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Abstract: Oxidative stress is important in the pathophysiology of obesity, altering regulatory factors of
mitochondrial activity, modifying the concentration of inflammation mediators associated with a large
number and size of adipocytes, promoting lipogenesis, stimulating differentiation of preadipocytes
to mature adipocytes, and regulating the energy balance in hypothalamic neurons that control
appetite. This review discusses the participation of oxidative stress in obesity and the important
groups of compounds found in plants with antioxidant properties, which include (a) polyphenols
such as phenolic acids, stilbenes, flavonoids (flavonols, flavanols, anthocyanins, flavanones, flavones,
flavanonols, and isoflavones), and curcuminoids (b) carotenoids, (c) capsaicinoids and casinoids, (d)
isothiocyanates, (e) catechins, and (f) vitamins. Examples are analyzed, such as resveratrol, quercetin,
curcumin, ferulic acid, phloretin, green tea, Hibiscus Sabdariffa, and garlic. The antioxidant activities
of these compounds depend on their activities as reactive oxygen species (ROS) scavengers and on
their capacity to prevent the activation of NF-κB (nuclear factor κ-light-chain-enhancer of activated
B cells), and reduce the expression of target genes, including those participating in inflammation.
We conclude that natural compounds have therapeutic potential for diseases mediated by oxidative
stress, particularly obesity. Controlled and well-designed clinical trials are still necessary to better
know the effects of these compounds.
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1. Introduction

Obesity is a complex disease having an important public health impact worldwide, and
its prevalence is increasing [1]. It is the result of an individual complex interaction of factors,
including genetic predisposition, diet, metabolism, and physical activity [1]. It is related
to several severe complications, such as metabolic syndrome, type 2 diabetes mellitus,
cardiovascular dysfunction (CVD), and hypertension [1]. Reactive oxygen species (ROS) are
a by-product of metabolism, and they play an important role in the development of obesity
and its metabolic complications [2]. ROS participate as regulatory factors of mitochondrial
activity; they modify the concentration of molecules taking part in inflammation, which
is associated with a large number and size of adipocytes, they promote adipogenesis and
lipogenesis, they stimulate the differentiation of preadipocytes to mature adipocytes, and
they play an important role as agents that regulate the energy balance in hypothalamic
neurons that control appetite [2,3].

Despite a variety of surgical and pharmacotherapeutic measures, there are still no risk-
free and efficient weight management treatments. Lifestyle modification, changes in diet,
and reduced sedentarism are currently considered as the best alternative. Phytotherapy
is the targeting of health problems by the employment of plant-derived medications.
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Some plant extracts act as anti-obesity agents. Moreover, natural plant supplementation
causes important weight loss and improves health through the neutralization of ROS. The
products of plants are an alternative for the management of weight, since they constitute a
source of many active chemicals, including polyphenols, flavonoids, carotenoids, catechins,
isoflavones, capsaicinoids and capsinoids, such as resveratrol, quercetin, curcumin, ferulic
acid, and phloretin. Some plants that have been tested for their effects on obesity are
Hibiscus sabdariffa extracts, green tea, and garlic, among others. Plant-derived chemicals
may improve the condition of adipose tissue in obese individuals by reducing intracellular
oxidative stress (OS) [4]. In this paper, we describe the roles of ROS in obesity and the
possible impact of natural antioxidants in the treatment of this disease.

2. Redox Balance in Obesity

ROS and nitrogen species (RNS) comprise hydrogen peroxide (H2O2), superoxide
(O2−), hydroxyl radical (OH), hypochlorite (ClO−), nitric oxide (NO), and peroxynitrite
(ONOO−). The most important site, where intracellular ROS are produced, is mitochondria,
due to the leakage of electrons through the respiratory chain. ROS may also be produced
by plasma membrane organelles and systems, such as the endoplasmic reticulum (ER),
lysosomes, peroxisomes, and by cytosolic enzymes. ROS/RNS have many biological effects
at low concentrations, including the defense against microorganisms that are pathogenic,
which is mediated by the immune system and intracellular signaling. However, at high
levels, they may damage DNA, lipids, and proteins, resulting in injury to tissues and cell
death [5,6]. Some of the pathways generating ROS and their impact on obesity that are
described in the following paragraphs are illustrated in Figure 1.
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Figure 1. Pathways generating reactive oxygen species (ROS) and their impact on obesity Abbreviations: AgRP = agouti-
related protein, Ang II = Angiotensin II, eNOS = endothelial nitric oxide synthase, H2O2 = hydrogen peroxide, IκBα =
nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, GLUT 4 = gucose transporter type 4, IGF-1
= insulin-like growth factor 1, IGF-1R = insulin-like growth factor 1 receptor, IL = Interleucine, IR = insulin receptor, IRS
1 = insulin receptor substrate 1, LR = Leptin receptor, NF-κB = nuclear factor κ-light-chain-enhancer of activated B cells,
NOX = nicotinamide adenine dinucleotide phosphate oxidase, NPY = neuropeptide Y, O2− = superoxide anion, PI3k =
phosphoinositide 3-kinase, PPP = pentose phosphate pathway, ROS = reactive oxygen species, SOD = superoxide dismutase,
TNF-α = factor de necrosis tumoral alfa, UPR = unfolded protein response. Blue arrows indicate flow through the pathway;
red arrows indicate increases or decreases.
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To maintain ROS/RNS at adequate levels, tissues have antioxidant components that
work synergically to reduce free radical cytotoxicity. Naturally found antioxidant molecules
comprise glutathione, ubiquinone, thioredoxin, and urate. There are also proteins, such as
ferritin, transferrin, lactoferrin, and caeruloplasmin, with antioxidant properties, since they
bind and hijack transition metals that may begin oxidative reactions. There are also antioxi-
dant enzymes, which include superoxide dismutase (SOD), glutathione peroxidase (GPx),
glutathione reductase, glutathione S-transferase, catalase, thioredoxin reductase, peroxire-
doxins (Prx), and NAD(P)H: Ubiquinone oxidoreductase (NQO1) [5,6]. Moreover, there is
a novel type of antioxidant enzymes, which, importantly participate in illnesses linked to
obesity that includes the paraoxonase (PON) family [7]. Paraoxonases (aryl dialkyl phos-
phatases) were described as hydrolyzing enzymes of organophosphorus compounds, such
as paraoxon or diazoxone insecticides. PON1 is an esterase that is generated in the liver,
and it is associated with the HDL-enzyme that hydrolyzes oxidized LDL-cholesterol. It has
atheroprotective capabilities [8]. The activity of PON1 is decreased in diabetes mellitus,
metabolic syndrome, hypercholesterolemia, and chronic renal failure [9]. Furthermore,
PON1 expression and activity can be modulated by components of the diet [10]. In addi-
tion, the rate-limiting enzyme in heme metabolism, heme oxygenase-1 (HO-1), is also an
antioxidant enzyme, since it reduces oxidative stress and decreases inflammation. Recent
results point to the beneficial effects of HO-1 in cardiovascular disease (CVD), and in the
regulation of body weight, obesity, and diabetes [11]. Dietary antioxidants provided by
the diet include vitamins C and E, and a multitude of phytochemicals. Furthermore, zinc,
manganese, and selenium play an important role in regulating the activity of antioxidant
enzymes [6].

2.1. ROS and Adipogenesis

The complex process of adipogenesis consists of a series of stages by which stem
cells mature into adipocytes. ROS are involved in signal transduction and regulation
of adipocyte differentiation; however, their exact function is still to be elucidated. The
process is mediated by many transcription factors, cell-cycle proteins, hormones, and small
molecules. Some of these pathways are regulated by receptor tyrosine kinases, AMP-
activated protein kinase (AMPK), peroxisome proliferator-activated receptor γ (PPARγ),
PPARγ coactivator 1α (PGC-1α), and CCAAT/enhancer-binding protein β (C/EBPβ),
which are potentially sensitive to redox regulation [12].

