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Interleukin-18 (IL-18) is a potent pro-inflammatory cytokine involved in host
defense against infections and regulates the innate and acquired immune

response. IL-18 is produced by both hematopoietic and non-hematopoietic

cells, including monocytes, macrophages, keratinocytes and mesenchymal

cell. IL-18 could potentially induce inflammatory and cytotoxic immune cell

activities leading to autoimmunity. Its elevated levels have been reported in the

blood of patients with some immune-related diseases, including rheumatoid

arthritis, systemic lupus erythematosus, type I diabetes mellitus, atopic

dermatitis, psoriasis, and inflammatory bowel disease. In the present review,

we aimed to summarize the biological properties of IL-18 and its pathological

role in different autoimmune diseases. We also reported some monoclonal

antibodies and drugs targeting IL-18. Most of these monoclonal antibodies and

drugs have only produced partial effectiveness or complete ineffectiveness in

vitro, in vivo and human studies. The ineffectiveness of these drugs targeting IL-

18 may be largely due to the loophole caused by the involvement of other

cytokines and proteins in the signaling pathway of many inflammatory diseases

besides the involvement of IL-18. Combination drug therapies, that focus on

IL-18 inhibition, in addition to other cytokines, are highly recommended to be

considered as an important area of research that needs to be explored.
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Introduction

Interleukin 18 belongs to the IL-1 family of cytokines,

which is a group comprising 11 member cytokines that

promote the activity of the innate immune system (1, 2).

IL-18 stimulates both the innate immune and acquired

immune responses. It acts on T helper 1 (Th1) cells,

macrophages, Natural killer (NK) cells, natural killer T

(NKT) cells, B cells, dendritic cells (DCs), and even non-

polarized T cells to produce interferon gamma (IFN-g) in the

presence of IL-12. In the absence of IL-12, IL-18 with IL-2,

induces type 2 T helper (Th2) cytokines from NK cells, NKT

cells with a CD4+ phenotype, and even committed Th1 cells.

Additionally, IL-18, in synergy with IL-3, induces basophils

and mast cells to produce IL-4 and IL-13 (3, 4). IL-18 displays

its pleiotropic action depending on its cytokine milieu

suggesting its important pathophysiological role in health

and disease (5).

The activity of IL-18 in both the innate and adaptive

immune response implicates it in several inflammatory and

autoimmune conditions (6). IL-18 levels are usually elevated

in psoriasis (7), systemic lupus erythematosus (SLE) (8, 9),

hypertension, chronic kidney disease (10), multiple sclerosis

(MS) patients (11, 12) and Coronavirus disease 2019

(COVID-19) (13, 14) which correlates with caspase-1 levels

(15). In a mouse model of autoimmune diabetes, IL-18

messenger RNA (mRNA) expression strongly correlated

with destructive insulitis most likely due to IFN-g secretion

(16, 17). It was also shown that IL-18-/- NOD mice developed

less reactive islet cells than NOD wild type mice (18). To

further strengthen its role in autoimmune diseases, IL18-/-

mice showed better disease outcome in Collagen-induced

arthritis model in mice (19). In addition, IL18-/- mice

did not develop disease in animal models of experimental

autoimmune encephalitis (20, 21) and experimental

autoimmune myasthenia gravis (EAMG) (22). Gene

expression analysis in pregnant women revealed more than

four times higher expression of IL-18 in patients experiencing

recurrent miscarriage (23). This clearly shows that IL-18

cytokine has a role in the progression or development of

some inflammatory and autoimmune diseases.

Since the introduction of the hybridoma technique in 1975

by Kohler and Milstein (24), more than 550 therapeutic

antibodies targeting specific antigens have been studied and at

least 70 approved for clinical use (25). Generation of humanized

antibodies (26) brought about great advances in this field (27).

These antibodies and other biologics can bind to their antigens

with high fidelity and affect disease processes or by modulating

immune responses (28) and hence, provide powerful tools in the

management of chronic conditions such as cancer and

autoimmune diseases (29).
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In this review, we will provide some information about the

production, activation, signaling, and pathophysiology of IL-18.

We will also report and discuss the used monoclonal antibodies,

inhibitors, and drugs targeting this cytokine.
Interleukin 18 characteristics

IL-18 and other related cytokines

IL-18 was initially called “IFN-g‐inducing factor” (30) due
to its action to induce IFN-g secretion in CD3-stimulated Th1

cells leading to liver toxicity. Subsequently, it was refined from

mouse liver cells treated with Proprionibacterium acnes and

lipopolysaccharides (LPS), with the isolate then renamed IL-

18 (31, 32). At first, the liver toxicity resulting from the

induction of IFN-g secretion was attributed to IL-12, but

was found to be prevented by an IL-18 antibody. Further

research showed that IL-18 deficient mice primed with LPS

did not develop liver damage (33, 34). The mechanism for the

liver toxicity was found out to be the induction of Fas ligand

(FasL) expression and tumor necrosis factor alpha (TNF-a)
production in liver NK cells (33–36). Human IL-18 is a 193

amino acid-protein while mouse IL-18 consist of 192 amino

acids (30, 37).

Unexpectedly, IL-18 was found to share similarities with IL-

1b and the IL-1 family in 4 ways: 1) homology in the amino acid

sequence 2) they share a common b-pleated sheet structure, 3)

they are all secreted as an inactive precursor, and 4) they have

similar signaling pathways (3, 38–40). Apart from these

similarities, other features between IL-18 and IL-1b are

remarkably distinctive. As the name indicates, IL-1 was the

first member of the family to be discovered and it has been

extensively studied in various immune processes and disease

conditions (1).

The receptors of the IL-1 family contain an extracellular

immunoglobulin domain and a Toll/IL-1 receptor (TIR)

cytoplasmic domain. Binding of the ligand to the appropriate

receptor recruits a second receptor subunit. The receptor

heterodimer formed and the alignment of two TIR domains

facilitates the recruitment of myeloid differentiation primary

response protein 88 (Myd88), IL-1R-associated kinase 4

(IRAK4), TNFR-associated factor 6 (TRAF6), and other

signaling molecules. The interaction usually engages the

activation of the nuclear factor-kB (NF-kB) and mitogen-

activated protein kinase (MAPK) pathways (41–43).

The members of the IL-1 family of cytokines are released in

response to Toll like receptor (TLR) signaling to amplify the

danger messages to other cells that cannot recognize microbial

antigens (due to the lack of certain receptors). Basically, these

cytokines stimulate the innate immune system and serve a
frontiersin.org
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critical link between innate immune responses and the

appropriate adaptive immune response. The members of the

IL-1 family, IL-18 inclusive, are produced by neutrophils,

monocytes, and macrophages. The IL-1 family members also

respond to stimulation by IL-1, IL-18, and IL-33 (44–47).
Cell source, production and activation
of IL-18

Unlike members of the IL-1 family of cytokines, IL‐18 gene

in humans is located on chromosome 11, and in mice it is found

on chromosome 9. The gene contains 7 exons with two distinct

promoters on exon 1 and 2 including an interferon consensus

sequence binding protein and a PU.1 binding sites (a

hematopoietic-specific transcription factor) (3). Another

defining feature of the IL-18 gene unlike other cytokine genes,

is that it has few RNA‐destabilizing elements, and this translates

to an unusually stable cytokine expression. IL‐18 gene encodes

for a 193 amino acid-24 kDa inactive precursor localized in the

cell cytoplasm. TLR binding of Pathogen associated molecular

patterns (PAMPs) and activation of the NF‐kB pathway induces

transcription of IL‐18 precursor (48).

