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Random synaptic feedback weights support error
backpropagation for deep learning
Timothy P. Lillicrap1,2, Daniel Cownden3, Douglas B. Tweed4,5 & Colin J. Akerman1

The brain processes information through multiple layers of neurons. This deep architecture is

representationally powerful, but complicates learning because it is difficult to identify the

responsible neurons when a mistake is made. In machine learning, the backpropagation

algorithm assigns blame by multiplying error signals with all the synaptic weights on each

neuron’s axon and further downstream. However, this involves a precise, symmetric backward

connectivity pattern, which is thought to be impossible in the brain. Here we demonstrate

that this strong architectural constraint is not required for effective error propagation.

We present a surprisingly simple mechanism that assigns blame by multiplying errors by

even random synaptic weights. This mechanism can transmit teaching signals across multiple

layers of neurons and performs as effectively as backpropagation on a variety of tasks.

Our results help reopen questions about how the brain could use error signals and dispel

long-held assumptions about algorithmic constraints on learning.
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N
etworks in the brain compute via multiple layers of
interconnected neurons. During learning, these neurons
are believed to adjust their synapses so that the network’s

outputs become more appropriate for its tasks. In many cases,
learning is thought to utilize error signals, such as those
that result from mismatches between expected and actual
perceptions, or between intended and realized motor
behaviours1–8. This requires mechanisms that can adjust the
weights of synapses earlier in a network (for example, the
synapse between xi and hj in Fig. 1a) on the basis of downstream
errors (for example, e in Fig. 1a).

Naive learning rules could adjust synapses deep within a
network based on the correlations between a scalar error signal
and the neuronal activity9. However, the performance of such
learning rules slows significantly as the size of a network
grows10,11. The reason for this is that as the number of neurons
in a network increases, so does the variance in estimates of a
neuron’s contribution to the error12. More powerful learning
rules could send specific teaching signals to a neuron based
on how that neuron contributed to the error13. In artificial
intelligence an algorithm called backpropagation of error
(backprop) is used to assign error on a neuron-by-neuron
basis14 (Fig. 1a). Backprop works well in real-world applications,
underlies recent advances in reinforcement and unsupervised
learning15–17, and can account for cell responses in some areas
of cortex18–20. But, for a variety of reasons, it has been difficult
to imagine how a learning algorithm such as backprop could
be implemented by neural circuits in the brain21,22.

One of the most significant issues is that backprop requires that
the downstream errors are fed back to upstream neurons via
an exact, symmetric copy of the downstream synaptic weight
matrix11,13,21–27. More precisely, backprop multiplies error
signals e by the weight matrix WT, which is the transpose of
the forward synaptic connections, W (Fig.1b). This issue was
described in detail by Grossberg, who named it the weight
transport problem22. The name arises from the fact that for
each neuron, information about downstream synaptic weights
must be ‘transported’ to make optimal updates to the neurons
incoming (forward) synaptic weights. Backprop requires each
neuron hidden deep within the network to have precise
knowledge of all of its downstream synapses, since the error
signal arriving at a hidden unit must be multiplied by the
strength of that neuron’s forward synaptic connections to the
source of the error. Weight transport was also identified as a
major problem by Zipser and Rumelhart24, and their concerns
were echoed by Crick21 who noted that, when taken at face value,
backprop seems to require rapid information transfer back along
axons from each of its synaptic outputs.

A number of studies have suggested potential solutions to the
weight transport problem. Indeed, encouraged by initial
empirical observations, several theoretical studies examined
the possibility that backprop might in fact be implemented via
the retrograde transmission of information along axons28.
However, further empirical work has shown that retrograde
transport operates on timescales that are orders of magnitude
slower than forward propagating neural activity, making
it fundamentally unable to support backprop-like learning26.
As an alternative to sending error information antidromically,
it have been suggested that errors could instead be fed back
through a second network4,21,23–25,29–32. However, most of these
approaches either assume that forward and feedback connections
are symmetric, or they propose more intricate learning rules for
the backward weights that maintain precise symmetry. These
approaches to the weight transport problem have helped to
perpetuate the view that to achieve backprop-like learning
performance, the brain would have to exhibit precise symmetric

connectivity between upstream and downstream neurons. And
whilst the brain does exhibit widespread reciprocal connectivity
that would be consistent with the transfer of error information
across layers, it is not believed to exhibit such precise patterns of
reciprocal connectivity21.

Here we have re-examined the conditions under which a
network can exhibit backprop-like learning. We find that
the precise symmetric connectivity between connected layers
assumed by backprop is simply not required to obtain quick
learning. Surprisingly, we show that even fixed, random
connectivity patterns can suffice. Without adjusting any
feedback connections, we show that implicit dynamics in the
standard forward weight updates encourage a soft alignment
between the forward and backward weights, allowing effective
flow of neuron-by-neuron error signals across multiple layers.
This simple mechanism avoids all transport of synaptic weight
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Figure 1 | Random feedback weights can deliver useful teaching signals.

