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Senescent cells accumulate in different organs and develop a senescence-as-

sociated secretory phenotype (SASP), associated with the development of

age-related pathologies. The constitution of the SASP varies among cell

types and with the method of senescence induction; nevertheless, there is

substantial overlap among SASPs, especially the presence of pro-inflamma-

tory cytokines such as IL-1b, IL-1a, IL-6 and IL-8. These cytokines are

highly conserved among SASPs and are implicated in the development of

several cancers. Here, we report that ROCK inhibition by Y-27632 reduces

levels of IL-1a, IL-1b, IL-6 and IL-8 secreted by senescent normal and dys-

plastic oral keratinocytes without affecting the permanent cell growth

arrest. The data indicate some inflammatory genes downregulated by Y-

27632 remain downregulated even after repeated passage in the absence of

Y-27632. We propose ROCK kinase inhibition as a novel alternative to

current strategies to modulate the inflammatory components of the SASP,

without compromising the permanent cell growth arrest. This observation

potentially has wide clinical applications, given the involvement of senes-

cence in cancer and a wide range of age-related disease. It also suggests

care should be exercised when using Y-27632 to facilitate cell expansion of

primary cells, as its effects on gene expression are not entirely reversible.

Senescence is a cellular state characterized by permanent

cell growth arrest in response to different stressors [1]. It

is considered a potent tumour-suppressor mechanism

[2–4], because it can stop cells with somatic mutations

(considered as precancerous cells) from dividing and

acquiring further mutations that could enable replica-

tive immortality and cancer development [5]. Despite

this, senescence is associated with the development of

age-related diseases, including cancer [6,7]. Senescent

cells have a characteristic gene expression profile [8] and

secrete more than 40 pro-inflammatory molecules (cy-

tokines, chemokines, growth factors and proteases)

involved in intercellular signalling, a phenotype recog-

nized as the senescence-associated secretory phenotype

(SASP) [7,9]. The transcriptome and secretome of the

SASP vary among cell types and with aetiology of senes-

cence (telomere shortening, oncogene activation, etc.)

[10,11], which reflects the heterogeneity of the SASP.

Nevertheless, there is substantial overlap among SASPs,

especially with pro-inflammatory cytokines such as

interleukin (IL)-1b, IL-1a, IL-6 and IL-8, which are

highly conserved among SASPs [12].

In the context of tumorigenesis, senescence can be a

beneficial response, preventing cells with oncogenic

mutations dividing, thus preventing cancer. But the

development and dysregulation of the SASP can have

the opposite effects. Thus, different approaches, using a

variety of agents to target the SASP or key SASP factors
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have been employed, which includes the use of met-

formin [13], C75 (a fatty acid synthase inhibitor) [14],

p38MAPK inhibitors [15], rapamycin (mammalian tar-

get of rapamycin inhibitor) [16] and anakinra (exoge-

nous interleukin 1 receptor antagonist) [17].

Rho kinase (ROCK) is a downstream target of the

small GTP-binding protein Rho and has two isoforms,

ROCK1 and ROCK2 [18,19]. ROCKs belong to the

serine threonine kinase family which modulate various

important cellular functions, such as cell shape, motil-

ity, secretion, cellular growth, apoptosis, gene expres-

sion and cell cycle progression [20]. Because of that,

ROCK inhibitors have been proposed as novel thera-

peutics in a number of clinical scenarios, including

asthma [21], glaucoma [22], systemic lupus erythemato-

sus [23], cardiovascular diseases [24,25], bone healing

[26] and cancer [27].

IL-1 signalling is essential for the development of

the SASP and its oncogenic properties [28]. Both IL-

1a and IL-1b are able to increase secretion of SASP

factors such as IL-6 and IL-8, which have known

oncogenic properties [7,28,29], and IL-1a inactivation

in senescent cells impairs tumour progression [28].