Many cell types are capable of producing IL-18 including

hematopoietic and non-hematopoietic cells (Figure 1). It

was originally thought to be secreted only by Kupffer

cells and liver-resident macrophages at resting stage. The
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IL‐18 precursor is constitutively produced in circulating

monocytes, resident macrophages, and DCs, unlike IL‐1b
which is not found in healthy individuals (39, 49). The IL‐

18 precursor is also found to be released by most endothelial

cells, keratinocytes, osteoblasts, most intestinal epithelial

cells, and mesenchymal cells (48). IL‐18 can also be

discharged in its precursor form from dead cells which can

be acted upon by neutrophil proteases such as proteinase 3

(50) into its active form.

As with other members of the IL-1 family, IL-18 cytokine

is produced in the cytoplasm as an inactive precursor named

pro-IL-18. To be secreted, it requires proteolytic processing

into biologically active IL-18 (3, 30, 51). It was further

revealed that cleavage of pro-IL-18 (just like pro-IL-1b)
into mature IL-18, relied on the action of caspase-1, an

intracellular cysteine protease produced in the NACHT-

LRR and pyrin domain-containing protein 3 (NLRP3)

inflammasome. This complex consists of NLRP3, pro-

caspase-1, and apoptosis-associated speck-like protein

containing a caspase recruitment domain (adaptor molecule

ASC) (52–55). Caspase 1 can be activated by several

established inflammasomes and could belong either to the

AIM2‐like receptors, Nod‐like receptors, or the TRIM family

containing either a PYD or a CARD domain (56). The

activation of Caspase 1 results in pyroptosis - a cell‐death

program, which prompts the membrane pores formation and

the release of mature IL‐1b and IL‐18 (5, 48). This is why
FIGURE 1

The cell sources and signaling mechanism for Interleukin 18.
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many researchers use IL-18 as a marker of inflammasome

activation (57)

It is widely believed that other caspase-mediated pathways

are involved in IL-18 production because treatment with FasL

led to stimulation of Fas-expressing macrophages to produce

active IL-18 independent of caspase-1 involvement (58). It was

showed that caspase-8 was involved in the Fas mediated

noncanonical IL-1b and IL-18 maturation (59). Proteases that

can activate IL-18 without the contribution of the

inflammasome include proteinase 3 (50), chymase (60), and

granzyme B (61). Recently, mitochondrial reactive oxygen

species (mROS) have been shown to be critical in T-cell

receptor (TCR) independent activation of IL-18 via

downstream activation of STAT4 and NFkB which is regulated

by Fas/FasL signaling (62)
IL-18 signaling

IL-18 receptor (IL-18R) is requisite for IL-18 signaling. IL-

18R is expressed in T cells and NK cells which is essential for

IFN-g production via STAT4 (Signal transducer and activator of

transcription 4) signaling (63–66). It is also expressed by non-

immune cells such as neurons and epithelial cells but in this case,

it is involved in cell differentiation and survival (5).

The IL-18R is composed of 2 subunits - IL-18Ra chain

(which is inducible and also called IL-1R-related protein or

IL-1R5) and IL-18Rb chain (which is constitutively expressed

and also called IL-1R-associated protein-like or IL-R7) (3,

48). The IL-18Ra and IL-18Rb chains are constitutive

members of the IL-1R family and their cytoplasmic

domains contain a TIR domain, which is shared by the

TLRs (1, 3, 45, 48, 67). When triggered by IL-18, IL-18Ra
forms a high-affinity binding heterodimer with IL-18Rb that

facilitates downstream signal transduction (68, 69). The TIR

domains of the formed IL-18R complex (IL-18/IL-18Ra/IL-
18Rb) recruits MyD88, a signal adaptor which contains a TIR

domain, thereby creating a TIR–TIR interface (1, 3, 45, 48, 67,

70) which is critical for IL-18 signaling (70). MyD88 binding

subsequently recruits IRAK1, IRAK4, and TRAF6 (70). Upon

binding to TRAF6, inhibitor of kB (IkB) is deactivated, this
allows phosphorylated p65/p50 to translocate into the

nucleus (71), which results in the activation of NFkB. Also

activated are Extracellular signal-regulated Kinase (ERK),

and c-jun N-terminal kinase (JNK), which make up the

MAPK cascade. Eventually, these lead to the expression of

appropriate genes such as Il-4, Il-13, IFN-g, and TNF, which

facilitates cell differentiation/survival, and FasL which

facilitates apoptosis (33, 35, 72).

IL-18 stimulation phosphorylates and activates the

members of the phosphatidylinositol-3 kinase (PI3K) family

such as mammalian target of rapamycin (mTOR) and the
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expressions of Bcl-xL and Bcl2 (73, 74). PI3K and its pathway

in myeloid cells is known to suppress inflammatory cytokine

production via TLR signaling (75), but in this case, IL-18

stimulation increases the proliferation and survival of

both immune and non-immune cells such as NK cells,

keratinocytes, and neurons (76, 77). In neutrophils, the p38

MAP kinase pathway has been shown to be stimulated by

the IL‐18/IL‐18Ra/IL‐18Rb complex. This complex was

also demonstrated to phosphorylate STAT3 in NK and

hippocampal cell lines (78–80).

IL-18-dependent cell activation can be inhibited by the

naturally occurring IL-18-binding protein (IL-18BP) (81) due

to its high affinity for IL-18. Its binding leads to a

downregulation of IL-18-induced cell responses, such as IFN-g
production. IL-37, an anti-inflammatory cytokine and a member

of the IL-1 family of cytokines is another inhibitor of IL-18 (82),

which binds to IL-18Ra with low affinity. This interaction

recruits IL-1R8 (SIGIRR), an orphan receptor to form an IL-

37/IL-18Ra/IL-1R8 complex. This complex cannot bind to

MyD88 and hence cannot recruit IL-18Rb, thereby obliterating

signal transduction via IL-18R, but instead induces an anti-

inflammatory signal into the cell (4, 48).
Physiological role of IL-18 in immune
cells and host defense

In order to trigger the innate immune system, IL-18

combines with IL-12, stimulating NK cells to respond to

cancers and infections. Hence, IL-18 and IL-12 play a key role

in enhancing NK cell activities. The vital role played by IL-18 in

establishing NK cell activity has been demonstrated in IL-18

deficient mice, which have increased susceptibility to infection

and impaired NK cell activity (83). The combined stimulation

with IL-18, IL-15, and IL-12 has also been linked with the

generation of memory-like NK cells (84). Similarly, IL-18

together with IL-12 can activate macrophages, which can

produce IFN-g (85). Other cell types which are capable of

producing IFN-g via the synergistic action of IL-18 and IL-12

include non-polarized T cells, Th1 cells, DCs, and B cells (4)

