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ABSTRACT: A comparative study is presented. The method via
chemical variational autoencoder (VAE) and the method via
similarity search are compared, focusing on their generation ability
for new functional molecular design. Focusing on the natural
porphyra-334 as a model molecule, we generated three groups:
molecules of mycosporine-like amino acids (MAAs) as seeds
(GSEEDS), molecules generated via chemical VAE (GVAE) and
molecules gathered via similarity search (GSIM). The number of
molecules that satisfy the condition for the light absorption ability of
porphyra-334 in GSEEDS, GVAE, and GSIM are 52, 138, and 6,
respectively. The method via chemical VAE shows a promising
potential for future molecular design. By using quantum chemistry wave function properties for chemical VAE, we find new
molecules that are comparable to porphyra-334, including some with unexpected geometries. At the end, we show a group of
molecules found with this method.

1. INTRODUCTION

UV radiation (UVR) has become one of the subjects of
environmental and green chemistry because of the decrease of
the thickness of the ozone layer, which hinder the transmission
of UVR from the sun to the Earth’s surface. Sunlight is the
primary energy source of living organisms; however, UVR
damages human skin. It may act as the origin of skin cancers.
Therefore, the development of efficient sunscreens without
side effects is necessary. Porphyra-334 is a UV-resistive
molecule in nature. Mycosporine-like amino acids (MAAs),
including porphyra-334, are chemicals that prevent UVR-
induced damage. They have attracted attention due to having a
strong anti-UV effect.1−4

We reported previously a study on the molecular-level
mechanism in energy transformations from sunlight to heat in
porphyra-334 using first-principles molecular dynamics simu-
lations and by quantum chemistry.5,6 It revealed that the UV-
excited porphyra-334 releases its kinetic energy via vibrational
modes to surrounding water molecules. The structure of
porphyra-334, which contains many hydrophilic functional
groups, favors effective hydrogen bond formation with
surrounding water molecules. Thus, the vibrational modes of
water molecules absorb the energy from the excited molecule.
This study provided an interpretation of excellence in a natural
molecule, namely porphyra-334. An ambitious extension in
molecular science is the design of such molecules. Therefore,

we explore a design principle in an attempt to advance toward
the natural products.
The design and selection of environmentally friendly and

harmless materials and molecules are critical to establishing a
sustainable society. They are mandatory for the development
of functional molecules, drugs, and a wide range of materials.
To achieve the sustainable conditions, many expensive
experiments are in fact necessary. However, considering the
time and cost of the society, we must provide, in parallel,
computational support for the design and selection of these
molecules and materials. Historically, the methodology so far
has been based on the analogy of geometrical appearances
(shapes) in molecules and materials starting from a lead
molecule that is found more or less by chance. If such a
methodology was sufficient, we would not be suffering from
the current environmental problems.
Chemical space consists of the union of compounds. While

the number of all feasible compounds is extremely high,
estimated to be 1060 possible structures, only a small fraction
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can be processed and analyzed at the same time.7 Exploring the
new horizon of chemical space is a challenge for
cheminformatics and computational molecular design. An
alternative approach that does not depend on the appearance
or similarity of molecular shapes is necessary. We conducted a
comparative study to find search criterions other than shapes
and appearances, and the results are reported here.
One of the hopeful design approaches is learning from

nature-made molecules such as porphyra-334. Porphyra-334, a
molecule that survived in the long process of evolution, is
considered to be the goal of UV-resistive natural products. We
compare the approaches, one via the shapes and appearances
method and the other that uses something different, as a clue
to reach this goal. In fact, we are comparing the different
processes of lead-optimization. We have carried out a
comparison of the molecules generated via chemical variational
autoencoder (ChemVAE)8 versus the molecules gathered via
Similarity Search (SimSearch).9 Chemical VAE is a promising
approach proposed recently that is based on machine learning.
This provides great opportunities to generate a new molecule
and to explore the search method in chemical space. In
contrast, similarity search is a powerful conventionally applied
method. Notice that Winter et al. proposed the application of
chemical VAE in drug discovery,10 and Gao et al. reported the
availability of chemical VAE in application for the generation
of novel alternative drug candidates for eight existing market
drugs.11 We compare lead-optimization processes starting from
the natural product porphyra-334.
The group obtained via SimSearch is based on fingerprints

from a chemical database. This cheminformatics method is a
conventional search that is based on an existing chemical
space. The molecular generation via ChemVAE is based on
machine learning structural recognition; it transforms the input
data from SMILES into the vector representation. There is no
need to manually specify the mutation rules. As a result,
unexpected jumps (to desired properties) in chemical space are
possible. In the future, gradient-based optimization will be
performed in combination with Bayesian statistics.8