In preadipocytes, nicotine adenine dinucleotide phosphate (NADPH) oxidase im-
portantly produces ROS [13]. The activated insulin-like growth factor (IGF) receptor is a
tyrosine kinase that controls downstream signaling pathways, including phosphatidyli-
nositol 3-kinase (PI 3-kinase) and Ras-mitogen-activated protein kinase (MAPK) pathway,
which are sensitive to ROS [14]. ROS also control MAPK activation, which is an important
regulator of cell growth and differentiation through the oxidative modification of signaling
proteins and the inactivation of MAPK phosphatases [15] (Figure 1). PPARγ is a fundamen-
tal regulator of adipogenesis [16]. Another adipogenesis-related redox-sensitive signaling
molecule is C/EBPβ, and ROS induce a disulfide bond formation, and then dimerization
of its molecule increasing its activity [17]. Moreover, oxidative stress is associated with an
elevation of the expression of PPARγ, C/EBPβ [18], and PGC-1α.

Mature adipocytes are classified into white (WAT), brown (BAT), and beige. White
adipocytes have a single fat droplet and few mitochondria. They store fat, produce hor-
mones that regulate nutrient homeostasis, participate in the regulation of food intake by
secreting hormones and promote inflammation, thus playing an important role in obesity.
They constitute depots with widespread locations in the body. Brown adipocytes have
multiple fat droplets, many mitochondria and can be activated to oxidize fatty acids to
maintain body temperature. Therefore, they regulate energy expenditure under specific
conditions of physical activity and energy intake. They also regulate nutrient homeostasis
and may slow obesity. They are localized in the interscapular region in infants, and in the
cervical, supraclavicular, and paravertebral regions in adults. WAT is plastic, and there
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is an elevation in the number of adipocytes that resemble brown cells known as beige
adipocytes when the individual is exposed to a cold environment or when there is the acti-
vation of β-adrenergic receptors. These beige adipocytes burn nutrients, and, an increase
in their number may slow obesity. Beige adipocytes also have many fat droplets and are
involved in adaptive thermogenesis and nutrient homeostasis. This plastic transformation
of white to beige adipocytes is known as browning [19]. ROS could play an important
role in the browning of adipose tissue, thus decreasing obesity, since natural compounds
with antioxidant properties have been proven to facilitate browning [20]. In conclusion,
increased ROS in fat tissue may result in altered differentiation of adipocytes and of their
function and in the browning process in obesity (Figure 2).
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WAT and BAT express all the components of the renin-angiotensin system (RAS), and
the renin-angiotensin system is involved in obesity and insulin resistance. In the process
of differentiation, preadipocytes secrete Angiotensin II (Ang II). Ang II, a vasoconstrictor
agent, is a hormone that participates in many functions and is involved in several patholo-
gies, including obesity, insulin resistance, and cardiovascular diseases [21,22]. Ang II also
plays a role in adipocyte growth and differentiation and may directly stimulate leptin re-
lease from these cells. Ang II favors the synthesis of prostaglandin I2 in adipocytes, which
then stimulates differentiation of adipose tissue and elevates triglyceride content [23]. Ang
II is one of the most potent stimuli for the activity of NADPH oxidase (NOX), a membrane-
associated multimeric enzyme, which transports electrons preferentially from cytosolic
NADPH to produce a superoxide anion (O2−). This anion can subsequently be converted to
H2O2 by superoxide dismutase [13]. Cell growth, differentiation, metabolism, host defense,
and apoptosis, among other functions, are controlled by NOX proteins. NOX isoforms
are present in mammalian cells: Namely, Nox1 to Nox5 and Duox1 and 2. Increased
expressions of NOX2 (in macrophages) and of NOX4 (in adipocytes) are found in animal
models with genetic or diet-induced obesity [24] (Figure 1).

2.2. Mitochondrial Activity in Obese Subjects

Aerobic organisms require oxygen to obtain the necessary energy to maintain their
stability, and they possess an efficient bioenergetic system. However, oxygen can also
lead to the production of free radicals and elevate ROS [25]. Cellular ROS are produced
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by almost all physiological processes that require oxygen, and the respiratory chain in
mitochondria is considered as their main source [26]. The superoxide anion (O−) is the
primary ROS, and it is formed by the univalent reduction of 2 oxygen molecules that are
produced by the auto-oxidation of mitochondrial carriers [25]. Hydrogen peroxide (H2O2)
is generated by the dismutation of superoxide anion, which is mainly catalyzed by the
enzyme superoxide dismutase (SOD). The principal sites of O− formation are the enzymes
of the complex I [27], III [28], and II [29].

ROS production in mitochondria depends on the physiological or pathological condi-
tions of the cell. Synthesized ROS are principally transformed and neutralized in mitochon-
dria, and only low concentrations reach the cytosol. ROS react in these organelles with
mitochondrial lipids, proteins, and DNA, and they may induce mitochondrial alterations.
There is also an efficient antioxidant system in mitochondria that neutralizes ROS, allowing
these organelles to remove the reactive species produced by themselves and those coming
from other sources [30]. When ROS generation by mitochondria and other cellular sites
increases, several constituents of the respiratory chain and Krebs cycle enzymes may lose
activity, thus leading to mitochondrial dysfunction. Mitochondrial dysfunction results in
several consequences in cells and the complete organism, including metabolic disorders,
such as type 2 diabetes, obesity, dementia, and aging [31].

Mitochondria are central for ATP production. An excess in the availability of nutrients,
causes alterations in mitochondrial number, dynamics, and morphology. It also results in
abnormalities in biogenesis, ROS production, and apoptosis [32]. An elevation in glucose
levels causes an increased production of ROS, which modify mitochondrial enzymes, and
promote the changes in the consumption and the deposits of nutrients, thus leading to the
development of metabolic disorders [31]. These changes are accompanied by alterations in
the insulin signaling pathway that regulates the accumulation of free fatty acids and lipids.
Mitochondrial dysfunction in adipocytes is linked to altered adipogenesis, lipolysis, fatty
acid esterification, and adiponectin production [31]. Mitochondria from obese individuals
decrease energy generation and diminish fatty acid oxidation [33]. They alter glucose
and lipid metabolism [34] and elevate the rate of apoptosis [35]. A greater formation of
lipid droplets is the result of the activation of fatty acid biosynthesis through transcrip-
tional changes and of reprogramming to glycolysis, which is the result of mitochondrial
abnormalities and decreased mitochondrial DNA [36].

The increased functions of mitochondria in obesity results in low-grade inflamma-
tion [37], and the altered responses to variations in glucose level in the hypothalamic
neurons controlling energy homeostasis [38]. Damaged mitochondria may be destroyed by
mitophagy [39], and they are replaced by new ones through a process that is associated
with the production of ROS [40].