In the adaptive immune system, IL-18 promotes activation

and the differentiation of T cells (48). IL-18 is able to upregulate

the production of IFN-g, which is required for host defense. To

induce marked IFN-g production, IL-18 requires IL-12 or IL-15

as a surrounding cytokine in synergy since they increase the

expression of IL-18Ra. In vitro, the production of IFN-g by IL-
18 in combination with IL-12 occurs by acting on NF-kB in CD4

+ and CD8+ T cells (3). Nevertheless, in the absence of IL-12, IL-

18 induces the secretion of IL-2 and IL-13 as well as a little

amount of IFN-g in T cells stimulated with anti-CD3 antibody

(86). In Th1 cells, IL-18 promotes the expression of IL-12Rb2
while IL-12 upregulates IL-18R expression (87). IL-18 acts as a
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co-stimulant to amplify the production of IFN-g, Granulocyte-
Macrophage Colony Stimulating Factor (GM-CSF), IL-2, and

IL-2Ra by Th1 cells but not Th2 cells. Hence, IL-18 cannot act

on Th2 cells (86).

IL-18 also upregulates the cytotoxic activities of NK and

CD8 T cells by killing target cells through cytotoxic molecules

such as perforin or by inducing apoptosis using Fas-expressing

target cells (88–90). It induces IL-4 production and may be

implicated in the induction of allergic inflammation (91). In

vivo, IL-18 remains a potent IFN-g inducing factor (68) and it is

highly essential for the development of NK cells but does not

play a major role in the development of Th1 cells (33). It has

been observed that the IL-18 mediated Th1 cell amplifying

actions contributes to microbial resistance (92).

Independent of IL-12 or IL-15, IL-18 also plays a vital role

as a principal protective agent in host defense. The

complement system and antibodies principally respond to

extracellular microbes while T and NK cells eliminate

intracellular microbes. Therefore, protection against

intracellular microbes is majorly dependent on NK and T

cells especially Th1 that produces IFN-g. IFN-g is critically

important in eliminating microbes via the activation of type 2

nitric oxide synthase (NOS2) (86). In a mouse model of

disseminated intracellular bacterium - Mycobacterium avium

infection, IL-18 has been shown to be valuable in offering

protective immunity to mycobacteria through IFN-g
induction (93). Another study also observed similar

expression of IL-18 and IFN-g in children with severe

Mycoplasma pneumoniae pneumonia (94). In another study

in mice infected with Leishmania major (an intracellular

protozoon), daily administration of IL-12 and IL-18 offered

protective immunity against reinfection and inhibited the

expansion of L. major infection (92).

In addition, IL-18 may play a potent role in activating CD8+

T cells, which have activity against viral infection. In mouse

model infected with Herpes simplex virus (HSV), IL-18 has a

protective role against viral infection (95). Epstein-Barr virus

(EBV) was also showed to activate mucosal-associated invariant

T cell, which were found to be a potent source of IL-18. Its

dysregulation has been theorized as a mechanism for EBV

associated T/NKT cell lymphoproliferative disease (96). IL-18

in collaboration with IL-12 may be involved in inhibiting IgE

production (97) in an IFN-g-dependent manner but IL-18 alone

induces in vivo IgE accumulation (91). In SJL mice, IL-18

suppressed IgE production following helminth infection. The

weakened IgE production was restored by the administration of

anti-IL-12 and IL-18, signifying active suppression by

macrophages that secrete IL-12 and IL-18 (98). Finally, IL-18,

independent of IFN-g or other cytokines, shows the

characteristics of other pro-inflammatory cytokines. Some of

these activities include increased cell adhesion molecule (CAM),

production of chemokines and synthesis of NO (91). IL-18 has

also been shown to contribute to host defense and inflammation
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in the Paneth cells of the intestinal mucosa in an IL-22

dependent manner via STAT3 signaling (99).

IL-18 might also play a role in tumor control and cancer

chemotherapy/immunotherapy. It has been shown that

cytotoxic drugs like doxorubicin, paclitaxel, topotecan,

carboplatin and gemcitabine selectively co-operate with IL-18

to improve anti-tumor effectiveness (100, 101). Moreover,

tumor-derived IL-18BP is an immune checkpoint molecule

that inhibits IL-18 mediated anti-tumor activity in mouse and

human tumors. An engineered decoy-resistant IL-18 restored

IL-18 signaling and subsequent anti-tumor activity (102, 103).

Not only does the cytokine improve anti-tumor activity; IL-18

and IL-12 transduced DCs also showed better recruitment of

CD4 and CD8 T cells into tumor microenvironment in mouse

colorectal tumor models leading to inhibition of tumor growth

(104, 105)
Pathophysiological autoimmune
conditions associated with IL-18

The broad biological role of the IL-18 cytokine on immune

cells have revealed its potential role in inflammatory and

autoimmune diseases. IL-18 have been shown to be a

diagnostic marker and predictor of inflammatory conditions

like myocardial ischemia (106), acute respiratory distress

syndrome (107, 108), chronic obstructive pulmonary disease

(109), post infectious bronchiolitis obliterans (110) and sepsis-

induced multi organ injury (111). IL-18 has also received

increase attention in the pathophysiology of neuro-vascular

diseases such as in intracerebral hemorrhage (112), Japanese

encephalitis (113), ocular Behcet disease (114), abdominal aortic

aneurysm (115), amyotrophic lateral sclerosis (116), glioma

(117) and most interestingly in cognitive impairment (118)

and agitation in severe mental disease (119).

Here, we mentioned the contribution of IL-18 to several

autoimmune diseases. Table 1 provides a brief overview of the

mechanisms of involvement of IL-18 in some autoimmune

diseases and Table 2 shows some clinical studies indicating the

pathogenic role of IL-18 in inflammatory diseases.
Type 1 diabetes (T1D)