(a) The backprop learning algorithm requires that neurons know each others’

synaptic weights, for example, the three coloured synapses on the feedback

cell at the bottom must have weights equal to those of the corresponding

coloured synapses in the forward path. (b) Backprop computes teaching, or

modulator, vectors by multiplying the error vector e by the transpose of the

forward weight matrix W, that is, dBP¼WTe. (c) Our feedback alignment

method replaces WT with a matrix of fixed random weights, B, so that

dFA¼ Be. Thus, each neuron in the hidden layer receives a random projection

of the error vector. (d) Potential synaptic circuitry underlying feedback

alignment, shown for a single hidden unit (matrix superscripts denote single

synapses, see main text for further explanation). This diagram is provide for

illustrative purposes. There are many possible configurations that could

support learning with feedback alignment, or algorithms like it, and it is this

structural flexibility that we believe is important.
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information and does so despite achieving only a modest
symmetry in reciprocal connectivity. Of course, these observa-
tions are compatible with the possibility that the brain makes use
of more intricate architectures, or more complex algorithms. Our
results also leave open many questions about how the brain might
implement fast error-driven learning. Importantly however, they
reveal much lower architectural constraints on what is required
for effective error propagation across multiple layers of neurons.

Results
Random feedback weights can deliver useful teaching signals.
A fundamental question in neuroscience is how upstream
synapses (for example, the synapses between xi and hj in Fig. 1a)
might be adjusted on the basis of downstream errors
(for example, e in Fig. 1a). The learning algorithm backprop
computes gradients of the performance, that is, the loss, for each
of the synapses in the network and uses these gradients to update
the synaptic weights. Specifically, backprop computes feedback
by multiplying error signals e by the weight matrix WT, which is
the transpose of the forward synaptic connections W. This means
that feedback neurons would somehow have to know all the
synaptic weights W in the forward pathway. Here we describe a
new deep learning algorithm that is fast and accurate, like
backprop, but much simpler as it avoids all transport of synaptic
weight information. Our aim is to describe this novel algorithm
and its potential relevance in as simple a form as possible,
meaning that we overlook aspects of neurophysiology that will
ultimately be relevant for a complete view of error-driven
learning in the brain.

Our algorithm is based on three insights: (i) the feedback
weights need not be exactly WT. In fact, any matrix B will suffice,
so long as on average, eTWBe40, where e is the error in the
network’s output (Fig. 1a). Geometrically, this means the teaching
signal sent by the matrix, Be, lies within 90� of the signal used by
backprop, WTe, that is, B pushes the network in roughly the
same direction as backprop would. To learn with any speed
though, we need better agreement between B and WT. (ii) To that
end, the network could evolve to bring B and WT into alignment.
The obvious option is to adjust B, but (iii) another possibility is to
do the same by adjusting W. We will show this can be achieved
very simply, even with a fixed, random B (Fig. 1c). Indeed, our
simulations suggest that this is a minimal requirement and that
there may be many ways to achieve the same effects.

For clarity, we first considered a three-layer network of
linear neurons. The network’s output is y¼Wh, where h is the
hidden-unit activity vector, given by h¼W0x, where x is
the input to the network. W0 is the matrix of synaptic weights

from x to h, and W is the weights from h to y. The network learns
to approximate a linear function, T (for ‘target’). Its goal is
to reduce the squared error, or loss, L ¼ 1

2 eTe, where the
error e¼ y�–y¼Tx� y. To train this network, backprop
would adjust all the weights down the gradient of the loss,
that is, DW / @L=@W ¼ � ehT, and DW0 / @L=W0 ¼
ð@L=@hÞð@h=@W0Þ ¼ �WTexT. Our new algorithm adjusts W
in the same way as backprop, but for W0 it uses a simpler
formula, which needs no information about W or any other
synapses but instead sends e through a fixed random matrix B

DW0 / BexT; ð1Þ
We call this algorithm feedback alignment. To illustrate the

algorithm’s performance, we describe an abstract version of a
simple circuit that can learn via feedback alignment. Equation (1)
implies that the error vector e is carried via a set of axons that
pass through an array B of synapses to yield the vector, Be. We
will also refer to the vector Be as d, or the modulator signal,
because axon branches carrying d contact hidden-layer neurons
to modulate their learning (Fig. 1d). For instance, neuron j
receives the signal dj (the j-th element of d), and the weight
change in synapse i onto neuron j is proportional to the product
of dj and the input xi to that synapse (and a simple function of the
activity of the output neuron in the nonlinear case, see below).
Therefore, the mechanism can require as few as one modulator
signal per learning cell, which influences plasticity at its incoming
forward synapses. In the simple models that we examine, the
delivered dFA signal does not impact the forward pass
post-synaptic activity, but instead acts to alter plasticity at the
forward synapses. There are various ways that such a
decoupling of forward and backward activity might occur
in the brain, including via inputs that arrive at different times
or to different subcellular compartments33–36, or via different
types of synapse37,38. More complex models may involve forward
and backward pathways that interact via the post-synaptic
voltage, possibly to allow inference and learning processes to
interact (see Discussion).

