow = uncharged residue). All other residues (in white) are uncharged.
doi:10.1371/journal.pone.0009786.g002
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or 680W respectively) (Figure 2B). The presence of a charged

amino acid (R) at position 680 was associated with uncharged

residues at both positions 677 (N) and 683 (Q). This co-variation

was strictly conserved at both time-points sampled, and across

both major branches of the maternal tree.

Envelopes from subjects 12M & 12B also had 3 residues (677, 683,

and 684) that co-varied with position 680 (Figure 2A). In this subject,

the wild type (680W) was associated with an uncharged residue at

position 677 (N) and a charged residue at position 683 (K in maternal

and R in infant Envs) (Figure 2B). The W680R mutation was

associated with a charged residue at position 677 (K) and an

uncharged residue at position 683 (Q). The W680 Envs from this

subject also had a very rare I684L substitution in the membrane-

spanning domain (present in both maternal and infant W680 Envs).

We found it particularly noteworthy that positions 677 and 683

co-varied based on the identity of position 680 in both of these

subject-pairs. While the specific substitution patterns were

different, we did observe similar patterns of charge conservation

in both subject-pairs: the presence of a charged residue at position

680 (R) resulted in a change in the charge distribution at positions

677 and 683. We also noted that all Envs maintained either 1 or 2

basic charges across this region of gp41 (677–686). An alignment

of MPER protein sequences for all subjects is presented in

Figure 2A. An alignment of subject pairs 12 and 16 is presented in

Figure 2B as a simplified charge map (with basic charges shown in

blue). It is notable that the basic charge at position 683 is .99.9%

conserved in subtype C (either as K or R), and has been proposed

to serve as a membrane anchor/MSD stop signal [53] yet we

observed frequent substitutions at this position linked to the

presence of a G or R at position 680.

Since our data on 4E10 susceptibility were so striking, we sought

to determine whether MPER substitutions were causing a global

decrease in sensitivity to entry inhibitors by testing our Envs for

sensitivity to the gp41 targeted fusion inhibitor T20 and the gp120

targeted inhibitor TAK-779 (Figure 2A). We did not find any

major qualitative differences in sensitivity to these inhibitors based

on MPER sequence. Furthermore, we found that our infant Envs

fell within or very close to the range of IC50s present in maternal

Envs. This suggests that the MPER substitutions described have

not resulted in broad changes to neutralization sensitivity.

Site-Directed Mutagenesis
To confirm that the W680G substitution in subject-pair 16 was

essential for conferring the 4E10-resistant phenotype, we con-

ducted site-directed mutagenesis to revert an infant envelope to

the wild type (G680W). This single mutation increased sensitivity

to 4E10 by .30-fold (IC50 changed from .100 mg/mL to 3 mg/

mL) (data not shown).

We next sought to determine if 4E10-resistance could be

conferred on an unrelated 4E10-sensitive subtype C reference env

(SVPC5) by substitution of the four amino acid MPER cassettes

we identified from subject-pair 16 (residues 677, 680, 683,

and 686) (Figure 4). The K677W680K683I686 (‘‘KWKI’’) and

N677R680Q683L686 (‘‘NRQL’’) cassettes did not alter 4E10

sensitivity. The K677G680Q683I686 (‘‘KGQI’’) cassette reduced

sensitivity to 4E10 by ,5-fold. These data suggest that while

position 680 is necessary for conferring the 4E10-resistant

phenotype, additional changes outside the MPER are also

required. The variations in 4E10 susceptibility in subject 12M’s

Env containing W680R are consistent with a model in which

residues outside the MPER are critical for high-level resistance

mediated by position 680.

Previously published in vitro mutagenesis data showed that a

W680A substitution resulted in a marginal increase in 4E10

resistance at the IC50 level, but greatly increased resistance at the

IC90 [22]. Since the 4E10-resistant Envs from subject-pair 16 also

contained a small hydrophobic substitution (G), we examined the

SVPC5-KGQI mutant for a similar phenotype. We found that it

had an IC90 of .100 mg/mL while the R and W mutants had

much lower IC90s (25.3 mg/mL and 16.17 mg/mL respectively).

We also noted that the difference between IC50 and IC90 for the

KWKI cassette is approximately 6-fold, while the difference

between IC50 and IC90 for both the KGQI and NRQL cassettes is

at least 10–20-fold (Figure 4).