2.3. ROS and ER Stress in Obesity

The ER controls many cellular processes, such as inflammation and lipid metabolism,
via the unfolded protein response (UPR) signaling pathway. It also participates in the
storage of glucose, proteins, and calcium ions. High levels of Ca2+ are released from the ER
internal deposits leading to mitochondrial dysfunction and the generation of mitochondrial
ROS. Reactions by ER chaperones and oxidoreductases also generate ROS. Elevated levels
of free fatty acids, including saturated fatty acids, result from the activation of the UPR in
many tissues and cell types. Moreover, changes in the lipid composition of the ER activate
the UPR, and these results in modifications of the activity of the sarco-/endoplasmic reticu-
lum calcium ATPase and the subsequent disequilibrium in homeostasis [41]. Increases in
the activity of pro-inflammatory genes, such as those encoding tumor necrosis factor alpha
(TNF-α), interleukins IL-1β, IL-6, IL-12p40, and cyclooxygenase-2, from the activation NF-
κB (nuclear factor κ-light-chain-enhancer of activated B cells)—an important transcription
factor of macrophages, which occurs by an increase in the activity of the UPR [42,43].
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2.4. ROS and Lipolysis and Lipogenesis in Obesity

The enzymes in charge of lipolysis and lipogenesis are ROS-sensitive [44,45]. Lipogen-
esis is the reaction by which fatty acids that form lipoproteins are esterified with glycerol
to constitute triglycerides. It is catalyzed by the enzyme lipoprotein lipase (LPL) [46–48].
The products of this reaction are then stored in lipid droplets. Lipolysis, which is mediated
by the hormone sensitive lipase (HSL), is the breakdown of stored TG [46–48]. The sig-
naling cascade of norepinephrine (NE) and other hormones that include cyclic adenosine
monophosphate (which activates protein kinase A (PKA), decreases the expression and/or
activity of HSL [49,50]). NE also controls the phosphorylation of perilipin A which helps
in the translocation of HSL from the cytosol to the lipid droplets [51]. Alterations in LPL
expression and/or activity also induce obesity and hypertriglyceridemia [52]. NEFAs and
glycerol are generated when triglycerides are hydrolyzed by LPL from circulating chylomi-
crons and VLDL. These molecules are then re-esterified and deposited in adipocytes [53].
Lipolisis is increased by IL-1, IL-6 y TNF-α, and it then stimulates the de novo synthesis
and the secretion of hepatic fatty acids [54].

2.5. ROS and Inflammation in Obesity

Phagocytic leukocytes, including macrophages, monocytes, neutrophils and eosinophils,
which invade tissues produce oxidizing agents. The increased size and number of adipocytes
trigger the invasion of fat tissue by these cells. ROS induce the mechanism of inflammation
by activating NF-κB and elevating the transcription of cytokine-producing genes. The
inflammatory response is increased by the liberation of cytokines [55]. A state of systemic
inflammation is induced by the growth of the mass of adipose tissue as a response to an
increase in secretory factors that come from the preadipocytes and macrophages. This
inflammation has as a consequence endothelial dysfunction, which is present in CVD when
metabolic dysfunction is present [56].

Anti- and pro-inflammatory cytokines, hormones, growth factors, complement factors,
and matrix proteins are secreted by adipocytes and are known as adipocytokines [57]. They
include anti-inflammatory molecules, such as adiponectin, transforming growth factor
beta (TGFβ), IL-10, IL-4, IL-13, and IL-1, receptor antagonist (IL-1Ra), and apelin. They
also include pro-inflammatory molecules, such as tumor necrosis factor-α (TNF-α), IL-6,
leptin, visfatin, resistin, Ang II, and plasminogen activator inhibitor1 [58]. When obesity is
present, there is an increase in the number and size of the adipocytes, and the secretion
of various pro-inflammatory molecules is promoted, thus propitiating the pathological
state [59].

The activity of inflammasomes is also controlled by the NF-κB signaling pathway,
which induces the transcriptional expression of NOD-, LRR- and pyrin domain-containing
protein 3 (NLRP3) [60]. Excess nutrition induces NF-κB signaling pathways in adipocytes
and in skeletal muscle cells by interfering with mitochondrial function leading to the
overproduction of ROS [61]. Hydrogen peroxide (H2O2) affects the degradation of the
nuclear factor—enhancing kappa light chains of activated B cells (IκBα), an NF-κB in-
hibitor, through tyrosine phosphorylation [62]. Many enzymes, such as NADPH oxidase,
cyclooxygenase-2, and arachidonate 5- and 12-lipoxygenases, are activated after DNA
binding. This enhances overproduction of ROS or the liberation of nitric oxide synthases
that leads to the production of NRS. This potentiates ROS-induced damage [63].

Free fatty acids activate the Toll-like receptor (TLR) pathway, a family of surface
receptors that are present in all cells. It regulates the expression of numerous inflammatory
factors. The TLR2 and TLR4 pathways, activated by FFAs, play an important role in
insulin resistance and vascular dysfunction [64,65]. The presence of ROS up-regulates the
expression of TLR2 and 4 [66]. Some proposed mechanisms by which free fatty acids carry
out their function by binding to TLRs are the formation of ceramides, the stimulation of the
activity of several serine/threonine kinases, among which the protein kinase C (PKC), the
increase in the production of oxygen free radicals, due to the stimulation of the activity of
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NOX and the activation of the factor NF-kappaB may be cited. These pathways probably
work synergistically [64].

2.6. Oxygen Reactive Species and Adipokines Regulating Appetite

ROS play an important role as signaling molecules in the central nervous system.
They participate in the regulation of metabolism and food intake by acting on the hy-
pothalamus. They regulate proopiomelanocortin (POMC) neurons and agouti-related pro-
tein/neuropeptide Y neurons (NPY/AgRP) [67,68]. The principal substrate of metabolism
in POMC neurons is glucose, and when these cells are activated, food intake is reduced,
and energy expenditure is increased. The main substrates for NPY/AgRP neurons are
fatty acids, and when they are activated, food intake is increased, and energy expenditure
decreased [69].

The hypothalamus is rich in mitochondrial ROS. The metabolism of glucose, lipid,
insulin, and leptin in POMC and NPY/AgRP neurons generates ROS during a positive
energy state, via Ca2+ influx and mitochondrial activity. The NPY/AgRP neurons are
activated in a negative energy state, this results in a decrease in the level of ROS. Therefore,
oxygen production must be balanced to maintain homeostasis [70].

2.6.1. Leptin

Leptin was the first adipokine to be described, and it plays an important role in
controlling the equilibrium between the expenditure of energy and the ingestion of food. It
is a pleiotropic molecule influencing several organs and systems. Fat cells produce leptin,
which regulates hunger and appetite, and therefore, food intake. Even if there are high
leptin levels, the response to leptin, which is normally linked to satiety, is disrupted, and
individuals continue to consume calorie-rich food [71].

Obesity is linked with an elevation of the levels of leptin and chronic immune-
mediated inflammation. Leptin also has effects on the immune system, since it increases
macrophage proliferation, and it activates the NADPH oxidase via the PI3K/PKC path-
way. Thus, leptin may contribute to atherosclerosis development in obese patients [72].
It also stimulates the secretion of pro-inflammatory cytokines, such as TNF-α and IL-6,
in endothelial cells [73]. Leptin also favors the Th1-type of activity, which reduces the
levels of tryptophan. Serotonin and melatonin, which are derivatives of tryptophan, induce
satiety through diverse mechanisms. Therefore, the suppression of leptin release and of the
Th1-type activity by antioxidants elevates serotonin and melatonin concentrations [74]. In
the hypothalamus, leptin elevates the norepinephrine and epinephrine levels contributing
to hypertension [75].

2.6.2. Adiponectin

Adiponectin is constituted by a globular domain that is structurally resembles TNFα
and a collagen domain. In obese patients and in subjects with type-II diabetes mellitus,
serum levels of this hormone are diminished. Adiponectin reduces serum triglycerides,
stimulates fatty acid oxidation, elevates insulin sensitivity. The anti-inflammatory effects
of adiponectin are due to the reduction of the level of NF-κB, which controls more than 150
target genes. Among the genes that it controls, those of pro-inflammatory enzymes, such
as cyclo-oxygenase-2, cytokines, chemokines, immunoreceptors, and adhesion molecules,
are included [75]. When the concentrations of adiponectin are increased, the production
and activity of TNF-α, IL-6, and interleukine-8 (IL-8) are reduced, and the expression of
cellular α adhesion molecule 1 (ICAM-1), vascular cellular adhesion molecule 1 (VCAM-1),
and E-selectin are decreased. There is also an elevated synthesis of interleukin 10 (IL-10),
an anti-inflammatory cytokine [76]. Interleukines IL-1, IL-6 y TNF-α nuclear factor—
enhancing kappa light chains of activated B cells increase lipolisis and stimulating the de
novo synthesis and the secretion of hepatic fatty acids [54,77,78]. Therefore, there is an
association between the increase in the levels of serum triglycerides and cholesterol [54].
The benefic effects of adiponectin are observed when its concentration is increased by



Int. J. Mol. Sci. 2021, 22, 1786 8 of 26

including fish oil or soy in the diet, or by using tiazolininediones or peoxisomal proliferation
receptor gamma PPARγ [79–82].