In Figure 1, the scheme of current study is presented. The
design approaches begin from the seeds, which are derivatives
of the molecule porphyra-334; hereafter, we will refer to them
as GSEEDS (in green in Figure 1). The first molecular group was
gathered via SimSearch, and the second was generated via
ChemVAE; hereafter, we will call them GSIM (in blue) and
GVAE (in orange), respectively.
For each group of molecules, SMILES data; 3D MOL data,

that is, (x, y, z) coordinates; and properties by quantum

chemical calculations were obtained. Data for each molecule
are represented by vector elements. Then, the following three
data mapping methods for GSEEDS, GVAE, and GSIM were
compared: (I) a machine learning (ML)-based comparison,
(II) the cheminformatic comparison from 3D MOL, and (III)
the quantum chemistry properties comparison from DFT
calculations (see right in Figure 1, light blue). In this paper, we
will show a demonstrative result that the new lead-
optimization process produces promising results via Chem-
VAE, especially in connection with quantum chemical
calculations. We believe that the current study provides an
example of machine learning applications in the search for
desired molecule from the vast chemical space.

2. MATERIALS AND METHODS

2.1. Preparation of Three Molecular Groups. The
Seeds Structures (370) from MAAs Molecules (19) (GSEEDS). A
variety of UV-absorbing molecules, termed mycosporine-like
amino acids (MAAs), have been reviewed by several
researchers.1−3,12−14 The MAAs from a marine organism are
imine derivatives of mycosporines, as shown in Figure 2a. The
MAA motif contain an amino-cyclohexen imine ring linked to
an amino acid, an amino alcohol, or an amino group, which
absorbs UV light from 320 to 362 nm12 and shows
photoprotective and antioxidant functions.
As an extension of a previous study on porphyra-334,6 we

study here the same family of molecules with a stable structure.
Taking the ubiquitous photosensitive component of marine
algae in a liquid water environment into account, we
systematically and exhaustively obtained all possible structural
isomers and tautomers that existed in the aqueous phase. Thus,
derived from the 19 molecules shown in Figure 2a as porphyra-
334 derivatives, 370 seeds structures (GSEEDS) were generated
on account of the equilibrium in water. From the thus-
prepared GSEEDS, two groups of molecules, namely GVAE and
GSIM, were obtained via the ChemVAE method and the
SimSearch method, respectively.
Given the excellent properties of porphyra-334 in UV energy

absorption and its dispersion mechanism,1,6,14−18 we must
include the protonated MAA motifs. The typical examples of
protonated MAA motifs are shown in Figure 2b (see the SI for
others). Thus, we added structures reflecting protonated and
zwitterionic molecules (the 99 structures, which are included
in the total 370 of GSEEDS; see the SI).

2.2. Molecular Generation via ChemVAE (GVAE).
Goḿez et al. reported a deep neural network model consisting
of three coupled functions: an encoder, a decoder, and a

Figure 1. Scheme of the comparative study.
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predictor. It provides a machine learning-based de novo
molecular design method.8 The code and full training data
sets are disclosed at their GitHub page.19 This model was
trained on hundreds of thousands of existing chemical
structures, which allowed us to automatically generate novel
chemical structures. Owing to this system, we could carry out
the current study, that is, the group of molecules GVAE

generated via ChemVAE.
Their autoencoder architecture is illustrated in Figure 3.

Notations follow those from the paper by Goḿez et al.8 This
trained autoencoder system has three latent representations: an
embedding vector (X_1), a latent vector (z_1), and

embedding vector (X_r); hereafter, we will call them X_1,
z_1, and X_r, respectively. During the training, the canonical
SMILES strings were assigned as an input to avoid confusion
among chemically equivalent string representations. The
encoder and the decoder shown in Figure 3 are recurrent
neural networks (RNNs).
The encoder RNN that processes from a given SMILES

string and the decorder RNN that processes from a given X_r
are stochastic operations. As a result, the same input (smi) may
be decoded into different outputs (smi_r), reflecting the
different intermediates (X_1, z_1, or X_r). There is a
possibility that the decoder RNN (from X_r to SMILES