The autoimmune destruction of the host pancreatic b cells

that produce insulin results in a chronic disease named Type 1

diabetes (T1D). It was suggested that inflammatory cells may

invade islets, destroy b cells, and release cytokines including

TNF-a, IL-1b, and IFN-g leading to pancreatic b cells apoptosis

(132). It has recently been shown that IL-18 actually maintains

islet b cells function and homeostasis. IL-18 expressed on islet a
cells, IL-18R on acinar cells and Na-Cl co-transporter (NCC) on

b cells play a role in this homeostasis. A deficiency in NCC on b
frontiersin.org
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cells or IL-18R in acinar cells reduces b cell proliferation and islet
size with a concomitant rise in b cell apoptosis and exocrine

macrophage accumulation (146). T1D is possibly a Th1 cell-

mediated disease (147) that affects millions of people around the

world and its etiology is complex with a combination of genetic

and environmental pathogenic factors (148, 149). Although the

Human leukocyte antigen (HLA) genes are known to have a role

in the development of T1D, evidence have continued to indicate

that the pro-inflammatory IL-18 contributes to the genetic

susceptibility to T1D (150). Studies in both humans and mice

have revealed that IL-18 genes are localized in chromosome

areas associated with T1D susceptibility (151). Comprising of six

exons and five introns, the IL-18 gene is located on chromosome

11q22.2-q22.3 (152). Several IL-18 polymorphisms have been

identified, however the genetic relationship between single

nucleotide polymorphisms (SNPs) at positions-137, -607 in IL-

18 gene promoter and T1D have been of interest and is widely

reported in previous studies (153). Conversely, other studies

failed to show any association between T1D and these SNPs. A

subclinical early report showed that serum IL-18 levels were

elevated in first degree relatives of T1D patients, indicating a

predictive role of IL-18 in human diseases (131). Many other

studies have indicated that increased serum IL-18 levels in

patients was associated with elevated glycated hemoglobin
Frontiers in Immunology 06
(HbA1C), which might indicate a relation between

hyperglycemia and IL-18 (132). Higher serum IL-18 levels

have also been linked with diabetic ketoacidosis (6, 120) and

nephropathy (133). It was found that elevated IL-18 mRNA

production by macrophages and a subsequent increase in IFN-g
circulating levels was correlated with an active stage of auto-

immune diabetes in non-obese diabetic (NOD) mice (a well-

established model for the study of autoimmune diabetes) (154).

Furthermore, progression from benign to destructive insulitis

have been linked with IL-18 mRNA in NOD mice (16). The

administration of IL-18 via IL-18 expressing plasmid delivery to

4 weeks old NOD mice promoted the development of insulitis/

diabetes (154). However, when IL-18 was administered to 10

weeks old female NOD mice, exogenously, the mice were

protected from diabetes (155). Since IL-18 regulates Th1 and

Th2 responses based on the cytokine present in its environment,

the contrast aforementioned may be attributed to this dual role

of IL-18 (86). Moreover, in another animal model of diabetes,

short-term prophylactic treatment with inhibitors of IL-18 (IL-

18Bp-Fc-fusion molecule) significantly protected animals from

developing overt diabetes, further strengthening the evidence

suggesting the role of IL-18 in T1D (156). Similar findings were

observed after treatment with HIV-1 protease inhibitors in rats

(157). IL-18 has also been shown to be a mediator of polycystic
TABLE 1 Immunopathogenic mechanism of interleukin 18 involvement in autoimmune diseases.

No Disease
examined

Alterations of IL-18 Immunopathogenic mechanism of interleukin 18 in disease References

1 Type 1 diabetes Serum IL-18 levels are increased in
T1D patients compared to control.

Inflammatory cells may invade islets, destroy b cells and release cytokines TNF, IL-1b,
and IFN-g leading to apoptosis. IFN-g may also be induced by IL-18, further promoting b
cell apoptosis.

(120)

2 Multiple
sclerosis

IL-18 serum levels in MS patients
are considerably higher than that in
healthy individuals

IL-18 may play a role in the disease by driving these inflammatory responses, hence
neuronal damage. The involvement of IL-18 in MS is acknowledged but the exact
mechanisms remain unknown.

(121, 122)

3 Myasthenia
gravis

IL-18 levels are higher in
generalized MG than other control
individuals including healthy
subjects.

It is suggested that IL-18 affects MG through its role in IFN-g secretion and IL-12-
dependent Th1 phenotype polarization, which are strongly involved in the generation of
immunopathogenic auto-antibodies at the neuro-muscular junction in MG.

(123)

4 Inflammatory
bowel disease

IL-18 levels are elevated in patients
with IBD compared to healthy
individuals.

IL-1 and Il-18 may mediate inflammatory cascade by inducing increased IL-18 RNA and
protein as emphasized by clinical samples although relatively little is known.

(124)

5 Rheumatoid
arthritis

Serum IL-18 levels are increased in
RA patients compared to normal
healthy subjects.

IL-18 may play a vital role in RA by inducing synovial fibroblast to upregulate expression
of CXC chemokines via NFkB. This ultimately places IL-18 in a strategic role for
promoting synovial inflammation

(125)

6 Psoriasis Compared with controls, patients
with Psoriasis have higher serum
concentration of IL-18

It is suggested that keratinocytes derived IL-18 might be involved in the dermal Th1-type
immune response involved in psoriatic lesions

(126, 127)

7 Systemic lupus
erythematosus

Patients with SLE show significantly
higher levels of circulating IL-18
compared to healthy controls

The mechanism is still unknown, but it is thought the IL-18 promotes SLE pathogenesis
by its critical role in the inflammatory response

(128)

8 Adult-Onset
Still’s Disease

Elevated serum IL-18 levels
compared with controls and other
disease conditions

Pathophysiology of disease is still unclear but IL-18 and other IL-1 family secreting
inflammatory cells are implicated in the pathogenesis

(129)

9 Poliomyositis
and
Dermatomyositis

Serum IL-18 levels correlated with
disease activity and progression

Autoantibodies stimulate complement and dendritic cells which in turn activate IL-18
secreting autoreactive T and B cells

(130)
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TABLE 2 Clinical studies showing the pathogenic role of IL-18 in inflammatory diseases. .

No Disease
examined

Study design Result/conclusion References

1 Type 1 diabetes Serum levels of IL-18 and other mediators was estimated in 35 type 1 diabetic
patients and their relatives who share HLA diabetic susceptibility genes, and 31
healthy volunteers

IL-18 and other mediator levels was
elevated in subjects with type 1 diabetes
and their first-degree relatives, who share
diabetic HLA haplotypes

(131)

2 Type 1 diabetes IL-18 levels in the plasma of 26 juveniles with type 1 diabetes (T1D) in comparison
to 36 control healthy volunteers was analyzed

IL-18 levels were significantly elevated in
patients with T1D, compared to control
subjects. Two negative regulators of IL-18
function, IL-18 binding protein (IL-18BP)
and IL-37 remained unchanged

(132)

3 Type 1 diabetes In the sera from 65 diabetic [30 with type 1 insulin dependent diabetes mellitus
(IDDM) and 35 with type 2 non-insulin dependent diabetes mellitus (NIDDM)]
patients and 15 healthy volunteers, Il-18 levels were measured

In both IDDM and NIDDM individuals as
compared to the control group, IL-18
levels were higher

(133)

4 Multiple
sclerosis

110 MS patients and 110 healthy individuals were recruited and Il-18 serum levels
and polymorphism were measured

There was a significantly higher IL-18
serum level and different frequencies of
two polymorphisms of IL-18 in MS
patients

(122)

5 Multiple
sclerosis

To determine whether there was any relationship between IL18 gene
polymorphisms and MS, IL18 genotyping were performed in 101 MS patients and
164 control subjects

IL18 gene polymorphisms at position -137
might be a genetic risk factor for MS in
the Turkish population.