Increased OS and decreased adiponectin participate in pathological conditions, such
as the insulin resistance related to obesity, and they elevate the risk of CVD. Different
nuclear receptors participate in this pathogenesis. The transcription of the target genes in
response to metabolic and nutritional substrates is controlled by nuclear hormone receptors
(NRs), such as PPARγ, which promote the transcription of adiponectin and antioxidant
enzymes. In contrast, the mineralocorticoid receptor mediates the effects of aldosterone
and glucocorticoids and promotes the generation of OS in adipocytes [83].

2.7. Oxidative Stress, Iron Metabolism and Hepdicin in Obesity

Obesity is characterized by chronic low-grade inflammation that leads to the pro-
duction of inflammatory cytokines, increasing OS and elevating hepcidin secretion in
hepatocytes and macrophages [84]. Hepcidin is a peptidic hormone, mainly produced by
the liver, which regulates iron metabolism [85–87]. The increased OS contributes to the
development and progression of various diseases that influence obesity.

There is an association between obesity and iron deficiency in which hepcidin partici-
pates [88,89]. Serum hepcidin is significantly elevated in obese people [90]. Iron induces
OS, since it is a metal with redox activity. It also enhances ER stress, inflammation, and
endocrine dysfunction of adipose tissue. Mechanisms of toxicity mediated by iron modify
aspects of the pathogenesis of obesity, resulting in its exacerbation. Free intracellular iron
is cytotoxic, promoting the Fenton reaction, and exacerbating OS [91]. Ferritin is of crucial
importance in the protection of the liver against oxidative damage. When there is insuffi-
cient positive regulation of ferritin, free iron can exert its pro-oxidant and cytotoxic effects.
These molecular events lead to positive feedback in ROS production and contribute to the
pathophysiological alterations in obesity. Hepdicin also targets the intestinal absorption
of iron and the function of ferroportin within the cell, thus playing a central role in iron
homeostasis [87,92,93].

Overproduction of hepcidin is a possible cause of obesity-related hypoferremia [94,95].
Excessive secretion of this protein leads to iron sequestration in cells of the reticuloendothe-
lial system. The latter results in increased iron content in adipose tissue, which programs
adverse effects and an overload of local iron.

2.8. Sympathetic Nervous System and Obesity

The activity of the sympathetic nervous system (SNS) is linked to energy balance
even if the contribution of the SNS to energy expenditure is small, accounting for only
5% [96]. Since the brain has a high oxygen consumption and is rich in lipids, it is very
vulnerable to OS, and damage induced by OS has a strong potential to impact normal
CNS functions [97]. Over-activation of the SNS is associated with the excess production
of ROS and is linked to metabolic disorders, including obesity, diabetes mellitus type 2,
hypertension, and CVD [71,98]. OS and inflammation in the hypothalamic paraventricular
nucleus (PVN), mediate sympathetic excitation, particularly in cardiovascular diseases [99].
Medications with antagonistic effects to those of the SNS increase food intake, decrease
resting metabolic rate and thermogenic responses, while sympathomimetic medications
have the contrary effects. Fasting blocks SNS activity, while ingesting food increases its
activity. Therefore, SNS predominance and diminished SNS responsiveness in the basal
state favors obesity [100]. Weight loss inhibits SNS overactivity in obese subjects. Activity
in the SNS is linked to visceral fat rather than with total fat mass. Lipolysis in visceral
fat is mediated by the action of catecholamine on the beta(3)-adrenoceptors. Moreover,
alterations in the hypothalamo-pituitary-adrenal axis have been related to the distribution
of central fat [96]. In addition, a pro-inflammatory state is promoted by the activity of the
SNS by the synthesis and liberation of IL-6, which promotes an acute phase response [101].



Int. J. Mol. Sci. 2021, 22, 1786 9 of 26

3. Natural Products with Anti Obesogenic Effects

Natural antioxidants in foods have recently gained attention because of their capacity
to counteract the deleterious effects of an excess of free radicals and pathologies associ-
ated with them. Insufficient burning of calories and alterations in the regulation of food
intake behavior may be caused by insufficient exposure to oxidizing compounds. Diets
rich in fruits and vegetables reduce obesity, metabolic syndrome, type 2 diabetes, CVD,
inflammation, neurological disorders, and cancer [102]. The mechanisms of action include
antioxidant and/or anti-inflammatory properties, such as the kidnapping of free radicals
and changes in gene transcription through the induction or inhibition of transcription
factors.

Another cytoprotective mechanism, used by natural compounds against excess ROS,
is the control of the signaling pathway of the nuclear transcription factor erythroid 2p45
(NF-E2)-related factor 2 (Nrf2) [103]. The anti-inflammatory activity of some chemopreven-
tive/cytoprotective agents correlates with the ability to induce antioxidant gene expression.
Inactive Nrf2 is present in the cytoplasm linked to the Keap 1 protein. When the Nrf2-Keap1
dissociates, due to changes in the cellular redox state, Nrf2 translocates to the nucleus
and interacts with Maf proteins constituting heterodimers that interact with antioxidant
responsive elements (ARE) or electrophile responsive elements (EpRE). These elements
are found in the promoter/enhancer regions of genes that encode for most of the phase II
detoxification antioxidant and detoxifying enzymes [103]. Detoxifying enzymes include
heme oxygenase-1 (HO-1), glutathione peroxidase (GPx), glutamate cysteine ligase cat-
alytic (GCLC) and modifier (GCLM) subunits, glutathione S-transferase (GST), NAD(P)
H:quinone oxidoreductase 1 (NQO1), and superoxide dismutase (SOD) [104].

Overexposure to food antioxidants can also lead to adverse effects. Antioxidant
stress in young ages participates in the development of adiposity later in life. Some food
preservatives, considered as food antioxidants, including sodium sulfite, sodium benzoate,
some spice compounds, and natural colorants (such as curcumin), diminish the liberation
of leptin in murine 3T3-L1 adipocytes—in which obesity-like inflammation was induced
which co-incubation with lipopolysaccharide (LPS). Therefore, consumption of antioxidant
supplemented food could result in diminished leptin liberation, giving rise to an obesogenic
environment [105].

3.1. Groups of Compounds with Antioxidant Properties Found in Natural Plants

Important groups of compounds found in plants with antioxidant properties include
(a) polyphenols such as phenolic acids, stilbenes, flavonoids (flavonols, flavanols, an-
thocyanins, flavanones, flavones, flavanonols, and isoflavones), chalcones, lignans, and
curcuminoids (b) carotenoids, (c) capsaicinoids and casinoids, (d) isothiocyanates, and (e)
catechins and will be described in the following sections. A summary of the metabolic
pathways upon, which these different antioxidant groups of compounds act, is shown in
Figure 3.