Recently, the ROCK inhibitor Y-27632 was shown to

reduce IL-1-induced IL-8 secretion in Caco-2 cells, by

reducing the phosphorylation of p38 MAPK [30]. Sim-

ilar to this, another study reported Y-27632 reduced

LPS-induced IL-6 and IL-8 secretion in human gingi-

val fibroblasts, by inactivating the nuclear fac-

tor kappa-light-chain-enhancer of activated B cells

(NF-jB) and p38 MAPK pathways. Due to its ability

to inhibit IL-1 signalling and the importance of the

IL-1 pathway for the development of the SASP, we

investigated the effects of Y-27632 on presenescent

and senescent cells and examined whether Y-27632

could modulate the expression of commonly expressed

SASP factors related to cancer development. Y-27632

is commonly used in cell biology to facilitate the

manipulation of primary cell cultures, as treated cells

are able to proliferate indefinitely without genetic

alterations [31]. Nevertheless, it is not known how

reversible its effects are and what other consequences

may be in the cells. Thus, we also explored the

reversibility of Y-27632 effects.

Results

Y-27632 modifies the SASP from senescent

normal and dysplastic oral keratinocytes

To analyse the effects of ROCK inhibition on senes-

cent cells, we treated normal (NOK805) and dysplastic

(D6) senescent oral keratinocytes with a commonly

used ROCK inhibitor, Y-27632 [32]. First, we wanted

to assess whether Y-27632 was able to rescue senescent

keratinocytes from permanent cell growth arrest

(Fig. 1A-D). In both senescent NOK805 and D6 cell

cultures, a decrease in senescence-associated beta-

galactosidase (SA-b-Gal) staining was noted, but no

differences in SA-b-Gal-positive cells (P > 0.05) nor

consistent changes in p16 expression between Y-27632-

treated and nontreated cells were observed (Fig. 1E).

In both Y-27632-treated and nontreated cells (for both

NOK805 and D6 cells), there were no increases in

population doublings after exposure to Y-27632 or

nothing for 6 days, confirming that in neither cell type

Y-27632 was able recapitulate cell proliferation

(Fig. 1F).

To study the effects of Y-27632 on the SASP, senes-

cent NOK805 and D6 cells were treated for a period

of 24 h or 6 days with Y-27632 (10 lg�mL�1). Condi-

tioned media (CM) were collected, and secreted levels

of commonly expressed SASP factors (IL-6, IL-8, IL-

1a and IL-1b) [12] were analysed using ELISA. In

senescent normal oral keratinocytes (NOK), Y-27632

reduced IL-6, IL-8 and IL-1b levels significantly at

both time intervals (P < 0.05), apart from IL-1a levels

which were decreased only after 24 h of treatment

(Fig. 2A-D). In senescent dysplastic oral keratinocytes,

there was a significant decrease in IL-6 and IL-8 levels

after 24 h and 6 days of treatment with Y-27632

(P < 0.05). IL-1a levels also decreased but only after

6 days of treatment (P < 0.05), and no significant

changes in IL-1b levels were observed (Fig. 2E–H).

Changes in gene expression induced by Y-27632

are not always reversible

Next, we assessed whether changes in SASP cytokine

expression induced by Y-27632 are reversible upon Y-

27632 removal from culture conditions. For this pur-

pose, we used primary NOK (NOK805). NOK805

cells were passaged once without Y-27632, three times

with 10 lg�mL�1 of Y-27632 and then two more times

without Y-27632. Control cells (NOK805 cells without

exposure to Y-27632) were passaged the same number

of times. Primary keratinocytes have a limited lifespan

in culture, usually senescing between 8 and 12 pas-

sages. Because of that, SA-b-Gal activity was quanti-

fied at start and endpoint. Y-27632 significantly

reduced IL-1b and IL-8 mRNA transcripts, which

remained significantly lower even two passages after

the drug was removed (Fig. 3A,B). No significant

changes in IL-1a and IL-6 mRNA transcripts were

observed during or after treatment with Y-27632

(Fig. 3C,D).
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Chemically immortalized keratinocytes senesce

after Y-27632 removal from culture conditions

When studying the effects of Y-27632 on gene expres-

sion, we made the observation that SA-b-Gal activity

remained very low or undetectable when the cells were

grown under Y-27632 treatment. Once Y-27632 was

removed from culture conditions, a progressive increase

in SA-b-Gal activity was observed, suggesting a reacti-

vation of the senescence programme. Although one

study reported cell growth arrest after Y-27632 removal

[33], it was not demonstrated that the growth arrest

reported was senescence. Thus, we assessed the capabili-

ties of cells grown in the presence of Y-27632 to senesce

Fig. 1. Y-27632 does not rescue oral keratinocytes from senescence. (A, C) SA-b-Gal activity decreases after Y-27632 treatment in both