(134)

6 Multiple
sclerosis

IL-18 levels were determined in 30 non treated Relapsing–remitting (RR)-MS
patients and compared to 30 IFN-b-treated MS patients

Naïve MS patients showed significantly
higher levels of interleukin-18

(121)

7 Myasthenia
gravis

IL-18 levels were determined in generalized MG patients compared to ocular
myasthenia gravis patients

IL-18 levels were higher in generalized
than in ocular myasthenia

(123)

8 Inflammatory
bowel disease

The correlation of IL-18 and IL-18BP with disease activity and other disease
parameters in inflammatory bowel disease was investigated by measuring IL-18 and
IL-18BP isoform in 129 patients and 10 healthy individuals

IL-18 and IL-18BP levels are higher in
patients with inflammatory bowel disease
compared to healthy individuals

(124)

9 Inflammatory
bowel disease

changes in serum IL-18 concentrations in patients with IBD was compared with 21
control subjects

Serum IL-18 concentrations in 5 IBD
patients were 1.7 times higher than
concentrations in control subjects

(135)

10 Inflammatory
bowel disease

Serum IL-18 measurements was obtained in 41 children with IBD and 32 non-IBD
control groups.

Serum IL-18, measured by ELISA, was
elevated in children with IBD compared to
the control group

(136)

11 Rheumatoid
arthritis

serum pro-inflammatory profiles of IL-18 in 78 female rheumatoid arthritis (RA)
patients was compared with 51 healthy women to establish the relative importance
of pro-inflammatory cytokines

The cytokine IL-18 assayed was 2.3 folds
significantly elevated in the sera of RA
female patients than healthy controls.

(137)

12 Rheumatoid
arthritis

The serum levels of IL-18 in 140 RA patients were compared with40 healthy
control to ascertain the severity and treatment of RA patients if there are any
correlations

IL-18 level was significantly elevated in the
sera of RA patients than healthy controls

(125)

13 Rheumatoid
arthritis

The expression patterns of IL-18 in synovial biopsy tissue of 29 patients with active
RA was determined

IL-18 was detectable in 80% of the RA
patients, in both the lining and sublining
of the knee synovial tissue

(138)

14 Psoriasis Biopsies were taken from a psoriatic lesion (large plaque type) of four psoriasis
patients and from the skin of four normal healthy individuals

The expression of IL-18 was increased in
psoriatic lesional skin relative to that in
normal skin.

(126)

15 Psoriasis Gingival crevicular fluid (GCF) levels of IL-18 in 42 psoriatic patients and 39
healthy controls were compared

Psoriasis was associated with elevated IL-
18 compared to healthy controls

(139)

16 Psoriasis serum samples from 36 patients with psoriasis and 156 healthy controls were
compared

IL-18 are elevated in the serum of patients
with psoriasis compared with control

(140)

17 Systemic lupus
disease

Serum IL-18 levels were compared in 184 SLE patient and 52 control subjects Serum IL-18 levels were statistically
significantly higher in SLE patients
compared to healthy controls

(141)

18 Systemic lupus
disease

Clinical evaluation of total and free IL-18 was carried out in 74 active SLE patients
and compared with SLE inactive control

Total and free IL-18 were higher in
patients with active vs. inactive disease.

(142)

19 Systemic lupus
disease

serum IL-18 were collected at time of disease onset and 6 months after treatment
in paediatric SLE patients (pSLE)

The role of serum IL-18 as biomarker and
status of renal flares among pSLE
population was shown.

(143)

(Continued)
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ovarian syndrome – a condition strongly linked to T1D (158,

159). Taken together, the results of these numerous animal and

human studies suggest that IL-18 may play a pathogenic role in

T1D through its interferon gamma (IFN- g)-inducing potential.
This, therefore, opens the possibility of IL-18 being a potential

therapeutic target.
Multiple sclerosis (MS)

This is a chronic progressive autoimmune disease wherein

the immune system attacks and destroys the protective myelin

sheaths over the nerve fibers in the central nervous system

(CNS). Inflammation plays a vital role in the advancement of

MS. It is characterized by neuro-inflammatory and neuro-

degenerative processes leading to the activation of auto-

immune T cells and “CNS macrophages” - microglia that

enhance a pathological immune response called cytokine

storm (121). The SNPs- rs1946518, rs360719, and rs187238

have also been implicated in patients with MS patients (122)

with high serum IL-18 levels. IL-18 and IL-1b may drive these

inflammatory responses. Inflammasome is a complex

intracellular receptors and stressor sensors that activate

inflammatory signaling pathways vital for host defense (160).

However, the dysregulation of the inflammasome can result to

auto-inflammatory and auto-immune disorders (121). The

NLRP3 inflammasome has been established as a critical

contributor of neuro-inflammation and drives the activation of

caspase 1 and the processing of IL-1b and IL-18, which

subsequently mediates immune cascade responses (161). As in

human MS, experimental autoimmune encephalomyelitis (EAE)

in mice is also characterized by demyelinating inflammation

induced by immunization with antigens (such as myelin basic

protein-MBP) which serves an equivalent analogy (162). Blood

caspase1 mRNA levels were increased in EAE mice which

correlated with the severity of MS. This result corroborated

well with the studies in humans, wherein amplified Caspase-1

levels were observed in the cerebrospinal fluid of patients with
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acute MS (15). In IL-18-/- mice, antibodies blocking IL-18Ra
caused mice to be MS-resistant implying the existence of IL-

18Ra ligands and IL-18-/- (6). It was reported that spleen cells

from IL-18Ra-/- mice yielded considerably greater amount of

pro-inflammatory cytokines in comparison to those from wild

type or IL-18-/- mice in response to concanavalin A (con A)

stimulation (163). Serum levels of IL-18 were the highest levels

in patients with chronic MS compared to those relapsing-

remitting MS – both acute and stable (11). Similarly, mRNA

and protein levels of caspase 1 and IL-18 were identified in

peripheral blood mononuclear cells in MS patients who were

never administered immunomodulatory drugs (164). In

summary, while data from EAE model suggests a role for IL-

18R, data from acute relapsing MS patients suggests a role for IL-

18 in disease advancement. This may mean that aside from IL-

18, other ligands may be involved.
Myasthenia gravis (MG)

Myasthenia gravis (MG) is an autoantibody-mediated

disease affecting the neuro-muscular junctions (NMJs). It is

mediated by auto-antibodies against nicotinic AchR

(acetylcholine receptor) (123). The EAMG model in mice or

rats is a disease model mimicking the clinical and

immunopathological characteristics of human MG (165, 166).

Disease progression in both humans and mice is dependent on

the production of reactive autoantibodies at the NMJ by B cells.

Activated T cells help B cells proliferate and differentiate by

secreting IL-12 and IFN-g. Since IFN-g is involved in the

development of EAMG in both acute and chronic MG stages,

blocking IL-18 with anti-IL-18 antibodies or disrupting CD40-

CD40L interaction was found to suppress MG severity (165).