Figure 2. (a) Structures of 19 natural MAAs molecules. (b) Examples of protonated MAA motifs of porphyra-334 (see the SI for others).
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(smi)) might result in chemically invalid strings. We collected
the generated molecules, 2000 per one SMILES decoding
attempt, iteratively for the ChemVAE method. After removing
duplicated strings, we obtained 550784 strings for which we
employed RDkit20 to validate the chemical structures of the
output molecules and discard invalid ones. Thus, we finally
obtained 2454 SMILES strings. Meaningless structures were
ruled out for the following reasons: having less than four heavy
atoms, failing generate a 3D structure for quantum chemistry
calculations, having unrealistic termination during quantum
chemistry calculations, or having an unstable radical species. In
total, 1572 molecules were excluded. Finally, 882 molecules
(GVAE) were generated via ChemVAE (in orange, left in Figure
1).
2.3. Similarity Search by Fingerprint (GSIM). The

SimSearch procedure in chemical databases is a well-known
and widely used process.9,21,22 We downloaded the “Anno-
tated” subset of 1 458 577 582 molecules from ZINC15 (as
shown in Figure S23).23,24 It includes compounds that are in
catalogs (but not for sale). We did not apply any other specific
standardization to the molecular database. We gathered
SMILES strings in accordance with Tanimoto similarity by
utilizing MACCS, ECFP, and FCFP fingerprints (see the SI for
details). ZINC15 is a research tool for investigators to search
chemical and biological targets. Notice that fingerprints can be
used for applications such as the current SimSearch as well as
for molecular characterization, molecular diversity, and
chemical database clustering. The MACCS keys have 166 bit
structural key descriptors (vector with 166 elements) in which
each bit is associated with a SMARTS pattern.25,26 Extended-
connectivity fingerprints (ECFPs) are circular topological
fingerprints designed for various wide molecular studies and
structure−activity modeling.27,28 The ECFP encodes sub-
structure patterns from molecules to a bit string length of 1024
(the length can be varied). The FCFP is a variant of this ECFP
that is intended to capture precise atom environment
substructural features. The FCFPs are intended to capture
more abstract role-based substructural features.
These keys were implemented in the open-source

cheminformatics software package RDkit. We gathered 1125
compounds from a database derived from GSEEDS (in green in
Figure 1). We removed some chemicals because of their failure
to prepare 3D structures for quantum chemistry calculations.
At the final stage, we obtained 1094 chemicals (GSIM) to be
considered in the chemical space exploration (in blue, left in
Figure 1).
2.4. Quantum Chemistry Properties. To prepare

geometric data for quantum chemistry calculations, the

MMFF94 force field implemented with RDkit was applied to
construct 3D structures for GSEEDS, GVAE, and GSIM. We then
performed the calculations for the ground and excited states
using density functional theory (DFT). We used the B3LYP
hybrid functional and the 6-31G(d) basis sets. The solvent
effect of water was taken account by the integral equation
formalism of the polarization continuum model (IEFPCM).
We used the Gaussian 16 program package.29 We first carried
out the geometry optimizations of the ground states, starting
from the structure generated by RDkit. We then performed the
single-point calculation of the excited states using time-
dependent density functional theory (TD-DFT).
As shown in Table 1, we extracted 23 properties from the

calculated results, such as total energies, the HOMO (highest

occupied molecular orbital)−LUMO (lowest unoccupied
molecular orbital) gap energies, three orbital energies around
the HOMO and the LUMO, viral coefficients, dipole
moments, quadrupole moments, the degrees of freedom in
the structures, the trace of the quadrupole moment, and the
coordinate invariants of the quadrupole moment (Table 1).
Ground-state properties are selected for versatility. In total,
there are 84 elements for each vector. Then, we carried out the
PCA analyses, to be mentioned later.

2.5. Mapping. Representations of various vectors in
chemical space7,31 were applied for the comparison or
exploration of the internal relations. It is necessary to map
higher-ordered complex information onto a low-dimensional
space. One typical mapping method is principal component
analysis (PCA),32 which is used for exploratory data analysis
and to make predictive models. It is commonly used for
dimensional reduction by projecting each data point onto only
the few principal components to obtain lower-dimensional
data. We show the first two principal components, and the
cumulative contribution rate data are shown in the SI.