NOK805 (A) and D6 (C) senescent cells, but cells did not recapitulate cell growth. Scale bars are 50 lm. (B, D) p16 expression in senescent

NOK805 (B) and D6 cells (D) does not change after Y-27632. (E) SA-b-Gal quantification in senescent NOK805 and D6-treated and

nontreated cells. Data are shown as mean � SEM. (F) Population doublings of senescent NOK805 and D6-treated and nontreated cells.

Data are shown as mean � SEM. N = 3 independent experiments.
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after drug removal. Normally, NOK805 and D6 cells

senesce at passages 10 and 8, respectively. We added

10 lg�mL�1 of Y-27632 to the growth media of

NOK805 and D6 at passages 2 and 3, respectively, and

cultured them to passages 18 and 17 (cells were still pro-

liferative at this point) with no evidence of SA-b-Gal

activity (Fig. 4). We removed Y-27632 from culture

conditions at passages 12 (NOK805) and 11 (D6) and

observed cessation of cell growth after 1 passage in

NOK805 and 2 passages in D6. The cell growth arrest

corresponded with high SA-b-Gal activity (> 90%) and

p16 expression in both cell cultures (Fig. 4).

Fig. 2. Y-27632 modifies the SASP from senescent normal and dysplastic oral keratinocytes. (A-H) Effect of Y-27632 on secreted levels of

IL-6, IL-8, IL-1a and IL-1b from senescent NOK (A-D) and senescent dysplastic oral keratinocytes (E-H). Data are shown as mean � SEM

(N = 3 independent experiments, n = 2 technical replicates). Two-tailed t-test was used to calculate the exact P value. Data information:

*P < 0.05, **P < 0.005 and ***P < 0.0005.
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Discussion

During ageing, senescent cells accumulate in different

organs and develop a secretory phenotype, known as

the SASP, which has been related to the development

of age-related pathologies [34]. During early stages,

components of the SASP facilitate tissue repair,

immune surveillance and remodelling [35], but in

advanced stages, the persistence of the SASP nega-

tively impacts the microenvironment by enabling a

chronic inflammatory state dominated by IL-1, IL-6

and IL-8 [28] through cell and non-cell-autonomous

effects [36]. It has been experimentally demonstrated

that some senescent cells, such as fibroblasts, can pro-

mote carcinogenesis of keratinocytes via factors pre-

sent in the SASP [6,37]. Coppe et al. [7] showed that

the SASP from surrounding fibroblasts can induce

epithelial-to-mesenchymal transition and invasion of

premalignant breast epithelial cells by a paracrine

mechanism dependent on IL-6 and IL-8. Similar

results have been shown elsewhere [38]. The SASP also

favours the emergence, maintenance and migration of

cancer stem cells [39]. All of these reports provide evi-

dence of the pro-tumorigenic actions attributed to the

SASP through IL-6 and IL-8. Thus, the modulation of

SASP factors has promising clinical implications for

the treatment of premalignancies and cancer.

Various attempts have been made to reduce the

deleterious effects of senescent cells, whether by selec-

tive elimination of cells or by controlling the expres-

sion of specific SASP factors. Here, we report the

ROCK inhibitor Y-27632 decreases release of IL-6

and IL-8 SASP by senescent epithelial cells, which is

likely to be a consequence of IL-1 inhibition. Both IL-

1a and IL-1b are crucial for the development of the

SASP and are regulators of IL-6 and IL-8 secretion

through NF-jB activation [28,40,41]. IL-1a regulates

the SASP via interleukin 1 receptor 1 (IL-1R1), as

depleting cells of interleukin 1 receptor-associated

kinase 1 (a downstream kinase recruited after IL-1R1

activation) reduce IL-6 levels even after IL-1 stimula-

tion [42]. IL-1a depletion also reduces NF-kB activity,

which is important for IL-6 and IL-8 secretion [42].