The mechanism appears to be by the regulation of Th1 and

CD40L levels and upregulation of TGF-b and CTLA-4 (167).

Moreover, in MG patients treated with immunosuppressive

drugs, serum IL-18 levels were considerably diminished (123,

168). Overall, there are only a few clinical studies showing the
TABLE 2 Continued

No Disease
examined

Study design Result/conclusion References

20 Adult-onset
still’s disease

Free IL-18 Serum levels of 37 AOSD patients and 138 controls were compared Free IL-18 was significantly higher in
AOSD patients compared to control

(129)

21 Adult-onset
still’s disease

Serum levels of IL-18 were measured in 21 patients with AOSD Circulating IL-18 levels were significantly
higher in those with active disease
compared with 85 controls

(144)

22 Polymyositis
and
Dermatomyositis

IL-18 levels were determined in two cohorts of patients. In cohort one,10 new-
onset myositis patients (IL-18 expression was compared between symptomatic and
asymptomatic muscle biopsies that were taken prior to treatment). The second
cohort consisted of another 10 patients with repeated muscle biopsies before and
after 8 months with conventional immunosuppressive treatment.

Total IL-18 expression in muscle tissues
from the new-onset patients, at both
symptomatic and asymptomatic sites, was
significantly higher compared with healthy
controls

(145)
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role played by IL-18 in contributing to the pathology of MG.

This is an area that still needs to be explored.
Inflammatory bowel disease (IBD)

Studies have pointed the role played by IL-18 in

Inflammatory bowel disease (IBD) by promoting intestinal

homeostatic auto-inflammatory responses or protecting against

the breach of pathogens through the epithelial barrier (169). The

SNP– IL-18 rs1946518 has been shown to be a predisposing

factor to IBD development (170). IBD is a chronic complex

autoimmune disease characterized by the inflammation of the

intestinal mucosa. This disease may be subclassified into Crohn’s

disease (CD) and ulcerative colitis which have dissimilar clinical

manifestations but similarly characterized by chronic relapsing

pathogenic inflammation and intestinal epithelial cell injury

(171). The role of IL-18 in IBD may be primarily related to its

place in regulating pro-inflammatory responses. Following

inflammasome activation, pro-IL-18 promotes the production

of IFN-g, NK cell cytotoxicity and Th1 cell differentiation (172).

The mitogen-activated protein kinase 2 (MAP3K2) is necessary

for the IL-18-Th1 mediated intestinal inflammation (173) via

the IL-18-MAP3K2-JNK axis. It was recently shown that

telomere dysfunction drives ataxia-telegientaxia mutated

(ATM) activation of the transcriptional factor YAP1 thereby

upregulating pro-IL-18 which when stimulated by caspase 1 due

to colonic microbiome drives IL-18 signaling (174).

Pharmacological reactivation of telomerase activity was able to

control the ATM/YAP1/pro-IL-18 axis (175). Interestingly, a

deficiency in NLRP6 inflammasome, a known regulator of

colonic homeostasis predominantly found in intestinal

epithelial cells, is detrimental in dextran sodium sulfate (DSS)

induced colitis (DSS is a frequently used mouse model for colitis

in which drinking water spiked with DSS injures the intestinal

epithelium like IL-18 deficiency) (169). In agreement, the

favorable role of IL-18 inhibition using neutralizing anti-IL-18

antibodies or IL-18 Binding Protein have been reported in DSS

or Trinitrobenzene sodium (TSNBS) induced models of IBD

(176, 177). A study has shown that mice were prevented from

developing DSS-induced colitis and mucosa damage when IL-

18R was deleted (171). Double knock out of IL-1b and IL-18

cytokines increased transgenic mice protection from TNBS

colitis induction compared to deletion of either cytokine (178).

In clinical studies, elevated secretion of IL-18 has been linked

with IBD severity (179). Serum IL-18 concentration was

considerably increased in patients with Crohn’s disease than

healthy patients suggesting that infiltrated macrophages in the

inflamed intestinal mucosa produced IL-18 which then

potentially regulate intestinal mucosa lymphocytes (136, 180).

A Mendelian randomization study has positioned anit-IL-18

therapy to be useful for managing IBD (181). This assertion was

further strengthened in a study that found that Crohn’s disease
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patients resistant to anti-TNF therapy had genetically

susceptible IL-18 SNP and high serum IL-18 level (182).
Rheumatoid arthritis (RA)

Several studies suggest that Rheumatoid arthritis (RA) is a

Th1-driven systemic inflammatory disease of the synovial joints.

SNP- IL-18 rs1946518 (−607 A > C), and IL-18 rs187238 (−137

G > C) in the IL-18 gene have been correlated with RA in certain

populations (183, 184). In cell cultures using synovium from

patients who had undergone synovectomy or total knee

replacement surgery, results demonstrate the role of IL-18 and

the expression of CXC chemokines by fibroblasts via NFkB
signaling (185). In RA, IL-18 cytokine may contribute to

inflammation by leukocyte extravasation via the upregulation

of endothelial cell adhesion molecules, act directly as monocyte,

neutrophil chemoattractant or lymphocyte and release

chemokines from synovial fibroblasts (186, 187). The

administration of IL-18 to mice with collagen induced arthritis

(CIA) or incomplete Freund’s adjuvant immunized mice

facilitated the development and severity of inflammation of

cartilage (188, 189). This result was similar to that obtained

when IL-18-/- mice received IL-18 (19). In contrast, low levels of

IFN-g have been detected in RA synovitis (190). This is

explained to occur because IL-18 sustains the Th1 phenotype

but does not induce levels of IFN-g production in the presence of

elevated expression of inhibitory molecules such as IL-10 and

TGF-b. The unique role of IL-18 in inducing the discharge and

upregulation of angiogenic factors such as SDF-1a, MCP-1 and

VEGF in RA synovial tissues via distinct pathways have been

described (191). Similarly, the use of IL-18 to stimulate RA

synovial fibroblasts in vitro induced the expression of surface

vascular CAM and neutrophil chemoattractant (192); more IL-

18 is then produced by synovial fibroblasts and through the

action of TNF-a produced by synovial macrophages in a positive

feedback mechanism. Significantly higher levels of IL-18 mRNA

and protein was detected in RA synovial tissues but not

osteoarthritis patients experiencing age related joint disorder

(193). In systemic juvenile idiopathic arthritis, elevated IL-18

levels are also a hallmark of the disease. Impaired IL-18 signaling

in NK cells were implicated with a dysregulated phosphorylation

of the MAPK and NFkB pathways (194, 195).
Psoriasis

Although its etiology is unknown, Psoriasis is known to be a

chronic inflammatory skin condition suggested to involve a

multifaceted plethora of cytokines and chemokines secreted by

immune cells and other tissue cells (196, 197). The role of IL-18

in stimulating Th1 cells which produce IFN-g-mediated

inflammation in psoriatic lesions have been described (6).
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Human keratinocytes are able to produce IL-18. Hence, it is

proposed that IL-18 secreted by keratinocytes might be involved

in the dermal Th1 immune response involved in psoriatic lesion

(126). In an IL-18 knockout mouse model of psoriasis induced

by Imiquimod (IMQ), IMQ induced mice manifested larger

areas of Munro micro abscesses and had upregulated expression

of IL-1b, IL-4, and IL-27 compared to wild type (WT) (196).