We will first demonstrate that this circuit learns by
encouraging a soft alignment of W with BT and then discuss
why it works. Four learning algorithms were compared on a
function-fitting task using a linear three-layer network
(Fig. 2a; see Methods, Supplementary Note 1 and
Supplementary Figs 1–4). With shallow learning, only the output
weights, W, are adjusted, and the result is that the loss hardly
decreases. With a fast form of reinforcement learning that
delivers the same reward to each neuron, both W0 and W are
adjusted, but the learning is slow. In contrast, backprop sends the
loss rapidly towards zero. Remarkably, feedback alignment does
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the same and just as quickly. To explore why, we plot the
angle between the modulator vector prescribed by feedback
alignment, dFA¼Be, and the one prescribed by backprop,
dBP¼WTe (Fig. 2b). Initially the angle is B90�. However, the
angle soon shrinks because, even though it is fixed, B starts acting
like WT. In this way, the random feedback weights B come to
transmit useful teaching signals. Notably, although the angle
decreases, it never reaches zero. This highlights that even when
the angle is non-zero, feedback alignment can still obtain similar
levels of performance to backprop. Thus, it is not the case that
error feedback must happen via precise, symmetric backward
connectivity.

Feedback alignment learns under a variety of conditions.
Having examined a simple linear problem, we wanted to test
whether feedback alignment could also work with nonlinear
neurons in which synaptic changes depend on the post-synaptic
neuron’s activity, as well as on the pre-synaptic activity and
modulator signal. In this case, a hidden unit with output hj

and sigmoid nonlinearity will update its incoming synaptic
weights by the three-factor formula DWij

0 ¼ djxih0j, where h0j is a
simple function of the post-synaptic activity (see Methods).
Nonlinear feedback alignment was tested on a benchmark
problem of learning to recognize handwritten digits (Fig. 3a;
see Methods). On this task, backprop brings the mean error on
the test set to 2.4%, averaged over 20 runs. Feedback alignment
learns just as quickly, achieving 2.1% mean error, and
develops similar feature detectors (Supplementary Fig. 5). In these
nonlinear experiments the modulator signals dFA and dBP also
quickly align and remain stable over time (Fig. 3b). Even when
we randomly remove 50% of the elements of the W and B
matrices, so that neurons in h and y have a 25% chance of

reciprocal connection, feedback alignment still matches backprop
(2.4% mean error; n¼ 20; Supplementary Fig. 5). These tests
support the conclusions from the simple linear case, and
show that feedback alignment is robust in the case of
nonlinearities and can function effectively with categorical errors,
as well as with regression errors.

Processing in the brain often involves more than three layers of
neurons and theoretical studies have shown that these deeper
networks are better at many learning tasks39. Our experiments
in deeper networks reveal that feedback alignment can train
deep networks by sending d signals to multiple hidden layers.
In a four-layer network for instance, axons carrying the error
vector e pass through synapses B2 to yield d2¼B2e (Fig. 3c).
Axons carrying d2 send branches to cells of hidden layer 2 to
modulate their learning, and also pass through weight array, B1,
to yield d1¼B1d2. Tested on a function fitting task with a
four-layer network, feedback alignment performed as well as
backprop (Fig. 3d). And both feedback alignment (t-test, n¼ 20,
P¼ 9� 10� 13) and backprop (P¼ 3� 10� 12) delivered better
performance with a four-layer network than with a three-layer
network. Control experiments in which we froze the first
layer of weights, W0, confirmed that feedback alignment takes
advantage of depth by making effective weight updates in the
deeper layers (Supplementary Notes 2 and 3 and Supplementary
Fig. 6). Thus, feedback alignment, like backprop, can exploit the
power of deeper networks.

So far we have shown that feedback alignment can operate in
relatively small, simple networks. Next, we were interested
in testing whether feedback alignment’s operation can apply in
more complex settings, such as in larger networks with neurons
that integrate their activity over time and spike stochastically, and
where the forward and feedback pathways operate synchronously.
We therefore applied feedback alignment once again to the
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MNIST data set, but this time in a network with three hidden
layers, each comprised of 1,500 stochastic binary units whose
integration window for synaptic inputs had a time constant of
0.9 (Fig. 4; see Methods). This network uses feedback alignment
to learn to effectively classify handwritten digits (1.8% final error
on the test set). To highlight the changes in network dynamics
over the course of learning, we plotted a post-synaptic potential
(PSP) of a forward neuron and that same neuron’s modulatory
signal, which is driven by the feedback dj (Fig. 4). Both variables
evolve simultaneously, with no pauses or alternation, and the
modulatory signal sculpts ongoing plasticity in a manner that
depends on the pre- and post-synaptic activity of the neuron.
The model incorporates only a small subset of the complexities
found in real neural circuits; for example, it does not incorporate
fixed spike thresholds or refractory periods. Nevertheless, it
demonstrates that feedback alignment is still robust and able to
implicitly adapt to random feedback in a more complex setting,
where the forward and backward pathways both operate
continuously. Therefore, the fact that feedback alignment relaxes
the constraints on the connectivity patterns required for effective
error propagation is evident even in more complex settings. The
new mechanism also works to train deeper and wider networks,
and on more difficult tasks, such as the Google SVHN data set
(Supplementary Notes 2–9 and Supplementary Figs 7 and 8).