Discussion

In vivo neutralization escape and naturally occurring polymor-

phisms in the MPER region targeted by 3 of the most broadly

neutralizing mAbs (4E10, 2F5 and Z13e1) are extremely rare

[19,20,24,25]. Moreover, a detailed structure of the complete

functional envelope trimer is unknown [32,54,55,56,57], thus

characterization of rare natural variants is an important source of

relevant information on envelope structure/function.

In this study, we examined four subjects with naturally

occurring MPER polymorphisms that confer resistance to mAb

4E10. In three cases, we showed clear evidence that resistance to

4E10 was driven by mutations in the extended epitope sequence

Figure 4. Comparison of wild-type and mutant MPER sequences. Alignment of representative subject sequences containing the 4-residue
MPER cassettes used in mutagenesis study aligned against the same subtype C consensus used in previous tables. The wild-type SVPC5 MPER
sequence and the sequence of all three SVPC5-MPER mutants are also aligned. Residues 677, 680, 683, and 686 have been arbitrarily colored for easy
identification. Residues in grey represent differences between the SVPC5 backbone and the envs described in the study. IC50 and IC90 values for mAb
4E10 are displayed for each Env.
doi:10.1371/journal.pone.0009786.g004
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(position 680), but that residues outside the MPER region were

also essential for conferring the resistant phenotype. Our fourth

case was similar to an env variant previously described [26], from a

child with an anti-MPER neutralizing antibody response.

However, in our subject we observed no changes in the LLP-2

region of envs [26].

When plasma and breast milk samples from subject 16M were

tested for anti-MPER neutralization activity using an HIV-2/

HIV-1 MPER chimera, none was observed. A simple binding

ELISA showed modest reactivity of plasma from 16M against a

MPER peptide, although relatively high binding to controls

slightly weakens these data. We did not observe enhancement of

neutralization titer with this plasma when assayed on cells

expressing FccRI, as had been observed previously for both mAbs

4E10 and 2F5 as well as for plasma containing MPER-reactive

antibodies [51]. There are several possible explanations for these

data. First is the possibility that MPER mutations in this subject

are not driven by an antibody response, and that a significant anti-

MPER activity is not present. Second, it is possible that anti-

MPER antibodies target a complex epitope that includes position

680 but depends on other residues that differ from the HIV-2/

HIV-1 subtype C consensus MPER chimera (residue 676 and/or

683). Third, anti-MPER activity may be present, but dependent

on additional factors (e.g. complement, ADCC) not present in our

in vitro assay systems. We currently favor a model wherein the

targeted epitope is complex and not presented on the chimeric

Env, but is weakly bound on the free peptide. Unfortunately, we

have a very small volume of plasma available, which precludes the

fine epitope mapping and binding-competition experiments

required to resolve these questions.

It is of particular interest that in all cases in which 4E10

resistance was associated with a substitution at position 680, highly

conserved substitutions elsewhere in the MPER were also present.

Substitutions at position 680 were associated with changes at

positions 677 and 683 in both of our subject-pairs, who were

epidemiologically unlinked. While the patterns of substitution were

different for each subject (and likely dependent on env context), our

data suggest a cooperative role for positions 677, 680, and 683 in

some important aspect of MPER function. This hypothesis is

strengthened by the following observations: (1) that either 1 or 2

basic charges were conserved across this region of the MPER in

envs from both subjects, (2) that the charge at position 683 is

.99.9% conserved in subtype C, and (3) that this charge was

absent in our Envs with substitutions at position 680 (which is itself

.99% conserved). Recent structural studies place these amino

acids as three of the four surface-exposed residues in the second

(C-terminal) amphipathic helix of a helix-hinge-helix model of the

MPER interacting with the viral membrane [21,23]. Our data are

consistent with this model, in that hydrophilic or charged

substitutions observed in our Envs occurred at positions identified

as surface-exposed in those studies. Furthermore, changes in 3 of

the 4 surface-exposed residues comprising the second helix (arising

as a consequence of mutations at position 680) suggest the

preservation of an important interaction with either a distal part of

Env or a component of the membrane itself that is required for full

fusion activity.