3.1.1. Polyphenols

Polyphenols constitute the most abundant phytochemicals of plant origin. Polyphe-
nols play a protective role against pathologies in which OS intervenes, such as metabolic
disorders that include obesity, CVD, and cancer [106,107]. However, their mechanisms
of action are still unclear. They can be found in fruits, vegetables, whole cereals, coffee,
cacao, and tea. They have the potential for inducing weight loss and have been included
in dietary strategies to abolish OS to prevent obesity, by acting on mitochondrial dysfunc-
tion, inflammation, and over-activation of the sympathetic nervous system [3,108]. Even
when the mechanisms of action of polyphenols are known, each polyphenol produces
different physiological effects that correlate with its chemical structure, bioavailability, and
metabolism. Although polyphenol intake is of approximately 1000 mg/day in European
populations [109], these molecules are poorly absorbed, and their metabolism is fast.
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Polyphenols kidnap free radicals, increase the activity and expression of antioxidant
enzymes and inhibit those of ROS-producing enzymes. They also chelate metals. The most
abundant polyphenols are flavonoids comprising more than 6000 types that have been
identified and characterized by their structure. The antioxidant activity of polyphenols
resides in their scavenger ability and their capacity to inhibit ROS-generating enzymes,
such as NOX and iNOS. Polyphenols neutralize ROS by donating an electron or hydrogen
atom, they have properties as chelators, they exert co-antioxidant activity with essential
vitamins, they inhibit the oxidase and arachidonic acid pathways, and they up-regulate
SOD, CAT, and GPX enzymes [110,111]. They also promote the expression of antioxidant
enzymes that include those involved in glutathione synthesis and phase II drug metabolism,
through the regulation of the Nrf2/Keap1 pathway.

These molecules also possess anti-inflammatory, anti-diabetic and anti-cancer prop-
erties. They modulate inflammation caused by elevations in the number and size of
adipocytes. Polyphenols induce the synthesis of pro-inflammatory molecules, such as
cytokines, they block TLR and regulate several inflammatory-related pathways, such as
the NF-κB, MAPK, PI3K/AkT, IKK/JNK, and JAK/STAT, thus regulating the immune
response. They also interfere with immune cell regulation, pro-inflammatory cytokine syn-
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thesis, and gene expression. Polyphenols are also nutraceuticals that prevent hypothalamic
inflammation and regulate the energy balance [112].

Polyphenols also control adipocyte differentiation and lipid metabolism, since they
decrease the activity of the pancreatic lipase and the permeability of the intestine, and
through their interaction with the gut microbiota [108,113,114]. They also inhibit lipid
accumulation in 3T3-L1 cells and modify the activity of pancreatic lipase [4]. Furthermore,
some polyphenols can activate sirtuin 1 (Sirt1) and are potential inducers of mitochondrial
biogenesis via deacetylation-mediated PGC-1α activation [114].

Polyphenols stimulate mitochondrial biogenesis and diminish mitochondrial dysfunc-
tion [115]. Resveratrol inhibits cAMP phosphodiesterases, elevates cAMP, and stimulates
the cAMP/CaMK/AMPA pathway to deacetylate and activate PGC-1α via NAD+/Sirt1.
It also activates protein kinase C epsilon (PKCε) and AMPK. It also increases NAD+ lev-
els, and stimulates mitochondrial function, biogenesis, and dynamics [116]. Flavones,
isoflavones, curcumin, and hydroxytyrosol (3,4-dihydroxyphenylethanol), enhance mito-
chondrial biogenesis by increasing the expression of Sirt1/AMPA/PGC-1α, complex IV in
the electron transport chain (ETC), and the mitochondrial transcription factor (TFAM) [117].

Unfortunately, there are still no prospective studies in humans, and the link between
polyphenols, obesity, and chronic diseases still needs to be clarified [118]. There are only a
few clinical trials that address the short-term effects of a single molecule or of food extract
supplementation on obesity and obesity-related diseases. In these studies, the markers
of OS and inflammation, glucose tolerance, and CVD risk factors were evaluated, and a
positive role of these molecules was found [110,111].

Polyphenols are classified into different categories that relate to their chemical struc-
ture and include phenolic acids, stilbenes, flavonoids (flavonols, flavanols, anthocyanins,
flavanones, flavones, flavanonols, and isoflavones), chalcones, lignans, and curcuminoids.

3.1.2. Flavonoids

Flavonoids are phenolic phytochemicals that are important constituents of the human
diet [116,119,120]. They are divided into subgroups based on the degree of oxidation of
the rings that confirm their structure. There exist six main subgroups: (1) Flavonols, like
kaempferol and quercetin, (2) flavanols, like epicatechin EC, ECG or EGCG; (3) flavones,
like apigenin; (4) isoflavones, like genistein; (5) flavanones, like hesperetin, raringenin);
and (6) anthocyanins, like cyanidin or delphidin, malvidin [121].

Flavonoids may have therapeutic potential for diseases, such as cancer, ischemic heart
disease, and atherosclerosis. They improve health through biological functions, such as
the scavenging of ROS, inducing apoptosis, and inducing antitumorigenic activity. In
their structure, they have phenolic hydroxyl groups, which makes them strong antioxi-
dants acting against ROS that participate in the initiation of lipid peroxidation [119,120].
Furthermore, flavonoids are soluble inhibitors of the breakage of chains of molecules
by peroxidation, and they scavenge intermediate peroxyl and alkoxyl radicals. Several
flavonoids are also able to block the expression of NF-κB–dependent genes [122].

3.1.3. Isoflavones

Isoflavones are found in legumes, grains, and vegetables; however, soybeans are the
main source of these polyphenols in human diet. Isoflavones include genistein, daidzein,
and glycitein. Evidence also suggests that they may protect against obesity and its co-
morbities. They have anti-adipogenic and anti-lipogenic effects, which are due to their
interaction with estrogen receptors and PPARγ, which allows them to control insulin
sensitivity, fatty acid metabolism, and adipose development. They may also have other
protective mechanisms, such as decreased OS and inflammation [123].

Genistein may block the damaging effects of ROS, since it is able to act as an antioxi-
dant that chelates metals and elevates reduced/oxidized glutathione ratio (GSH/GSSG)
and mitochondrial membrane potential. Genistein also restores antioxidant enzyme ac-
tivities and reduces the generation of ROS, pro-inflammatory cytokines, and iNOS and
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endothelial NOS (eNOS). It reduces inflammation, by activating JNK and inhibiting NF-κB,
TNF-α, and IL-6 secretion [124].

Isoflavone supplementation to healthy women reduced DNA oxidative damage and in-
creased total plasma antioxidant capacity [125]. In overweight, diabetic subjects, isoflavone
intake increased plasma total antioxidant capacity and GSH levels, and reduced oxLDL
and isoprostane 8-iso-PGF2α, [126]. Isoflavones exert estrogen-like effects, and therefore,
have been classified as phytoestrogens being useful in the treatment of hormone-dependent
cancers [127,128]. Genistein supplementation in postmenopausal women diminishes body
mass index, body fat mass, waist size, and increases blood HDL [129,130].

3.1.4. Carotenoids

Carotenoids are found in plants, microorganisms, and few animals and are impor-
tant antioxidant compounds. They have pro-vitamin A activity, especially β-carotene,
α-carotene, and β-cryptoxanthin. Carotenoids protect against metabolic syndrome, CVD
and cancer, through their role as an antioxidant and anti-inflammatory agents [131,132].
Obese subjects have low serum carotenoid levels [133], and consumption of vegetables and
fruits that contain large amounts of carotenes, including carrots, pumpkin, tomato, broccoli,
spinach, apricots, and mandarins, is inversely correlated to inflammation, OS, endothelial
dysfunction, cardiovascular mortality and overall mortality in the elderly [134].

The carotenoid produced by the microscopic algae Astaxanthin, which is present in
salmon, crabs, and lobster, blocks lipid peroxidation and enhances antioxidant defense
activity, in overweight and obese adults [135]. Supplementation of highly concentrated β-
cryptoxanthin elevates adipokine levels in moderately obese postmenopausal women [136].
Lycopene or tomato intake diminishes OS in diabetic patients, but it did not reduce the risk
for developing diabetes [137]. Lycopene supplementation reduced systolic blood pressure
in mildly hypertensive subjects [138]. Supplementation studies using other carotenoids
demonstrated a positive action of these compounds on redox balance, inflammation,
and hypertension. The combination of α-carotene, β-carotene, lutein/zeaxanthin, and
cryptoxanthin is negatively associated with the incidence of hypertension [139].