Insight into the mechanics of feedback alignment. For insight
into how feedback alignment operates, we returned to the
observation that the modulator signals prescribed by feedback
alignment come to resemble those prescribed by backprop
(Figs 2 and 3). This process is central to feedback alignment’s
effectiveness and it occurs because the weight matrices in the
forward pathway evolve to align with those in the feedback
pathway (Fig. 5a and Supplementary Fig. 9). But why do they
evolve this way? Under certain conditions it is possible to prove
that feedback alignment will lead to the convergence of error to a
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minimum, although these formal results provide limited intuition
into how feedback alignment works (Supplementary Notes 10–16
and Supplementary Figs 10–14). We gained more insight about
how the algorithm functions from some simple observations.
To begin, note that while B and W do not directly communicate,
it is still possible for B to influence the development of W in
the course of learning (Fig. 5a). From equation (1), we have
DW0 p BexT, which means that information about B
accumulates in W0. This information then passes into W by its
own learning rule, DW p ehT¼ exTW0

T. In short, information
about B flows into W0, altering W0 so that it pushes W into
alignment with BT (Fig. 5b).

This process becomes visible when we artificially break the
learning into phases (Fig. 5c), wherein: (1) W0 is adjusted while
W is kept frozen; (2) W is adjusted while W0 is kept frozen;
and (3) W0 is once again adjusted, with W kept frozen.
After information in B has travelled via W0 into W in the first
two phases, learning in the hidden layer now becomes effective,
driven by errors propagated through B (Fig. 5c). It is possible to
develop a more detailed argument for these intuitions and why
W tends to align with BT (Supplementary Notes 12 and
Supplementary Figs 11 and 12). Indeed, additional experiments
and analytic results suggested that feedback alignment may
actually encourage W to align with the Moore–Penrose
pseudoinverse of B (Supplementary Notes 13 and 14 and
Supplementary Fig. 13)—a matrix that can be shown to
be at least as useful as the transpose for conveying
error (Supplementary Note 15). Taken together, whilst these
observations do not provide a full account of how feedback
alignment operates, they support the central implications for
architectural constraints. What is crucial for effective error
transmission is approximate functional symmetry. That is, B only
needs to act like WT, and feedback alignment demonstrates that
this requirement is almost trivial to meet.

Discussion
The most effective forms of learning in large networks of neurons
rely on mechanisms that adjust synaptic weights according to
errors that are detected further downstream14,39. In re-examining
the conditions under which neural networks can exhibit such
forms of deep learning, we have identified a new algorithm that we
call feedback alignment. We show that in its simplest form,
feedback alignment is able to make use of fixed, random
connectivity patterns to update synaptic weights throughout a
network. To our surprise, even with such minimal constraints on
connectivity patterns, feedback alignment can achieve learning
performances that are comparable to the backpropagation of error
algorithm. Critically, this demonstrates that the kind of precise
symmetric connectivity between layers of neurons that is required
by backprop, is not essential to achieve effective transmission of
errors across layers. In characterizing the performance of feedback
alignment, we first demonstrated that the algorithm is effective in
using error signals to update synaptic weights in simple linear and
nonlinear networks. We then showed that feedback alignment is
also effective in larger networks that incorporate multiple hidden
layers and in networks that exhibit sparse connectivity or
impose more realistic constraints on how activity is represented.
Finally, our investigations into how feedback alignment
works suggest that the algorithm’s power relies on the fact that
the weight matrices of the forward going synapses evolve to align
approximately with those in the feedback pathway. Taken together,
our study reveals much lower architectural constraints on what is
required for error propagation across layers of neurons and thus
provides insights into how neural circuits might support fast
learning in large deep networks.

Feedback alignment offers a surprising and simple solution to
the problem of synaptic ‘weight transport’. As with many forms
of learning that have been proposed to occur in the brain, it
makes use of the idea that teaching signals could be carried
by reciprocal connections7,21,24,25,29,40. However, in the case
of feedback alignment we have shown that this does not depend
on detailed symmetric reciprocal connectivity, and yet it is still
able to train large networks quickly. There are, of course, many
outstanding questions regarding how the brain could utilize
learning processes that rely on error propagation to adapt
upstream synaptic connections in a network21,22. This includes
how exactly the brain computes and represents errors, and how
the feedforward and feedback pathways might interact with one
another. These issues are relevant for understanding any form of
supervised learning and are not unique to the algorithm we
describe. Nevertheless, these questions are important when
considering the potential biological context for feedback
alignment or future, related algorithms. In terms of error, an
important question has been where the brain obtains labelled data
for training a supervised system. A key insight has been that
rather than requiring an external teacher, errors can result from
mismatches between expected and actual perceptions, or between
intended and realized motor consequences4,30,40. For example, it
is possible to derive teaching signals from sensory input by trying
to predict one modality from another, by trying to predict the
next term in a temporal sequence40,41 or by trying to encode and
reconstruct sensory information42,43. These processes can be
thought of as supervised tasks, with the sensory activity
itself playing the role of the teacher7,40,43,44. Indeed,
experimental data from a range of systems have shown
that neuronal populations represent prediction mismatch
and motor errors in their activity1–3,5–8,45–48.