We observed Y-27632 reduces IL-1a levels in both

normal and dysplastic cell cultures. A significant

decrease in IL-1b levels was also observed but only in

NOK, as in dysplastic oral keratinocytes the decrease

did not reach statistical significance. This is probably

because IL-1b levels were almost undetectable in senes-

cent dysplastic cells (between 0.005 and 0.07 pg/10 000

Fig. 3. Y-27632 modifies expression of IL-1-related genes which is not always reversible upon drug withdrawal. (A-D) IL-1b (A), IL-8 (B), IL-

1a (C) and IL-6 (D) gene expression during and after Y-27632 treatment in NOKs. Data are shown as mean � SEM (N = 3 independent

experiments, n = 3 technical replicates). One-way ANOVA with multiple comparisons was used to calculate the exact P value. Data

information: *P < 0.05, **P < 0.005, ***P < 0.0005 and ****P < 0.0001.
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cells). Importantly, we also showed that senescent cells

treated with Y-27632 do not restart proliferation,

which is important if we want to modify the SASP

without compromising the permanent cell growth

arrest (desirable in the context of cancer, but also in

other age-associated pathologies) [43].

Y-27632 is commonly used in cell culture as a facili-

tator of cell growth of primary keratinocytes due to its

ability to enhance proliferation and to prolong cell

lifespan. This is achieved by downregulation of kera-

tinization and epithelial cell differentiation genes, and

by upregulation of DNA replication, RNA processing,

cell cycle and division genes [33]. It has been previ-

ously reported that Y-27632 can affect IL-1 signalling

in proliferating cells [30,44], but whether its effects are

reversible upon drug withdrawal has not been

assessed. This is of importance as when Y-27632-trea-

ted cells are used for experimentation, Y-27632 is usu-

ally removed from cell culture conditions 24 h prior

experimentation, with the assumption that the effects

of the drug wear off after that time. We demonstrate

that gene expression affected by Y-27632 does not

recover immediately after Y-27632 withdrawal. In our

study, IL-1b and IL-8 RNA transcript levels did not

recover even after passaging the cells twice after Y-

27632 was removed (at least 10 days in culture). This

has to be taken into consideration when using cells

previously cultured with Y-27632 for downstream

experiments, as transcription of some genes might not

recover to pretreatment levels, with likely phenotypic

consequences.

The addition of Y-27632 to the growth media in

combination with a 3T3 fibroblast feeder layer has

been shown to indefinitely prolong keratinocyte lifes-

pan [31,45], but the indefinite lifespan is conditional

on the presence of both [31]. Nevertheless, it is

unknown whether keratinocytes previously treated

with Y-27632 are able to senesce once the drug has

been removed. There is only one report showing that

after Y-27632 removal keratinocytes stopped prolifer-

ating, but it is unclear whether the growth arrest was

due to terminal differentiation, quiescence or senes-

cence, as no senescence markers were assessed [33].

This is of importance as it would render Y-27632 suit-

able for use in experiments aiming to elucidate mecha-

nisms of senescence in primary cells. To date, there is

no single universal marker that can identify senescent

cells from nonproliferating, terminally differentiated or

quiescent cells. Instead, a combination of multiple

markers is used to identify senescent cells. We assessed

senescence by evaluating SA-b-Gal activity and p16

expression, two commonly used markers to identify

senescent cells [46]. We showed that keratinocytes pre-

viously treated with Y-27632 enter a nonproliferative

phase shortly after Y-27632 has been removed from

culture conditions, with high SA-b-Gal activity and

high p16 expression, consistent with a senescence

growth arrest.