However, most studies using supplementation did not show a beneficial effect of
β-carotene, which is the most used carotenoid in supplementation on CVD, metabolic
syndrome [5], and cancer risk [140], and it is reported that it increased the risk of lung
cancer and fatal coronary heart disease [141,142].

3.1.5. Capsaicinoids and Capsinoids

Capsaicinoids and casinoids are alkaloids found in red hot peppers and sweet pep-
pers. They play physiological and pharmacological roles, including antioxidant, anti-
inflammatory, anti-obesity, and anti-cancer effects [143]. The ingestion of capsaicinoids
elevates the expenditure of energy and the oxidation of lipids, reducing appetite and en-
ergy intake and helping in weight loss [144]. The molecular mechanisms of action are still
not well known, although stimulation of the transient receptor potential vanilloid type-1
(TRPV1) may be the cause of many of the benefic effects observed [144]. Capsaicin also
reduces the inflammation that is induced by obesity by decreasing TNF-α, IL-6, IL-8, and
MCP-1 levels [145], and elevating adiponectin levels, which are important for the insulin
response [146].

3.1.6. Isothiocyanates and Catechins

Isothiocyanates (ITCs) are compounds with chemopreventive actions that are present
in cruciferous vegetables, including broccoli, watercress, Brussels sprouts, cabbage, and
cauliflower. ITC contain sulforaphane and phenethyl, which may explain their properties.
Although ITCs are not antioxidants themselves, they show strong antioxidant effects by
transcriptionally activating Nrf2 [147].

Cathechins are the main flavonols present in tea, being also present in cocoa, grapes,
and red wine [109]. Catechins reduce OS and inflammation, by elevating the expression of
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SOD and catalase and by reducing the activities of Nox, iNOS, TNF-α, and NF-κB [148].
Supplementation with epigallocatechin gallate, one of the most common catechin, in-
creases thermogenesis, improves glucose tolerance, and elevates the expression of PPARγ,
in rats fed with a high-fat diet [110]. In streptozotocin-diabetic rats, it induces a hypo-
glycemic condition accompanied by a healthier lipidic profile [138]. Enriched diets with
Epicatechin decreased IGF-1 levels and increased the lifespan of diabetic mice and of
Drosophila melanogaster [149]. In humans, catechins diminish obesity, blood pressure,
LDL-cholesterol, and CDVD risk factors. Catechin-rich beverages, such as green tea, reduce
obesity and decrease glucose levels in patients who have type 2 diabetes [150].

3.1.7. Vitamins, Oxidative Stress, and Obesity

Vitamins are found in many fruits and vegetables. A deficiency in vitamin C is a
common characteristic of obese individuals [151]. There is a negative correlation between
vitamin C levels and body mass index, waist-to-height ratio, and leptin concentrations [152].
Fifteen enzymes have as a cofactor vitamin C, and this vitamin has antioxidant activity
being a donor of electrons. It is an important scavenger of free radicals and it protects
tissues against OS diminishing inflammation [153]. Vitamin C inhibits mature adipocyte
formation and cell growth, it blocks lipolysis, controls glucocorticoid liberation from
adrenal glands, inhibits glucose metabolism and leptin secretion—resulting in reduced
hyperglycemia and a decrease glycosylation [154,155].

Although vitamin E status was not associated with any markers of obesity [152], obese
people with metabolic syndrome need more vitamin E than normal people because their
weight and other problems cause increased OS. However, those same problems cause a
reduction in the employment of vitamin E [156].

Vitamin A levels are directly associated with leptin [152], and higher vitamin A
levels are present in women without obesity. There is an association between vitamin
D deficiency and overweight [157]. Despite these reports, available data do not support
vitamin supplementation in obesity [3].

3.2. Natural Products with Antioxidant Effects
3.2.1. Resveratrol

Resveratrol (3,4′,5-trihydroxystilbene), is a small phytoalexin that is a polyphenolic
compound, present in the skin and seeds of red grapes, red wine, peanuts, apples, and
groundnuts [158,159]. Some spermatophytes, like grapevines, produce it when they are
injured or attacked by fungus. Resveratrol avoids the appearance of several diseases,
such as obesity, metabolic disorders, type 2 diabetes, CVD, cancer, and aging, through
its antioxidant and anti-inflammatory actions [160]. It also has vasoprotective effects in
animal models [161]. Although its mechanisms of action are not still completely under-
stood [162,163], they include changes in mitochondrial activity, blockage of lipid accumula-
tion, reduction of inflammation, improvement of insulin signaling and modulation of redox
balance. Resveratrol attenuates diet-induced OS in epididymal WAT by decreasing the
levels of Sirt1 and manganese superoxide dismutase (SOD2) [164]. Resveratrol chelates free
copper ions and remove copper ions, which are bound to ApoB, the main apolipoprotein
of chylomicrons, VLDL, IDL, and LDL particles [9].

In obese subjects, supplementation with resveratrol triphosphate decreased biochem-
ical parameters of OS and modulated the expression of redox-sensitive genes in blood
cells [165]. Resveratrol diminished the expression of inflammatory mediators (TNF-α,
IL-6, COX-2) and blocked NF-κB signaling. In preadipocytes, resveratrol reduced PPARγ
expression and elevated the expression of genes that control the activity of mitochondria,
such as SIRT3, uncoupling protein 1, and mitofusin 2 [166]. It also promoted lipolysis and
apoptosis, decreasing lipogenesis and proliferation of mature human adipocytes [106,167].

In healthy obese men, resveratrol lowers OS, and it has effects that resemble those of
calorie restriction [166]. Resveratrol supplementation improves insulin sensitivity in type
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2 diabetes. The effective resveratrol concentration for improvement in diabetes is still in
doubt, since the doses used in studies is variable [168,169].

Resveratrol also provides cardiovascular benefits, by elevating serum adiponectin,
preventing plasminogen activator inhibitor-1 (PAI-1), and blocking the atherothrombotic
signals in blood mononuclear cells [170]. In type 2 diabetes and hypertensive patients
with coronary artery disease, it regulates the mRNAs related to inflammation and cytokine
expression, in peripheral blood mononuclear cells [171]. Resveratrol suppressed the Ang
II/AT1R axis and enhanced the protective axis of the RAS system [172]. Resveratrol also
decreases Nox activity and induces NQO1 and glutathione S-transferase-1P expression
in mononuclear cells [173]. Resveratrol also increases PON1 gene expression and activity
in different cell types [174]. It prevents the disruption of the intestinal barrier, which is
mediated by OS [175].

Our group has studied the effects of resveratrol potentiated by small doses of quercetin
(RSV + QRC) in obese rats from a rat model of metabolic syndrome induced by high sucrose
ingestion. The RSV + QRC mixture prevented the elevation in systolic blood pressure,
insulin levels, insulin resistance index homeostasis model (HOMA), triglycerides, leptin,
and adiponectin, in these rats. The sucrose treatment increased carbonylation and lipid
peroxidation, while glutathione (GSH) and the total antioxidant capacity were diminished,
and RVS + QRC restored their levels. In the metabolic syndrome rat model, catalase, super-
oxide dismutase isoforms, peroxidases, glutathione-S-transferase, glutathione reductase,
and the expression of Nrf2 were reduced, and RVS + QRC reversed these effects. RSV +
QRC also reduced OS in fatty liver in the MS rats by improving the antioxidant capacity
and by the over-expressing Nrf2, which elevates the antioxidant enzymes and recycled
GSH [176]. RSV + QRC administration also reduced body mass, central adiposity, insulin,
triglycerides, non-HDL-C, leptin, adiponectin, monounsaturated fatty acids (MUFAs),
and non-esterified fatty acids (NEFAs) in metabolic syndrome rats that were obese and
up-regulated SIRT 1 and SIRT 2 expression in abdominal WAT [177]. We also studied the
control of the expression of UCP1, -2, and -3 in abdominal WAT from metabolic syndrome
rats treated with (RSV + QRC). Uncoupling proteins (UCPs) are mitochondrial anion car-
riers that participate in controlling body temperature and energy balance regulation. We
found that in metabolic syndrome rats, the mostly-expressed isoform was UCP2, low levels
of UCP3 were present, and UCP1 was undetectable. RSV + QRC increased UCP2 mRNA in
control and metabolic syndrome rats, and the elevation was associated with an increase
in oleic and linoleic fatty acids. Metabolic syndrome rats had an enhanced expression of
peroxisome proliferator-activated receptor, and its protein levels were increased RSV +
QRC [178].