As with other forms of hierarchical learning, an important
question is how feedforward and feedback pathways interact with
one another in the brain. It is well established that there are
extensive feedback pathways that carry information from ‘higher’
areas to ‘lower’ sensory areas and these connections have been
shown to modulate the tuning properties and therefore the
activity of neurons in lower areas49,50. It therefore seems likely
(perhaps inevitable) that this top-down modulation of neuronal
activity will impact the learning that goes on in the lower area
neuron’s synapses. Indeed, recent work has demonstrated
that learning in sensorimotor tasks alters representations in
earlier cortical areas51. For higher layers to deliver error
information that could enable lower layers to make useful
changes to their synaptic weights, neurons in the lower layers
should, at least in part, be able to differentiate a top-down error
signal from activity originating in the forward pathway.
Thus, a prediction is that one of the functions of the
backward pathway is to ultimately modulate plasticity
processes at the synapses of a neuron in the forward pathway.
In this regard, it is interesting that experimental evidence has
shown that various ‘third-factors’ can modulate the magnitude
and sign of synaptic plasticity mechanisms. Depolarizing inputs
arriving at specific times and/or subcellular compartments33–35,
neuromodulators52,53 and different types of synapse37,38 can all
regulate plasticity resulting from the pairing of pre- and post-
synaptic activity. For example, Sjöström et al.33 demonstrated
that Hebbian learning protocols that result in long-term
potentiation at neocortical synapses can be altered to result in
long-term depression if they occur simultaneously with local,
subthreshold depolarizing inputs into the post-synaptic
dendrite33,35. And more recently, an empirically grounded
learning mechanism has been proposed in which forward
and teaching signals are delivered concurrently into dendritic
and somatic compartments, respectively36.
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These observations suggest that there are a variety of plasticity
mechanisms that would enable feedforward and feedback
pathways to interact during learning. Indeed, any task-driven
learning will require mechanisms that serve to modulate ongoing
plasticity. Reinforcement learning, for example, requires the
delivery of a global signal that can be thought of as a widespread
third factor for regulating ongoing synaptic plasticity10,11. At the
other end of the spectrum, a learning algorithm such as backprop
would require a much more highly orchestrated computation and
delivery of third factors to individual neurons in the hidden
layer. By contrast, feedback alignment represents a surprising
middle ground, in that it has many of the performance
advantages of backprop, but it markedly reduces the complexity
of the machinery for computing and delivering third factors:
the modulatory signals in feedback alignment can be delivered via
random connections by one or many neurons in the backward
pathway, to one or many neurons in hidden layers, and the
modulatory signals are themselves computed on the basis of
random connections in the backward pathway.

Nevertheless, there remains many questions about how the
brain uses error signals that are passed across multiple layers of
neurons. For example, in our simplified models (for example,
Fig. 2), error signals modulate the synaptic strengths of
feedforward connections without affecting the post-synaptic
activities. Whilst various third factors could play a role
in delivering error signals without significantly altering activity
in the forward path (see above), it seems more likely that
feedback in real neuronal circuits will influence the post-synaptic
activity in lower layers. Feedback alignment uses top-down
connections to make small and gradual adjustments to the
synaptic weights so that future data are processed in a more
optimal manner. On a much faster timescale however, the
same top-down connections are likely to be important for
improving inference on the current inputs (that is, hidden
variable estimation). A challenge for future work therefore, is
to understand how top-down connections can be used to
simultaneously support inference and learning15,40. A related
question for the field is how error signals from higher layers can
be integrated with bottom-up, unsupervised learning rules43,54.

A key insight from machine learning work is that the most
powerful learning algorithms use some form of error propagation
for gradient estimation, and that without gradient-based
algorithms such as backprop, learning remains intractably slow
for difficult problems. Recent advances in supervised learning
have achieved state-of-the-art and even human-level performance
by training deep networks on large data sets by applying variants
of the backprop algorithm55,56. The most effective forms of
reinforcement and unsupervised learning also rely on the ability
to transmit detailed error information across multiple layers of
neurons15,16. Recently, reinforcement learning has been used to
achieve impressive results using simple temporal-difference error
signals, but these results hinge crucially on backpropagation.
These reinforcement signals are not delivered as a global
modulatory signal, but are carefully backpropagated through
the deep network that supports behaviour16. Unsupervised
learning algorithms that obtain state-of-the-art results also rely
on backprop, such as variational auto-encoders and networks that
predict perceptual information in a sequence15,17.

Whilst theoretical, these advances in machine learning provide
a context in which to examine different learning processes in
the brain. In particular, they strengthen the case for looking
beyond naive learning rules that broadcast the same global scalar
summary of error to every neuron. Such rules are, on their
own, likely too slow for training very large deep networks to
perform difficult tasks. In this context it is again useful to think of
feedback alignment as one of many algorithms that lie on a

‘spectrum’ between naive global updates and precise gradient-
based updates. An interesting point on this spectrum is work
showing that reinforcement learning on binary decision tasks can
be sped up if, in addition to a global scalar reward, each neuron
also receives information about the population decision11. An
earlier study examined using asymmetric weights in the context
of simple classification tasks solved via attention-gated
reinforcement learning32, although this approach still made use
of a global scalar reward. Moving a little closer to backprop,
feedback alignment is extremely simple and makes few demands
on connectivity, and yet it quickly learns to deliver useful
estimates of the gradient tailored to individual neurons. Indeed, it
is reasonable to suppose that there is a large family of algorithms
that the brain might exploit to speed up learning by passing
expectation or error information between layers of neurons.
Although we have found that random feedback connections are
remarkably good at conveying detailed error signals, we anticipate
future algorithms that will better capture the details of neural
circuits and incorporate different mechanisms for delivering
effective teaching signals. Indeed, recent work presents further
evidence that weight symmetry is not crucial for effective error
propagation57 (Supplementary Notes 2–9). These experiments
highlight the importance of the signs of the delivered gradients
and that error propagation via asymmetric connections can be
improved by techniques such as batch normalization58.