3. RESULTS AND DISCUSSIONS
3.1. Representation for Three Groups: GSEEDS, GVAE,

and GSIM. We present here the results obtained via ChemVAE
generation and SimSearch mining. The comparison of the

Figure 3. Scheme of the current Chem VAE.

Table 1. Quantum Chemistry Properties Obtained from
DFT Calculations and Some Physical Chemical Properties

detail
number of
elements

estimated molecular volume30 1
difference of the orbital energies (eigen values) of the
HOMO and LUMO

1

quadrupole moment 3
total dipole moment 1
total energy and the viral coefficient 1
electronic spatial extent 1
absorption wavelength (nm) of the nth excited state 20
absorption energy (eV) of the nth excited state 20
oscillation strength of the nth excited state 20
number of electrons 1
orbital energy (eigen value) of first through third highest
occupied molecular orbitals

3

orbital energy (eigen value) of first through third lowest
unoccupied molecular orbitals

3

rotational constants 3
degree of freedom 1
number of (H, C, N, O, and S) atoms 5
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three groups (GSEEDS, GVAE, and GSIM) was carried out by
mapping three different viewpoints: (I) ML-based, (II)
cheminformatics, and (III) quantum chemistry (right in Figure
1). It is noteworthy that we used the ChemVAE method again
in the mapping process. That is, in the process of (I) the ML-
based process (Figure 1), we use SMILES strings for GVAE and
GSIM as the input (the second time) for the ChemVAE
procedure, then we obtained output vectors of X_1, z_1, and
X_r with which we carried out the PCA mapping . The results
of X_1 and z_1 from the ChemVAE vectorization are shown
below. For the X_r results, see the SI.
3.2. Mapping (I): ML-Based Comparison. Two chemical

space representations were mapped by PCA via ChemVAE
vectorization as shown in Figure 4 a and b (see the SI for the
X_r results). At first, the mapping results for the vectors (X_1)
are shown in Figure 4 a, where GVAE is distributed slightly

closer to GSEEDS than GSIM. For the second mapping, the
vector (z_1) is shown in Figure 4 b. Now, we observe that
GVAE is distributed distinctly closer to GSEEDS than GSIM. The
PCA mapping is one of the various methods used. We stay
with the method due to its well-known versatility.33,34 We also
show the results from t-SNE in Figures S15−21 in the SI. The
main arguments are the same.

3.3. Mapping (II): Cheminformatics Comparison.
Chemical space is usually described by molecular descriptors,
so-called descriptor space. We adopted the ECFP fingerprint
for these three groups, namely GSEEDS, GVAE, and GSIM. The
PCA mapping results are shown in Figure 4 c (see the SI for
results by MACCS and FCFP). The results show that GVAE is
closer to GSEEDS than GSIM. Interestingly, the groups GVAE and
GSIM are located in different areas of the chemical space. This
result shows that the two methods, ChemVAE and SimSearch,

Figure 4. Mapping of principal components analyses for three groups, namely GSEEDS (green), GVAE (orange, via ChemVAE) and GSIM (blue, via
SimSearch), using (a) ML-based vector X_1, (b) ML-based vector z_1, (c) cheminformatics (ECFP), and (d) (III) quantum chemistry.
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provide two distinct groups of molecules, suggesting the high
potential of ChemVAE as a method for searching through
criteria different from similarity toward new areas in chemical
space.
3.4. Mapping (III): Quantum Chemistry Properties.

The chemical space spanned by vectors consisting of quantum
chemistry properties is expressed by PCA and shown in Figure
4 d. It can be seen from this result that the distribution of GVAE
is located closer to GSEEDS than GSIM. Contrasting with the
other mappings shown above, as shown in Figure 4d, the
distribution of the two groups GVAE and GSIM scarcely overlap.
Therefore, we can infer the fact that the molecules in GVAE are
differentiated well from those in GSIM when these vector
elements consist of quantum chemistry properties.
The results shown in Figure 4a−d indicate why it is so

critical that we adopt a relevant vector for each molecule. As
shown in Figure 4d, we have arrived at a mapping that enables
us to distinguish among three groups of our samples. By
adopting a vector whose elements consist of quantum chemical
properties, reflecting the wave function of each molecule, we
can differentiate the groups well. The results suggest that we
can obtain molecules (in orange) that might be comparable to
porphyra-334. These differentiated molecules may potentially
be new molecules.
Here, we had better mention that there may be another