3.2.2. Quercetin

Quercetin (3,5,7,3′,4′-pentahydroxy flavone) is a flavonol that is widely distributed in
fruits and vegetables. It is abundant in apples, onions, scallions, broccoli, and teas. It is a
major component in Gingo biloba extract and has multiple biological functions, including
antioxidative, anti-inflammatory, and anti-mutagenic activities. Quercetin decreases in-
flammation by controlling the release of TNF-α and the levels of nitric oxide and IL-6 [179].
It decreases OS, by blocking the expression of metalloproteinase 1 and the oxidation of
LDL, thus inhibiting the disruption of atherosclerotic plaques and stabilizing the plaque.

Quercetin decreases inflammation and reduces insulin resistance, by elevating the
expression of the GLUT4 glucose transporters. It diminishes JNK phosphorylation, and
the expression of TNF-α and iNOS in skeletal muscle. It reduces adipogenesis in L6 my-
otubes [180]. In primary human adipocytes, it stimulates insulin sensitivity and reduces in-
flammation, by decreasing the expression of IL-6, IL-1β, IL-8, and MCP-1 [181]. In mice and
rats fed a diet rich in calories, quercetin lowers circulating glucose, cholesterol, insulin, and
triglyceride levels, and elevates the secretion and expression of adiponectin [110]. Quercetin
supplementation reduces the inflammatory state in the adipose tissue of obese Zucker rats,
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and it diminishes dyslipidemia, hypertension, and hyperinsulinemia. In overweight-obese
subjects, quercetin supplementation reduces plasma TNF-α and oxLDL [182].

Although quercetin suppressed OS in obese rodent models [183–185], it had no effect
on OS and antioxidant capacity in obese subjects [186]. Future research is needed to
elucidate the bioavailability and bioactive effects of quercetin to reduce obesity.

3.2.3. Curcumin

Curcumin is a polyphenol extracted from the rhizome of the plant Curcuma longa. It
has anti-obesity, anti-diabetic, anti-inflammatory, and anti-cancer properties [187]. It ele-
vates glutathion. The underlying mechanisms of action are through the down-regulation of
redox-sensitive transcription factors NF-kB by decreasing ERK1/2 and p38 MAPK [188,189],
inflammatory cytokines, and growth factors.

At a cellular level, curcumin promotes mild oxidative and metabolic stress, which
results in an adaptive response, in which lipid metabolism enzymes and antioxidant
enzymes, including catalase, MnSOD, and HO-1, are involved [190]. In adipose tissue,
curcumin blocks the infiltration by macrophages and the activation of NF-κB [191]. In
the liver, it enhances high fat diet-induced insulin sensitivity and diminishes obesity,
blocking lipogenesis [192]. Curcumin also has an anti-cancer activity that, may be due to
its estrogen-like effects [193].

3.2.4. Ferulic Acid and Phloretin

Ferulic acid is a phenolic acid that can be found in apples, oranges, chocolate, whole
wheat, sage, and oregano, which prevents hyperlipidemia induced by high fat and OS.
It controls insulin secretion and regulates the activities of antioxidant and lipogenic en-
zymes [112].

Phloretin, a natural antioxidant product from apple tree leaves and Manchurian
apricot, reduces obesity and improves metabolic homeostasis. The activities of phloretin
to prevent and treat obesity have been studied in a high-fat diet-induced obesity mouse
model. Although phloretin does not cause weight loss in obese animals, it blocks weight
gain. Phloretin improves glucose homeostasis and insulin sensitivity and decreases hepatic
lipid accumulation. It favors the expression of the gene of adiponectin in WAT. In addition,
phloretin treatment elevates the expression of fatty acid oxidation genes [194].

3.3. Plants with Antioxidant Effects
3.3.1. Green Tea

Green tea, which is prepared from leaves of Camellia sinensis, is one of the most
popular beverages. Green tea is rich in many catechin polyphenols, such as (-)-epicatechin,
(-)-epicatechin-3-gallate, (-)-epigallocatechin, and (-)-epigallocatechin-3-gallate (EGCG).
The main polyphenol in green tea is EGCG, which has antioxidant, anti-inflammatory,
antiproliferative, and antithrombogenic effects. It also has benefic effects on endothelial
function [195]. It controls redox-sensitive transcription factors, such as NF-κB, Nrf2, and
AP-1 [196]. Green tea extracts decreased blood pressure, inflammatory biomarkers, and
OS, and elevated insulin sensitivity in obese, hypertensive patients [197]. Drinking green
tea or its extract supplementation, causes a decrease in body weight and lipid peroxidation
in obese subjects with metabolic syndrome [198].

3.3.2. Hibiscus Sabdariffa Extracts

The flowers of Hibiscus Sabdariffa (HSE) contain many chemicals, including: Polyphe-
nols, flavonoids (including anthocyanins, delphinidin, hibiscetin, quercetin, and gossypetin),
protocatechuic acid alkaloids, L-ascorbic acid, among others. Of these, anthocyanin
flavonoids and protocatechuic acid are antioxidant and anti-diabetic compounds [199,200].
There is considerable variation from one species to another in the anthocyanins found
in the plant, and their efficacy differs significantly. This variation is due to the level of
methylation of the hydroxyl groups, to differences in the number of hydroxyl groups, the
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characteristics and number of the sugars s that are bound to the anthocyanidin molecule
and the position of their attachment, and the variety and number of aliphatic or aromatic
acids bound to the sugars [199,200].

The HSE extract also controls adipogenesis by inhibiting the expression of the adi-
pogenic transcription factors C/EBPα and PPARγ, through the PI3-K and MAPK path-
way [201]. The HSE extract is a vasodilator, via its action on calcium channels, and it also
exerts its effects by inhibiting the angiotensin converting enzyme (ACE) and by endothelial
nitric oxide synthase (NOS) activation by the PI-3K/Akt pathway [202]. It is also a diuretic.

Our group has studied the effects of Hibiscus sabdariffa Linnaeus (HSL)-fed infusion
on the OS in obese rats from a rat model of metabolic syndrome induced by high sucrose
ingestion. The treatment with the HSL infusion decreased the lipoperoxidation and in-
creased the total antioxidant capacity in the heart of MS rats and the activity of the enzymes
Mn, Cu/Zn-SOD, peroxidases, GST activity. It also increased GHS, NO3−/NO2− ratio.
When these animals underwent ischemia/reperfusion, it restored the cardiac mechanical
performance and coronary vascular resistance [203]. We also investigated the effects of
Hibiscus sabdariffa Linnaeus (HSL)-fed infusion on the fatty acid (FA) profile in liver of
metabolic syndrome (MS) rats. The treatment with the HSL decrease the disturbance of
lipid metabolism in the liver, and it reduced FA and NEFAs [204].