This indicates that IL-18 may exacerbate psoriatic inflammation

and influence its pathology. Similarly, in human studies, skin

sections of psoriasis patients showed elevated levels of IL-18 and

Caspase-1 compared to healthy subjects (126). Furthermore,

psoriasis patients serum revealed high levels of circulating IL-18

(7). The stimulation of the human keratinocyte cell line - HaCaT

with ultraviolet B radiation upregulated the production of IL-18

(198). Several studies have strongly indicated that IL-18 is a

strong biomarker for clinical psoriasis symptoms (139, 140, 199).

Overall, these data may indicate the potential role of IL-18 in

psoriasis therapy.
Systemic lupus erythematosus (SLE)

SLE is an autoimmune disease characterized by B cell

hyperactivity, antibody secretion, and organ damage (200).

Studies have continued to show conflicting results on the

relationship between IL-18 and SLE, although more recently

accumulating evidence reveal that IL-18 may play a vital role in

SLE pathogenesis (128). Lupus disease was exacerbated when

exogenous IL-18 was administered to MRL/lpr mice but was

suppressed following the treatment with anti-IL 18 (201).

Particularly, in MRL-Lpr/lpr mice model of SLE, mice

administered with cDNA vector expressing IL-18 developed

auto-antibodies to IL-18 and had suppressed IFN-g, milder

kidney damage, and less mortality compared to the control

mice (202). In agreement, human studies reveal that patients

with lupus nephritis had increased concentration of serum IL-

18, and kidney biopsies showed IL-18 positive glomeruli

compared to normal subjects (8). Several meta-analyses have

validated the claim that circulating levels of IL-18 is higher in

SLE patients, which suggests the role of IL-18 in the pathogenesis

of SLE (202, 203).
Adult Still’s Onset Disease (AOSD)

AOSD is an auto-inflammatory systemic disease of

unknown etiology and characterized by spiking fever, rash,

arthritis, leukocytosis, and other signs (204, 205). IL-18 is one

of the likely inflammatory agents involved in the pathogenesis of

AOSD. Its overexpression has been linked to driving the

inflammatory process among other immunological factors.

Particularly, high concentrations of IL-18 have been described

in AOSD and were correlated with laboratory markers of the
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disease (129, 206). It was indicated that free IL-18 serum

concentrations are significantly higher in AOSD patients

compared to either healthy or disease controls including RA,

SLE, axial spondyloarthritis and psoriatic arthritis. The free IL-

18 levels correlated with AOSD activity suggesting that IL-18

may represent a potential target for the treatment of AOSD. In

another study, the sera levels of IL-18 of 26 Italian patients with

AOSD was investigated to assess the role of IL-18 cytokine as a

disease marker and compared with that of 21 patients with RA,

21 patients with Sjogren’s syndrome, 20 patients with SLE and

21 healthy controls (205). Herein, IL-18 serum levels were

significantly higher in patients with active AOSD than non-

active as well as control groups. More so, IL-18 serum levels

significantly correlated with disease activities and other

laboratory parameters such as ferritin and C-reactive protein

suggesting the possible targeting of IL-18 cytokine as a

therapeutic option because of the role it plays in the disease

state (207–210).
Polymyositis and Dermatomyositis (PM
and DM)

PM and DM are inflammatory myopathies characterized by

muscle weakness, suppressed muscle endurance and skin

involvement (DM only) (145, 211). Generally, the pathologies of

DM and PM are different. DM is thought to arise fromCD4+T- and

B- cells mediated inflammation while PM is considered to result

from autoreactive cytotoxic T cells which may mediate cytotoxic

activities against auto-antigens (212, 213). In one study to

investigate IL-18 expression in symptomatic and asymptomatic

muscle tissues of patients with PM and DM, 2 cohorts of patients

were used (145). One cohort consisted of 10 new-onset myositis

patients and IL-18 expression levels were compared between the

muscle biopsies results of symptomatic and asymptomatic patients

before treatment. In the second cohort, 10 patients with repeated

muscle biopsies before and 8 months after treatment with

immunosuppressive therapy were recruited. Results indicated that

the expression of total IL-18 in muscle tissues from new-onset

patients (symptomatic and asymptomatic) were significantly higher

compared to healthy controls. IL-18 total expression levels were

lower in biopsies from patients receiving immunosuppressive

treatment compared to other patients. The results indicate that

IL-18 is highly expressed in muscle tissues in inflammatory

myopathies. In another study to ascertain the involvement of IL-

18 in PM and DM inflammation, 33 patients with DM and 16

patients with PM were enrolled in the study (there were some

patients with interstitial lung disease in both groups) (130). It was

revealed that serum IL-18 levels were significantly higher in DM

and PM patients compared with healthy controls. These authors

along with others (145, 213, 214) concluded that serum IL-18 levels

were strikingly elevated in DM and PM patients and particularly in

DM patients complicated with interstitial lung disease. IL-18 levels
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also indicate clinical severity of dermatomyositis (215) with recent

findings reporting that IL-18 containing 5-gene region can be used

to differentiate histologically identical dermatomyositis and other

skin lesions (216).
Monoclonal antibodies and drugs
targeting IL-18

Targeting IL-18 appears like an obvious potential therapy

due to its role in inflammation. The cytokine IL-18 could be

blocked using monoclonal antibodies (mAbs), by inhibiting its

production in cells, its secretion from cells or molecular binding

blockade using binding proteins or antibodies (5, 217). Table 3

shows some clinical trials targeting IL-18 in the treatment of

inflammatory diseases
Binding of IL-18

IL-18 binding protein (IL-18BP) is a natural antagonist of

IL-18, belonging to the immunoglobulin like receptor type but is

not cleaved on cell surface (221). It is a naturally occurring 18

binding agent was first identified in 1999. In mice, two isoforms

of IL-18 BP exist (c and d), while a, b, c and d are the human

isoforms (222). The IL-18 BPa is the unique and major splice

variant of IL-18BP that controls the biological activity of IL-18

by binding with high affinity. Thus, it acts as a soluble decoy

receptor (81). Recently resolved crystal structure of the IL-18:IL-

18BP complex reveals a sequestration of the IL-18 by IL-18BP

influenced by molecular mimicry and steric competition of

binding sites compared to IL-18R. The IL-18:IL-18BP also

showed a novel higher order 2:2 binding stoichiometry

compared to the standard 1:1 binding of IL-18:IL-18R (223).