Fig. 4. Oral keratinocytes immortalized with Y-27632 senesce after Y-27632 withdrawal. (A–D) Both NOK805 (A, B) and D6 (C, D) cells

senesce after removal of Y-27632 from culture conditions, as shown by the increase in SA-b-Gal (A, C) activity and p16 expression (B, D). In

the presence of Y-27632, NOK805 and D6 cells were still proliferative at passage 18 and 17, respectively (A, C). Scale bars are 50 lm

(N = 3 independent experiments).
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To summarize, we showed that ROCK kinase inhibi-

tion reduces the abundance of IL-1a, IL-1b, IL-6 and

IL-8 released by senescent cells, without compromising

the permanent cell growth arrest. Our data therefore

suggest that Y-27632 is able to suppress the SASP,

which could have wide clinical applications in cancer

and other age-associated diseases. Finally, our results

demonstrate care has to be taken when using Y-27632

to facilitate cell expansion of primary cells, as its effects

on gene expression are not entirely reversible.

Materials and methods

Cell culture

Isolation of primary NOK (NOK805) was done under the

University of Sheffield ethics (approval reference 3463).

The experiments were undertaken with the understanding

and written consent of each subject. The study methodolo-

gies conformed to the standards set by the Declaration of

Helsinki.

The mortal dysplastic oral keratinocytes (D6) used in this

study has been described previously [47]. Both D6 and

NOK805 cells were grown using lethally irradiated (a) 3T3

feeders as described previously [48] in low-glucose Dul-

becco’s modified Eagle medium (Sigma-Aldrich, Gillingham,

UK) containing 10% vol/vol FBS (HyClone FetalClone II

Serum; Fisher Scientific, Pittsburgh, NH, USA) and 21%

vol/vol F12 nutrient mix (Sigma-Aldrich), supplemented

with 2 mM L-glutamine (Sigma-Aldrich), 0.25 lg�mL�1 ade-

nine, 100 lg�mL�1 penicillin and 100 U�mL�1 streptomycin

(Sigma-Aldrich),10 ng�mL�1 epidermal growth factor

(Sigma-Aldrich), 1 mg�mL�1 human insulin (Sigma-

Aldrich), 4 lg�mL�1 hydrocortisone, 1.36 ng�mL�1 and

5 lg�mL�1 3, 3, 5-tri-iodothyronine/apo-transferrin and

0.7 mM Na pyruvate (Sigma-Aldrich). All cell cultures were

incubated at 37 °C with 5% CO2 and checked daily. Medium

was replaced every 2–3 days, and cells were passaged when

~ 80% of confluency was achieved.

Senescence-associated b-galactosidase staining

Twenty thousand cells per well were seeded in a 12-well

plate and left to adhere overnight. Senescence-associated b-
galactosidase activity was assessed using a Senescence

Detection Kit (ab65351; Abcam, Cambridge, UK) follow-

ing the manufacturer’s recommendations.

Treatment of proliferative oral keratinocytes with

Y-27632

Y-27632 (Abcam) was added to the growth media at a con-

centration of 10 lg�mL�1 and replaced every 2–3 days as

described previously [49].

Treatment of senescent cells with Y-27632

NOK805 and D6 cells were grown until replicative senes-

cence was achieved (confirmed by cessation of cell growth,

morphological changes and a SA-b-Gal staining > 95% for

each cell type). After confirmation, both NOK805 and D6

cells were treated for a period of 24 h or 6 days with

10 lg�mL�1 of Y-27632 (Abcam) and CM were collected.

Enzyme-linked immunosorbent assay (ELISA)

Secreted IL-6, IL-8, IL-1b and IL-1a were quantified using

ELISA DuoSet from R&D Systems (Minneapolis, MN,

USA) for human IL-6, IL-8, IL-1b and IL-1a detection.

The procedure was performed following the manufacturer’s

recommendation using 96-well plates. Absorbance was read

at 450 nm within 30 min of adding the stop solution.

Wavelength correction was done subtracting absorbance at

570 nm from absorbance at 450 nm.

Quantitative (q)PCR

Total RNA was extracted from cell pellets using the Isolate

II RNA Mini Kit (Bioline, London, UK) RNA Extraction

Kit following manufacturer’s instructions. RNA was quanti-

fied using a NanoDrop 1000 Spectrophotometer (Thermo

Fisher Scientific, Cambridge, UK). Five hundred nanograms

of isolated RNA was reverse-transcribed using the High

Capacity cDNA Reverse Transcription Kit (Applied Biosys-

tems, Foster City, CA, USA) following manufacturer’s pro-

tocol using a Peltier thermal cycler (MJ Research, San

Diego, CA, USA). cDNA was then stored at �20 °C.