Our findings also have implications for the mechanism of 4E10

binding. Specifically, in a recently proposed model [21,23], 4E10-

binding to gp41 occurs in a distinct, two-stage docking process,

where the initial critical contact point for the mAb paratope is

position 680, followed by alterations in the MPER secondary

structure. These alterations eventually result in exposure of

residues 672 and 673, which are then bound by the mAb in the

second stage of the docking process. Our data are consistent with

this model of binding, in that substitution of a small, hydrophobic

residue at position 680 (G) had much greater effects on 4E10

binding at both the IC50 and IC90 levels than the substitution of a

large, albeit basically charged, residue (R) at the same position. In

fact, our substitution of a W680G containing cassette (KGQI) into

an unrelated subtype C reference env produced neutralization data

similar to that reported with the substitution of another small

hydrophobic residue (A) for the tryptophan at position 680 [22]. It

has also been recently shown that the fusion inhibitor 5-Helix,

which binds to the C heptad repeat region of gp41 immediately N-

terminal to the MPER, is Kon rate-restricted in it’s neutralizing

activity, such that Kon is a more dominant factor then equilibrium

binding affinity [58]. We speculate that perhaps kinetic differences

in MPER exposure between our resistant isolates and the SVPC5

reference Env may be responsible for the different effects of the

described MPER substitutions on neutralization sensitivity.

These 680 mutations may also play a role in mediating

sensitivity to T20, which binds to a fusion intermediate in gp41.

While we observed a trend which did not reach statistical

significance, a qualitative comparison of data from our primary

isolates, and a JR2 mutant previously described, suggests a possible

role for position 680 in mediating exposure of the heptad-repeat

regions during the fusion process. This could come about through

changes in tertiary/quaternary structure, as well as alterations in

fusion kinetics. More detailed structural/functional studies will be

necessary to test this hypothesis.

Several different models of the gp41 MSD have been proposed:

the ‘classic’ model with a 25 residue MSD (683–707 HXB2

numbering) and a ‘snorkeling’ model with a 12 residue core

between 683–696 (HXB2 numbering) which exposes the charged

side-chains of residues K683 and R696 to the polar head groups of

the lipid bilayer [53,59]. Many of our gp41s have an exceedingly

rare neutral substitution (K683Q), tied to the identity of residue

680. It has also been suggested that residues 679 to 683 of gp41

represent a cholesterol recognition/interaction amino acid con-

sensus (CRAC) motif and that mutagenesis of this motif affects

fusogenicity in a manner primarily dependent on the ability of the

mutant Envs to bind cholesterol [60,61]. In a recent study of in vitro

generated MPER mutants, a W680G substitution was found to

have the smallest negative impact on Env fusogenicity [60]. This is

one possible explanation for why the W680G mutation was

favored in subject 16M at the early time point and why it was

transmitted. Data from this study also indicated that non-CRAC

sequences, if they retained sufficient cholesterol binding activity,

could also facilitate fusion [60]. Of the seven major MPER

sequence variants we identified in subject-pairs 12 and 16, four of

them had substitutions at position 683 that eliminated the CRAC

motif (K683Q), yet were functional and represented significant

portions of those subject’s quasi-species. We did not examine these

MPER peptides for cholesterol-binding activity, but such exper-

iments would prove useful in further defining the functional

requirements for this region of gp41. Taken together, these data all

suggest a functionally critical interaction between the MPER and

the MSD (likely including distal portions of Env) and potentially

tied to stabilization of gp41 within the viral membrane during the

fusion process.

In summary, we have described four subjects (three mothers and

one of their infants) with HIV envelopes highly resistant to mAb

4E10 as a result of rare polymorphisms in the MPER (substitution

frequencies of 0.07%–0.43% per site). The high frequency of

MPER polymorphisms in our cohort is remarkable compared to

other studies [19,20,24,25]. It is interesting to speculate that this

may be due to pregnancy-induced changes in B cell biology.

Notably, the only other naturally 4E10 resistant variant was in a
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perinatally infected child [26] and envelopes from 3/10 pregnant

Kenyan women were resistant to 4E10 but no genetic basis for this

resistance was documented [27].

In one case, the virus was fit enough to transmit, indicating that

these mutations are not associated with an insurmountable fitness

cost. However, the dominant W680G variant in this subject almost

completely disappeared three years later, suggesting that whatever

pressure selected for this variant was transitory in nature. We have

also shown that the resistant phenotype seen with position 680

mutations requires the participation of residues outside the MPER,

as well as compensatory changes within the MPER itself. These

findings have important implications for vaccine targeting of the

MPER region. Additionally, these isolates provide useful tools for

probing the structure-function relationship of the envelope

protein.
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