The mechanisms of Th1 responses to microbes may be blunted

by the action of IL-18 BP thus reducing autoimmune responses

to an infection. Several studies have shown the potential of

targeting IL-18BP against IL-18. The suppression of disease
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severity has been reported in 33 disease models in which the

administration of anti-IL18 antibodies or IL-18 BP led to the

inhibition of IL-18 (40). Accordingly, in murine models of

inflammation including DSS colitis, recombinant IL-18 BP

suppressed disease severity (224). Inflammation in the joints of

mice treated with IL-18BP were suppressed and mice also

exhibited reduced inflammatory infiltration and cartilage

destruction as observed in the histopathology analysis.

Furthermore, in vivo studies revealed that short-term

supplementation with IL-18 BP Fc prophylactically protected

NOD mice from the acceleration of autoimmune diabetes (18).

At low dosing of IL-18 BP, inflammation was suppressed in a

model of RA (39). Recently, in a clinical trial using human

recombinant IL-18 BP in RA and Psoriasis patients, therapeutic

efficacy was not achieved (219). Aside from the use of IL-18 BP

for binding IL-18, it could also be bound by anti-IL 18

antibodies. In agreement, the severity of Collagen induced

arthritis was reduced significantly in the course of treatment

with polyclonal anti-IL-18 antibodies and was more effective

compared to IL-18 BP (224). In addition, DSS colitis was

minimally suppressed in experimental mice using antimurine

IL-18 antiserum (225). In MRL/MpJ-Tnfrsf6lpr mice exhibiting

lupus like autoimmune syndrome, vaccination with IL-18 cDNA

in order to inhibit IL-18 showed that IFN-y production was

suppressed and mice showed less glomerulonephritis and renal

damage (202). In mice, a neutralizing IL-18Ra antibody showed

significant protective effect on a graft-versus-host disease model

(226), a condition characterized by systemic inflammation and

multiple organ damage.
Inhibition of IL-18 production

Caspase 1 appears to be a suitable target to suppress the

production of IL-18 and also IL-1b (217). The active form of

caspase-1 is a tetramer that cleaves the proform of IL-1b and IL-

18 to their mature forms (44), which then leaves the cytosol. A

study revealed that IL-1b or IL-18 deficient mice were not
TABLE 3 Some clinical trials targeting IL-18 in the treatment of inflammatory diseases.

No Disease
examined

Drug type/name/
number

(company)

Study details Result/References

1 Type 2
diabetes
mellitus

anti-IL-18 monoclonal
antibody, GSK1070806
(Glaxosmithcline)

multicenter, randomized, single-blind (sponsor-unblinded), placebo-
controlled, parallel-group, phase IIa trial in which 37 obese patients poorly
controlled T2DM on metformin monotherapy were randomized

Inhibition of IL-18 did not lead to any
improvements in glucose control (218).

2 Rheumatoid
arthritis and
Psoriasis

Tadekinig alfa, a
human recombinant
IL-18BP

Adekinig alfa was tested in patients with RA and psoriasis Free IL-18 levels were not increased in
neither RA nor in psoriatic arthritis patients
as compared to healthy individual (219).

3 Rheumatoid
arthritis

Pralnacasan, an oral
caspase 1 inhibitor
(Vertex
Pharmaceuticals)

Pralnacasan is clinically tested and observed in patients in a phase II RA
clinical trial

It was well tolerated and suppressed
inflammation but was suspected to promote
liver toxicity (220).
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completely protected from septic shock unlike caspase-1

deficient mice (227, 228). Similarly, in Caspase-1 deficient

mice, the severity of DSS induced colitis was suppressed

correlating with IL-18 reduced expression (229). Pralnacasan is

an oral caspase 1 inhibitor clinically tested and observed in

patients in a phase II RA clinical trial (220). It was well tolerated

and suppressed inflammation but was suspected to promote

liver toxicity.

Uncontrolled mature IL-18 secretion and IL-1b is

responsible for severe autoimmune disorders as they bind to

their receptors, initiate several signaling, and ultimately

activate NF-kB (230). The antagonism of P2X-7, a

purinergic receptor located on the cells of hematopoietic

origin, might be a potential target for treating autoimmune

diseases with inflammatory origin. This is because of the

importance of P2X-7 receptor in the biology and secretion

of IL-1b and IL-18. This has been confirmed in P2X-7

deficient mice (217, 231).
Monoclonal antibodies

Currently, GSK 1070806, a humanized mAb, is in a single-

blind randomized placebo-controlled phase 1 trial against IBD.

The study aims to investigate the use of the drug in both healthy

and obese male subjects for the treatment of IBD as well as its

safety, tolerability, pharmacokinetics, and dynamics. In this

multicenter, randomized, single-blind, placebo-controlled

parallel group phase IIa trial conducted in obese patients of

either sex with poorly controlled Type 2 diabetes patients on

metformin monotherapy using GSK1070806, although it was

well tolerated, IL-18 inhibition did not improve glucose control

(218). Recently, a novel anti-human IL-1R7 monoclonal

antibody that blocks and suppresses the inflammatory

signaling of IL-18 was developed. It acts by reducing IL-18

induced NFkB and IFN-g activation and IL-6 production in

human cell lines. It is important to note that IL-1R7 is a potential

virgin therapeutic strategy for the investigation of its clinical

potential in treating IL-18 mediated diseases as this area remains

to be explored (232).

Another novel development in the generation of IL-18

monoclonal antibodies lies in the identification of a neoepitope

that is generated after IL-18 is cleaved by the caspases. This

neoepitope - 37YFGKLESK44 can be used to distinguish between

physiological and pathological IL-18 (233). This led to the

generation of 2 high affinity antagonistic IL-18 antibodies

recognizing epitope 63NRPLFEDMT68 of the full-length

human IL-18 cytokine or recognizing only the neoepitope -
37YFGKLESK44 in humans (233) or 36NFGRLHCTT44 in mice

(234). This strategy of controlling pathogenic IL-18 sounds

promising for therapeutic purposes.

Despite abundant evidence showing the role of IL-18 as a

biomarker in several inflammatory and autoimmune conditions,
Frontiers in Immunology 12
it is not being utilized as a target for biologics to control

these conditions.
Conclusion

Despite a large number of reports that have indicated the

indispensable role of IL-18 in autoimmune diseases, many of

them are still elusive. For instance, the definitive steps required in

IL-18 signaling and activation triggers in different autoimmune

diseases are widely unknown. More clinical trials of IL-18 BP and

other antibodies are necessary to properly ascertain the role of the

cytokine IL-18 in treating diseases. IL-18 plays a vital pathogenic

role in diseases by promotingT cellmediated responses andmay be

Th1orTh2 related.Many in vitro studies, animalmodels, and some

clinical studies support the vital role of IL-18 in Psoriasis, MG, and

other diseases. Therefore, in order to gain more insight into the

place of IL-BPandotherdrugs targeting IL-18 for the treatmentand

control of autoimmune conditions, additional research is required.

Finally, we recommend the development of combination drug

therapies that specifically focus on IL-18 inhibition in addition to

the inhibition of other specific cytokines such as TNF-a, IL-1b, IL-
6, or IFN-gwhich havebeen indicated to be strongly involved in the
pathogenesis of any of the inflammatory diseases.
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