Gene expression was quantified with a Rotor-Gene Q

Real-time PCR cycler (Qiagen, Manchester, UK) using

TaqMan chemistry. Quantification was calculated using

delta CT values normalized to B2M. Each reaction was

performed in triplicate. All reactions were performed in

total volumes of 10 lL loading 500 ng of cDNA. The stan-

dard thermal cycle settings for a reaction consisted in 40

cycles including a melt curve analysis (when using SYBR

Green). One cycle consisted of 95 °C for 10 s, 60 °C for

15 s and 72 °C for 20 s. TaqMan probes were bought from

Thermo Fisher Scientific and corresponded to IL-1a (Hs:

00174092), IL-1b (Hs: 01555410_m1), IL-6 (Hs: 00985639),

IL-8 (Hs: 00174103) and B2M (Hs: 4325797).

Western blotting

Protein was extracted by dissolving the cell pellets on an

appropriate volume of lysis buffer on ice. Lysis buffer that

consisted in one tablet of complete mini-EDTA-free pro-

tease inhibitor cocktail (Roche, Basel, Switzerland) and one

tablet of phosphatase inhibitors (PhosSTOP; Roche) dis-

solved in 10 mL RIPA Buffer (Sigma-Aldrich). Cell suspen-

sions were left for 30 min on ice and centrifuged at 19 700 g
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for 10 min at 4 °C. The supernatants were stored at

�20 °C, and the pellets were discarded. Protein quantifica-

tion was done using the bicinchoninic acid assay (Thermo

Fisher Scientific) according to the manufacturer’s protocol

using a Tecan spectrophotometer (Spark, M€annedorf,

Switzerland).

Twenty micrograms of protein was mixed with 29 SDS

lysis buffer, heated for 5 min at 95 °C and then loaded into

12% SDS/PAGE gels. Gels were run for � 90 min at 150 V

and transferred into nitrocellulose membranes using the

Trans-Blot� TurboTM Transfer System (Bio-Rad, Deeside,

UK) according to the manufacturer’s instructions. After

transfer, membranes were blocked with 5% milk (Marvel) in

TBS-T (Tris-buffered saline 10 mM, containing 0.5% Tween

(v/v)) for 1 h at room temperature in a rocking surface. The

membranes were then incubated for 1 h at room temperature

or overnight at 4 °C on a rocking platform with the primary

antibody at the working concentration in 5% TBS-T milk.

After incubation, membranes were washed three times for

10-min intervals with TBS-T and incubated with the sec-

ondary antibody at working concentration in 5% TBS-T

milk for 1 h at room temperature in a rocking platform. The

membranes were then washed two times at intervals of

10 min with TBS-T and one time with TBS for 10 min and

were ready for development. Membranes were developed

with enhanced chemiluminescence (ECL), using Pierce ECL

western blotting substrate (Thermo Fisher Scientific),

according to the manufacturer’s instructions. Signal was

detected using a Li-COR C-Digit Western blot Scanner and

IMAGE STUDIO Software (Lincoln, NE, USA).

Primary antibodies used were as follows: anti-p16

(1 : 1000, 108349; Abcam) and anti-b-actin (1 : 10 000,

A1978; Sigma-Aldrich).

Secondary antibodies used were as follows: anti-mouse

IgG HRP-conjugated (1 : 5000, GTX221667-01; GeneTex,

Irvine, CA, USA) and anti-rabbit IgG HRP-conjugated

(1 : 3000, 7074S; Cell Signalling, London, UK).

Statistical analysis

Statistical analysis was done using GRAPHPAD PRISM 8 Soft-

ware (San Diego, CA, USA). Comparison of two groups

was done using the unpaired t-test. When the comparison

included more than two groups, one-way ANOVA (analysis

of variance) was performed. A P value < 0.05 was consid-

ered as statistically significant. The number of biological

repeats is expressed as ’N=’ and the number of technical

repeats as ’n=’.
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