Our results also hint that more complex algorithms could
benefit from the implicit dynamics inherent in feedback
alignment, which naturally drive forward synapses into alignment
with the backward matrices. For example, these dynamics may
work well with architectures or circuits in which B is adjusted as
well as W, to further encourage functional alignment between
W and B (perhaps by training the backward weights to reproduce
the activity of the layer below, as in layer-wise autoencoder
training with untied weights). Finally, deep learning innovations
may provide insight into other questions that have surrounded
the implementation of learning in the brain. For example, while
backprop is usually applied in artificial networks that transmit
information using continuous rather than discrete stochastic
values, recent developments in machine learning suggest roles for
‘spiking’ activities. Not only can backprop-like mechanisms
work well in the context of discrete stochastic variables59,
random transmission of activities also forms the basis of
powerful regularization schemes like ‘dropout’56. These recent
insights into learning in large, multi-layer networks provide a
rich context for further exploring the potential for feedback
alignment and related algorithms, which may help explain fast
and powerful learning mechanisms in the brain.

The issue of how the brain might propagate detailed error
signals from one region to another is a fundamental question in
neuroscience. Recent theories of brain function have suggested
that cortex uses hierarchical message passing wherein both
predictions and prediction errors are communicated between
layers, or areas, of cortex40,44. And recent experimental work
has shown that high-level visual response properties in cortex are
significantly better explained by models that are optimized
by transmitting errors back across many layers of neurons60, than
by models that are trained via layer-wise unsupervised learning.
In the 1980s, new learning algorithms promised to provide
insight into brain function14,21. But the most powerful of these
(that is, learning by backpropagation of error) has seemed
difficult to imagine implementing in the brain21,22. There are a
number of questions about how neural circuits might implement
error propagation, but one of the most central and enduring
issues concerns the constraints on connectivity patterns between
layers—that is, because backprop requires weight transport to
tailor error signals for each neuron in a network21,22,24. Our
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observations and experimental results dispel the central
assumptions implicit in the statement of the weight transport
problem. Instead, we demonstrate that the constraints on the
connectivity required to support effective error transport are
much less demanding than previously supposed. Starting with
random feedback, standard update rules quickly push the forward
pathway into a soft alignment with the fixed feedback pathway,
allowing relevant error information to flow. Taken together
with recent theoretical and empirical advances, our work
supports revisiting the idea of backprop-like learning in the
brain and may provide insights into how neural circuits could
implement fast learning in large deep networks.

Methods
Summary. In the simulations in Fig. 2, a 30-20-10 linear network was trained by
backprop, feedback alignment or a fast form of reinforcement learning called node
perturbation12,61. All algorithms trained on the same sequence of input/output pairs,
with x � Nðm ¼ 0;� ¼ IÞ; y� ¼ Tx. The larger, nonlinear networks in Figs 3a,b
and 4 were trained with 60,000 images from the MNIST data set, and tested on a
held-aside set of 10,000 images. In Fig. 3d, a 30-20-10 and a 30-20-10-10 network
learned to approximate the output of a 30-20-10-10 target network, using
backprop or feedback alignment. All three networks had tanh(?) hidden units and
linear output units. Both algorithms were trained on the same examples, with
x � Nðm ¼ 0;� ¼ IÞ; y� ¼W2tanhðW1tanhðW0xþ b0Þþ b1Þþ b2. In Fig. 5, a
20-1000-20 network with tanh(?) hidden units and linear output units learned to
match a quadratic target function. Comparing the performance of different learning
algorithms is notoriously tricky39,62. To keep things simple and avoid favouring our
own method, we used fixed learning rates and chose hyperparameters to optimize
backprop, as described below. An earlier version of this work appeared on arXiv.org63.

Linear function approximation. In the networks of Fig. 2a,b the target linear
function T mapped vectors from a 30- to a 10-dimensional space. The elements of
T were drawn at random, that is, uniformly from the range [� 1,1]. Once chosen,
the target matrix was fixed, so that each algorithm tried to learn the same function.
Output weights were adjusted via DW p ehT for all three algorithms.
Hidden weights were adjusted according to (a) backprop, DW0 p dBPxT, where
dBP¼WTe; (b) feedback alignment, DW0 p dFAxT, where dFA¼Be with the ele-
ments of B drawn from the uniform distribution over [� 0.5,0.5]; or (c) a fast
variant of reinforcement learning called node perturbation12,61. We chose the
learning rate Z for each algorithm via manual search64 to optimize learning speed.
The elements of the network weight matrices, W0 and W, were initialized by
drawing uniformly from the range [� 0.01,0.01]. For node perturbation
reinforcement learning, we optimized the scale of the perturbation variance12,61 by
manual search64.

Nonlinear networks. In the nonlinear networks of Figs 3a,d,4 and 5a,c, synaptic
change depended on the post-synaptic cell’s activity. For instance, a hidden unit with
output hj and sigmoid nonlinearity will update its incoming synaptic weights by the
three-factor formula DWij

0 ¼ djxi½hjð1� hjÞ�. Here the term hj(1� hj) enters because
it is the derivative of the cell’s sigmoid nonlinearity. Similarly, a hidden unit with
output hj and tanh(?) nonlinearity will update its incoming synaptic weights by the
formula DWij

0 ¼ djxið1� h2
j Þ. Importantly, these derivatives are used only locally:

with feedback alignment, there is no need to transmit the derivatives between cells or
layers; all that is needed is that each cell’s synaptic adjustments depend on its own
activity, in this case hj. Urbanczik and Senn36 have proposed a related three-factor
learning rule and we note that such derivatives are simple positive functions of the
post-synaptic cell’s activity—that is,, the post-synaptic dependence differs from
‘pure’ Hebbian learning only in that it prescribes smaller updates at the extremes of
the cell’s activity. In practice, we have found that rough approximations of this
weighting function work nearly as well as the exact version.