3.3.3. Garlic

Garlic has been consumed as a folk medicine all over the world for the prevention
and treatment of many diseases, including obesity, since ancient times. It is a plant from
the onion family (Allium sativum L.). Garlic effects are mainly due to the bioactive com-
pounds it contains, which include sulfur compounds, such as organic sulfides, saponins,
phenolic compounds, and polysaccharides [205]. Aged black garlic (ABG) is the source of
aged and rusty garlic. ABG contains bioactive and organosulfuric compounds, such as
diallyl thiosulfonate (allicin), E/Z-ajoene, S-allyl-cysteine (SAC), S-allyl-cysteine sulfox-
ide (alliin), β-resorcylic acid, pyrogallol, gallic acid, rutin, protocatechuic acid, quercetin,
polysaccharides, fructose, glucose, galactose, flavonoids, phenols, thiosulfate, pyruvate,
S-allylmercaptocysteine (SAMC), diallyl sulfide (DAS), diallyl disulfide (DADS), diallyl
trisulfide (DATS), gamma-glutamyl tripeptides, sulfur dioxide (SO2), tetrahydro-beta-
carboline derivatives, and diallyl tetrasulfide. These compounds of AGE are soluble in
oil and are responsible for the antioxidant activity via activation of the Nrf2-ARE path-
way [206,207]. The health benefits of garlic are caused by sulfur compounds, including
diallyl disulfide and s-allyl cysteine. The sulfur compounds from garlic enter the body
from the digestive tract and travel all over the body, where they exert their potent biological
effects. Garlic contains antioxidants that support the body’s protective mechanisms against
oxidative damage. High doses of garlic supplementation increase antioxidant enzymes in
humans and reduce OS in subjects with high blood pressure [208].

In addition to the antioxidant effects of garlic, it also has anti-inflammatory ef-
fects. Among the ABG compounds that show anti-inflammatory effects are pyruvate, 5-
hydroxymethylfurfural, and 2-linoleoylglycerol. Pyruvate can reduce bacteria lipopolysac-
charide, which induces the increase of the inducible nitric oxide synthase (iNOS), and
cyclooxygenase 2. In addition, 2-linoleoylglycerol suppresses the nitric oxide levels,
prostaglandin E2, and pro-inflammatory cytokines via inhibition of mitogen activated
protein kinases signaling pathways. The 5-hydroxymethylfurfural decrease adhesion
monocytic cell in human umbilical vein endothelial cells incubated with TNF-α through
the suppression of vascular cell adhesion molecule-1 expression, ROS generation, and
NF-kB activation. ABG may also reduce insulin resistance, triglyceride levels, serum total
cholesterol and increases the HDL levels. The possible mechanism action of garlic may be
through down-regulation of the mRNA and the protein expression of PPARγ, C/EBPα,
perilipin, adiponectin, plasminogen activator inhibitor 1, resistin, and TNF-α [209].

The risk of CVD, the anti-tumor and anti-microbial effects, and the reduction of
high blood glucose concentration by garlic are caused by the different compounds it
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possesses. However, the exact mechanism of all ingredients and their long-term effects are
not fully understood. Garlic also controls dyslipidemia by blocking cholesterol biosynthesis,
decreasing lipid, and fibrinogen levels, diminishing the oxidation of LDL. A possible
mechanism of action of garlic on dyslipidemia is by blocking the cholesterol biosynthesis
enzymes, by reducing the absorption of cholesterol at the gut level, and by deactivating
3-hydroxy-3-methylglutaryl-CoA reductase, which participates in cholesterol biosynthesis.
The substances of garlic that play a role in reducing lipid levels are allicin, SAC, and DADS.
Allicin is a sulfur component of garlic that is formed from the interaction between the alliin
enzyme and the substrate alliinase when the garlic is digested. It is a potent inhibitor in
cholesterol synthesis [210].

Garlic also improves the insulin resistance underlies non-alcoholic fatty liver dis-
ease [211], through modulation of lipid metabolism and OS [212]. It also lowers blood
pressure, blocks the progression of coronary artery disease, and elevates fibrinolytic activity.
Some of the beneficial effects of garlic on cardiovascular disease and inflammation are
related to the hydrogen sulfide (H2S) signaling pathway. H2S is endogenously produced by
cystathionine synthetase (CBS), cystathionine lyase (CSE), and 3-mercaptopyruvate trans-
ferase (3-MST) under physiological conditions. DATS, the most potent polysulfide derived
from garlic, significantly increased H2S. H2S as a lipophilic molecule, which is small and
penetrates cell membranes without requiring transporters. It acts as a signaling molecule
that controls important processes in the body. H2S interacts with many ion channels and
receptors, as Ca2+, KATP, Cl− channels, TRVP1, and TRPA1 receptors, modulating different
responses. In addition, it may regulate the Keap1-Nrf2 pathway, resulting in an increased
expression of AREs. H2S release by garlic compounds requires the interaction with other
low-molecular weight thiols, such as cysteine and GSH. Therefore, organic polysulfides
derived from garlic are transported through the cell membrane and interact with GSH to
generate H2S in red blood cells resulting in hyperpolarization in vascular smooth muscle
cells and causing relaxation of the vessels [213].

Additionally, H2S acts as a gas transmitter modulating damage in ischemia/reperfusion,
thus diminishing heart injury. It promotes the activity of adenosine triphosphate-sensitive
potassium channels (KATP) that affects several pro-inflammatory cytokines, and reduces
H2O2, while elevating GSH levels.

H2S donors may also influence triglyceride levels via activation of the flux of au-
tophagy in the liver, by blocking mTOR, which activates the autophagy pathway [214]. In
this regard, H2S, can prevent the activation of the NF-kB signaling pathway, which conse-
quently attenuates the production of pro-inflammatory cytokines. Other organosulfuric
compounds in aged garlic extract, such as SAC, are also mediators of H2S by increasing its
endogenous production, thus leading to the suppression of inflammation in obesity [206].

Our group has studied the antioxidant properties of aged garlic extract (AGE) in obese
rats from a rat model of metabolic syndrome and on cardiovascular functioning. AGE
returned levels of triglycerides, systolic blood pressure, insulin, leptin, HOMA index, and
advanced glycation end products to their control values. AGE also reduced glutathion
and GPx activity, and lipid peroxidation. There is increased vasocontraction and reduced
vasodilation in rats from a metabolic syndrome model, and AGE diminished it. Coronary
vascular resistance was increased in MS rats, and AGE decreased it. Thus, AGE diminished
MS-induced cardiovascular risk, through its antioxidant properties [215].

4. Summary and Conclusions

In summary, OS plays an important role in the pathophysiology of obesity, altering
the function of regulatory factors of mitochondrial activity, modifying the concentration
of molecules taking part in inflammation, which is associated with a large number and
size of adipocytes, promoting lipogenesis, stimulating the differentiation of preadipocytes
to mature adipocytes adipogenesis and playing an important role as agents that regulate
the energy balance in hypothalamic neurons that control appetite. Therefore, the natural
antioxidants (natural compounds found in many plants) play important roles controlling
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obesity. Important groups of compounds found in plants with antioxidant properties in-
clude (a) polyphenols, including phenolic acids, stilbenes, flavonoids (flavonols, flavanols,
anthocyanins, flavanones, flavones, flavanonols, and isoflavones), chalcones, lignans, and
curcuminoids (b) carotenoids, (c) capsaicinoids and casinoids, (d) isothiocyanates, and (e)
catechins. Examples of these compounds are resveratrol, quercetin, curcumin, ferulic acid,
phloretin, components found in green tea such (-)-epicatechin, (-)-epicatechin-3-gallate,
(-)-epigallocatechin, and (-)-epigallocatechin-3-gallate (EGCG), and components of Hi-
biscus Sabdariffa extracts that include anthocyanins, delphinidin, hibiscetin, quercetin,
and gossypetin), protocatechuic acid alkaloids, and L-ascorbic acid, among others. The
antioxidant activities depend on their scavenging of ROS activities and the prevention of
NF-κB activation, with subsequent reduction of the expression of target genes. Therefore,
natural compounds may have therapeutic potential for diseases mediated by oxidative
stress, particularly obesity. Controlled and well-designed clinical trials are still necessary
to better know the effects of these compounds.
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2. Zielińska-Bliźniewska, H.; Sitarek, P.; Merecz-Sadowska, A.; Malinowska, K.; Zajdel, K.; Jabłońska, M.R.; Śliwiński, T.; Zajdel, R.
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