possibility for the vector selection. The relevant vectors led us
to the best mapping in the molecular space to find molecules
comparable to porphyra-334. What is a rational procedure to
find such an optimal vector? To the best of our knowledge,
there is no established methodology. This is a very important
issue in future. Recently, some ML-based fingerprints have
been published. Among them is the promising fingerprint
Mol2vec,35 which has been applied for drug discovery,36,37

solvation free energy prediction,38 the prediction of pKa values
of CH acids,39 and other material designs. Examples include
other ML-based fingerprints such as one that uses graph-
convolution models40 and another proceeds by the evolution
of the embedding step41 (including an application for SAR/
SPR). Obtaining a rational procedure for creating a linkage
between classical fingerprints and ML-based fingerprints will
be a future subject.
3.5. Differences among the Three Groups from a

Quantum Chemistry Point of View. The purpose of the
current study is to find excellent molecules. Therefore, we
examine the obtained molecules in three groups from a
physical chemistry point of view. The MAAs are known to
possess high stabilities even under relatively strong UV
irradiation.42 The absorbed energy is expected to be dissipated
very efficiently to the surrounding water environ-
ment.5,7,29,31,42−45 It is the typical mechanism for porphyra-
334 and its charasteristics of UV-resistance and the non-
destructive release of energy properties.
Among many properties of porphyra-334, we must consider

the critical ones, that is, its hydrophilic property (log P),
absorption wavelength (λmax), and oscillator strength ( f).
Although log P is widely used, we focus here on quantum
chemistry properties and did not include log P. The results
with log P included did not change our conclusion described
below. The details of the results and arguments for log P are
explained in the SI. Since the excitation wavelength (λmax) in
UV−visible range and the oscillator strength ( f) are the
indispensable properties for the optical property in porphyra-
334, we employed the TD-DFT method to calculate the

excitation energies and oscillator strengths of the three groups
GSEEDS, GVAE, and GSIM.
Among the various UV regions, namely UVB (280−315

nm), UVA1 (315−340 nm), and UVA2 (340−400 nm), we
filtered molecules whose calculated spectral characteristics
were in the 300−350 nm range, reflecting the absorbing range
of porphyra-334. We paid special attention on the zwitterionic
isomers, since the protonated MAA motifs for photoprotective
and antioxidant functions are critical isomers, as was reported
in our previous study.6 We extracted charge-neutral and
zwitterionic forms of GSIM via SimSearch and GVAE via
ChemVAE. The histogram of the calculated oscillator strengths
is shown in Figure 5. Thus, the number of molecules that

satisfied the threshold of spectral properties f > 0.1 and 300 < λ
< 350 for GSEEDS, GVAE, and GSIM, are 52, 138, and 6,
respectively. These molecules were finally filtered and
scrutinized described below.

3.6. Mapping of the Final Selected Molecules. The
results shown in Figure 4 for ML-based, cheminformatics-
based, and quantum chemistry-based mappings were filtered
by the criteria f > 0.1 and 300 < λ < 350, and results are shown
in Figure 5. We then focused on the selected molecules and
examined the features of these molecules. The results are
shown in Figure 6.
All the plots in Figure 6 satisfy the conditions f > 0.1 and

300 < λ < 350. As shown in Figure 6, the data points (each plot
corresponds to each molecule expressed by one vector from
X_1 or z_1 of the ChemVAE vectorization) cannot be clearly
divided into clusters. This is quite natural in the sense that the
results at the X_1 or z_1 level still correspond to these bu way
of machine learning.
By contrast, the data shown in Figure 6 c show relatively

separated features in two clusters. One is the GVAE group
(orange) and the other is the GSEEDS (green) and GSIM (blue)
groups. In the latter, the two groups (GSEEDS and GSIM) are
mostly overlapped. These results suggest the possibility that we
can somehow explore new chemical space using vectors
generated via ChemVAE, even though at this stage the
elements consist only of structural information and do not yet
include quantum chemistry information.
At the final stage, as shown in Figure 6d, the plots show a

promising feature. These data were generated via the vectors

Figure 5. Histogram of calculated oscillator strengths in the 300 < λ <
350 nm range for the three groups, namely GSEEDS (green), GVAE
(orange, via ChemVAE), and GSIM (blue, via SimSearch).
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whose elements consisted of quantum chemical properties.
The GVAE (orange) data show a distribution with a large
diversity, whereas the other two, GSIM (blue) and GSEEDS
(green), are covered by the GVAE (orange) zone; they stay in
one section and do not spread, suggesting their properties have
less diversity. From the aspects shown in Figure 4d and Figure
6d, as a matter of fact, many molecules belonging to GSIM were
rejected by the filtration criteria ( f and λ). When we take the
quantum chemical properties into account, we can explore the
chemical space more widely via ChemVAE than via SimSearch.
It may be relevant to cite here the arguments given by