MNIST data set. For both backprop and feedback alignment in Fig. 3a,b, the
output weights were adjusted via DW / e � y0ð ÞhT. Hidden weights were adjusted
according to (a) backprop: DW0 / dBP � h0ð ÞxT, where dBP ¼WT e � y0ð Þ; (b)
feedback alignment: DW0 / dFA � h0ð ÞxT, where dFA¼Be. Here � is element-wise
multiplication and y0 and h0 are the derivatives of the output unit and hidden unit
activations, respectively. We manually optimized the learning parameters to give
good performance with the backprop algorithm. That is, the elements of W0 and W
were drawn from the uniform distribution over [�o,o], where o was selected by
looking at final performance on the test set. We used the standard training and test
sets65 and desired outputs were coded using standard 1-hot representations. We
used a learning rate of, Z¼ 10� 3, and weight decay constant of, a¼ 10� 6. The
same learning parameters were used with feedback alignment. The elements of the
B matrix were drawn from a uniform distribution over [�b,b] with b chosen by
manual search. Empirically, we found that many scale parameters for B worked
well. In practice it required five restarts to select the scale used for B in the

simulations presented here. Once a scale for B was chosen, a new B matrix was
drawn for each of the n¼ 20 simulations. In the experiments where 50% of the
weights in W and B were removed, we drew the remaining elements from the
same uniform distributions as above (that is, using o and b). Learning was
terminated after the same number of iterations for each simulation and for each
algorithm. We selected the termination time by observing when backprop began to
overfit on the test set.

Deep nonlinear function approximation. In Fig. 3d the weights for the target
network, T(?), were chosen at random from a uniform distribution and then fixed
for the corresponding simulations. The output unit updates for both backprop and
feedback alignment were adjusted via DW2 / e � y0ð ÞhT

1 . Hidden unit updates were
adjusted according to (a) backprop: DW1 / d2 � h02

� �
hT

1 , where d2 ¼ WT
2 e � y0ð Þ,

and DW0 / d1 � h01
� �

xT with d1 ¼WT
1 d2 � h02
� �

for the deeper hidden layer.
(b) Feedback alignment: DW1 / d2 � h02

� �
hT

1 , where d2¼B2e, and DW0 p

(d1�h1’)xT with d1¼B1d2 for the deeper hidden layer. We chose a range (� a,a)
with a¼ 0.5 for the uniform distribution from which weights were drawn for the
target network; in this case backprop gained an unambiguous advantage from
having an additional hidden layer. A new set of random forward weights and biases
and feedback weights were chosen for each of the n¼ 20 simulations. The elements
of B1 and B2 were also drawn from a uniform distribution and fixed across
simulations. Learning was terminated after the same number of iterations for each
simulation and for each algorithm.

Quadratic function approximation. In Fig. 5a,c, training pairs were produced by
y�k ¼ xTQkx, for kA{1,y,20}, with the elements of x chosen from a uniform
distribution over [� 2,2]. The parameters for the quadratic target function, that is,
the elements of each Qk, were chosen uniformly at random from the interval
[� 0.5,0.5]. The initial weights and biases, and the elements of the feedback
matrix, were drawn from the uniform distributions with manually selected scale
parameters. Unit updates were as described in the methods for Fig. 3a,b.

Angle measures. Throughout, the angle between two vectors, for example, a,b,
was computed as y ¼ cos� 1ð jj aTb jj =ð jj a jj � jj b jj ÞÞ. When speaking of the
angle between two matrices, we simply ‘flatten’ the matrices into vectors.
In Fig. 5a, we examined the angle between the forward and backward paths for
randomly sampled hidden units. That is, for the jth hidden unit, we measured the
angle between the outgoing forward weights given by the jth column of W, and
incoming feedback weights given by the jth row of B.

Normalized squared error. We used a normalized squared error measure for
regression problems where the units of error are not particularly meaningful. The
loss for each model, in this case the sum of squared errors, was normalized by the
sum of the squared error that one would achieve if using the sample mean as the
model. This is the natural, albeit uncommon, normalization term for the sum of
squared errors loss. The normalization term is thus

1=T
X

t

X
i

ðyiðtÞ��yiÞ2 ð2Þ

¼ 1=T
X

t

X
i

ðyiðtÞÞ2 � 2�yi�yiðtÞþ�y2
i ð3Þ

¼ 1=T
X

t

X
i

ðyiðtÞÞ2 ��y2
i ð4Þ

Here t indexes the batch, T is the length of the batch and i indexes the
dimensions of the output. This measure generates learning curves that are almost
always contained within the range [0,1], except in the case that a model ‘blows up’
and has worse error than when the learning is started.

A deep network that integrates its activity and spikes. As a proof of principle
that feedback alignment can operate in a simple network architecture where for-
ward and backward dynamics are simultaneous, we constructed a network of
neurons that continuously integrate their activity (Fig. 4). In designing this model,
we aimed for a level of detail that conveyed this essential point, while remaining
simple enough to allow large-scale simulations. The consideration of scalability was
particularly relevant as we aimed to demonstrate efficacy in a real-world learning
task. The dynamics of the neural activities and synaptic plasticity operate
simultaneously, but for clarity we describe them separately. Network and plasticity
dynamics are similar in some respects to those developed by Urbanczik and Senn36.
The architecture and operation of the network are diagrammed in the
Supplementary Information (Supplementary Figs 3 and 4).

Neurons in the forward path have the following activity dynamics: the PSP of a
hidden neuron j in layer l, Vl

j , at time t was modelled as

Vl
j ðtÞ ¼ ½1� t�Vl

j ðt� 1Þþ t
X

i

WijðtÞfhðVl� 1
i ðtÞÞ: ð5Þ

Here t is the integration time constant; fh is the binary spiking activity of the
hidden neurons, i, in the preceding layer, l� 1; and Wij(t) is the synaptic strength
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from neurons hl� 1
i to hl

j . The spiking activity, fh, of neuron hj
l at time t is a

Bernoulli random variable determined by a sigmoidal function of its potential;
the neuron spikes, that is, fhðVl

j ðtÞÞ ¼ 1, with probability 1=ð1þ expð�Vl
j ðtÞÞÞ,

and 0 otherwise.
During learning an MNIST image, x(t) was presented to the network for N¼ 5

consecutive time steps before switching to the next image in the training set.
Notably, there was no interruption of the neural activity or plasticity dynamics
during this switch. We interpreted MNIST pixel values (normalized to between 0
and 1) as probabilities of spiking in the input layer of the network. The probability
of a given input neuron spiking was computed directly from the image and
saturated at 0.95. That is, a neuron in the input layer spiked, fh(xj(t))¼ 1,
with probability min[xj(t),0.95]. Thus, inputs to the network varied from time
step to time step.

Neurons in the backward pass had similar dynamics. The PSP of a feedback
neuron j in layer l, Ul

j , at time t was modelled as

Ul
j tð Þ ¼ ½1� t�Ul

j t� 1ð Þþ t
X

k

Bkjfd Ulþ 1
k tð Þ

� �
: ð6Þ

Again t is the integration time constant. Here fd is a simple sigmoidal function
centred on 0, and Bkj is the synaptic strength from neurons dlþ 1

k to dl
j . Thus, the

backward neurons function similarly to climbing fibres in the cerebellum, which
are tonically active, allowing encoding of negative errors: an increase in climbing
fibre firing rate drives LTD at parallel-fibre inputs to purkinje cells, and a decrease
drives LTP37,38.

The potential of a feedback neuron dm
j in the final layer m, which can be

thought of as an error neuron, was:

Um
j ðtÞ ¼ ½1� t�Um

j ðt� 1Þþ t fhðVm
j ðtÞÞ�f�j ðtÞ

� �
: ð7Þ

We used 1,000 output neurons, with 100 neurons associated with each output class
(‘0’–‘9’). Thus, we set f�j ðtÞ ¼ 1 if output neuron hm

j was associated with the class
currently being presented to the network, and f�j ðtÞ ¼ 0 otherwise.

The plasticity at the forward synapses, Wij(t), is ongoing. That is, synaptic
plasticity occurs at every time step and is a function of three factors: (i) the
pre-synaptic activity, fhðVl� 1

i ðtÞÞ; (ii) the post-synaptic activities, fhðVl
j ðtÞÞ;

and (iii) a modulatory third factor delivered by neurons in the feedback path,
fdðUl

j ðtÞÞ:

DWijðtÞ / fdðUl
j ðtÞÞ � fhðVl� 1

i ðtÞÞ �ChðVl
j ðtÞÞ: ð8Þ

Where, Ch(?) is a simple positive weighting function of the post-synaptic
voltage—the derivative of the logistic function, which is used only local to the
post-synaptic neuron. Urbanczik and Senn36 have suggested a related three-factor
learning rule, and our pre- and post-synaptic terms are analogous. But in their
model, desired outputs are delivered to the somatic compartment and the error
term is computed locally by a neuron as the difference between somatic spiking and
a prediction made by the dendritic compartment.

The dynamics during testing were identical except that synaptic plasticity was
arrested. Performance was evaluated as the number of correct guesses on the
standard test set. A guess was generated by choosing the output class with highest
activity, that is, the fhðVm

j ðtÞÞ summed over the groups of neurons associated with
each output class, after M¼ 5 time steps of exposure to a test image. The forward
and backward matrices were initialized randomly by drawing from the uniform
distribution over [� 0.05,0.05] and [� 0.1,0.1], respectively. We used a fast time
constant of t¼ 0.9 to permit quick simulation of the model during training. We
used a standard weight decay term of g¼ 10� 8 for all forward weights and biases,
and a constant learning rate of Z¼ 10� 3.

Programming. All learning experiments were run using custom built code in
Python with the Numpy library. MNIST experiments were sped up using a GPU
card with the Cudamat and Gnumpy libraries66,67.

Data availability. The data sets used by this study are publicly available. Code is
available from the corresponding authors on request.
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