Goḿez et al.8 and various researchers46−49 as well as the
reported studies in which quantum chemical properties were
predicted by machine learning.50,51 Moreover, some studies
using transfer learning have been published.47,52 A future
subject remains, specifically how to find new strings of

molecular representation beyond SMILES. Currently we are
using only SMILES strings, therefore the performance of
machine learning for chemical information is still limited. It is
noteworthy that recently some research examples beyond
SMILES have appeared, such as those from graph theory51 and
those from linear string.46

The current mapping in Figure 6d shows that quantum
chemical properties do extend a new horizon of the search area.
Methodologies based on molecular machine learning (Chem-
VAE) are thus promising when we add quantum chemical
properties.
The excellence of porphyra-334 may not be limited only to

its intramolecular properties. The excellence may exist further
in its ability to form intermolecular interactions such as subtle
hydrogen bond networks. If we can include molecular
information derived from other dimensions such as wave

Figure 6. Filtered molecules ( f > 0.1 and 300 < λ < 350 nm) from those shown in Figure 4 for (a) X_1, (b) z_1, (c) ECFP (fingerprint), and (d)
quantum chemistry.
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functions and responsive properties to the environment instead
of solely structures, the potential of machine learning will be
further realized. The inclusion of such properties will be a
future subject.
3.7. De Novo Molecules Generated via ChemVAE.

According to calculated spectral properties and the mappings
after filtration, we have now demonstrated a promising
performance of the method via ChemVAE. We show
representative examples of the filtered and selected final
structures from GVAE in Figure 7.
To show the currently obtained promising feature of

ChemVAE molecular generation together with quantum
chemistry properties, we display eight representative molecules
in Figure 7. Among the filtered (selected) molecules shown in
Figure 6d, these eight representative molecules are located in
the vicinity of GSEEDS plots. The other GVAE molecules are also
shown in the SI. By contrast, only six molecules from the GSIM

group satisfied the calculated spectral requirements (see the
SI).
As shown in Figure 7, the presence of molecules with a five-

membered ring is noteworthy. In their molecular molecular
paper, Losantos et al.17,18 reported the protonated MAA motifs
and also proposed protonated five-membered-ring motifs.
Since natural bioactive MAAs have six-membered-ring motifs,
their rational design shows the significance. Indeed, the thus-
proposed five-membered-ring photoactive molecules were not
registered in the database of ZINC15 until now. Even among
the molecules in the GSIM group obtained via SimSearch, we
could not find the molecules that they designed. By contrast,
we generated the molecules with five-membered rings, as
shown in Figure 7, in the GVAE group via ChemVAE.

4. CONCLUSIONS
This study reports the results of a comparative study between
the ChemVAE method and the SimSearch method, which was
focused on their generation ability for new functional
molecular designs. Defining the natural porphyra-334 as a
model molecule, we generated three groups: molecules of
MAAs as seeds, molecules generated via ChemVAE, and
molecules gathered via SimSearch (GSEEDS, GVAE, and GSIM,
respectively). There were 52, 138, and 6 molecules that
satisfied the condition of the light absorption ability of
porphyra-334 at f > 0.1 and 300 < λ < 350 in GSEEDS, GVAE,
and GSIM, respectively. The ChemVAE method shows
promising potential for future molecular design capability.
When we use quantum chemistry properties for the ChemVAE
method, we can obtain molecules significantly comparable to
porphyra-334, including unexpected ones (five-membered
ring).

4.1. Data and Software Availability. We used the
Gaussian 16 program package29 for the quantum chemistry
calculations. We used RDkit20 for the 3D structure
construction (MMFF94 force field), the fingerprints
(MACCS, ECFP, and FCFP), and the Tanimoto similarity
of the fingerprints. We used the OpenBabel toolkit53 for the
data I/O. The multivariate analysis and mapping are
proprietary but not restricted to our program.
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Figure 7. Selected molecular structures from GVAE.
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