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Abstract

The analysis of longevity as a function of risk factors such as body mass index (BMI; kg/m2), 

activity levels, and dietary factors is a mainstay of obesity research. Modeling survival through 

hazard functions, relative risks, or odds of dying with methods such as Cox proportional hazards 

or logistic regression are the most common approaches and have many advantages. However, they 

also have disadvantages in terms of the ease of interpretability, especially for non-statisticians; the 

need for additional data to convert parameter estimates to estimates of years of life lost (YLL); 

and debates about the appropriate time scale in the model. Parametric survival models are able to 

provide more direct answers, and in our analysis of an obesity-related data set, gave consistent 

YLL estimates regardless of the distribution used. Additionally, we offer alternative approaches to 

the analyses of censored survival data including a modified or ‘compressed’ Gaussian distribution. 

We therefore recommend increased consideration of parametric survival models in chronic disease 

and risk factor epidemiology.
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Introduction

The associations or effects of chronic disease risk factors such as body mass index (BMI, 

kg/m2), serum cholesterol, or blood pressure on health and lifespan are of great interest and 

importance. Interested parties include litigators trying wrongful death cases and determining 

appropriate settlements, demographers estimating population trends and planning 

accordingly, insurers setting premium rates, public health officials advising the public, 

policy makers determining priorities, clinicians advising their patients, and the general 
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public. The analysis of such data is made challenging by several factors, perhaps most 

notably that not all individuals will be observed until their time of death, leading to 

censoring in the survival times.

Cox proportional hazards regression is the most common way to accommodate censoring1. 

The many advantages of this approach are well-documented and described elsewhere2. 

However, there are at least three major disadvantages. The first involves the inability to 

estimate medians or other quantiles of survival time when the censoring rate exceeds the 

quantile of interest. The second concerns interpretability. The primary output of such an 

analysis is a hazard ratio, which requires understanding of calculus to interpret, is not easily 

understood by many non-statisticians, and is not expressed in units such as years of life lost 

(YLL) that are part of everyday parlance and well understood. Thirdly, the proportionality 

assumption may not hold.

In practice, large epidemiological data sets such as the National Health and Nutrition 

Examination Surveys (NHANES), the National Health Interview Surveys (NHIS), 

Atherosclerosis Risk in Communities (ARIC), and the Framingham Heart Study are often 

analyzed at follow-up times which have censoring rates well above 50%; hence, the median 

survival times for subjects may be estimable only for subjects at greatly increased risk.

Moreover, additional data beyond those necessary for the initial analysis are required in 

some approaches3 in order to convert hazard ratio (HR) estimates into expected survival 

times or YLL. YLL is defined here as the difference in conditional expectations of survival 

time between individuals who differ only in their level of risk factors.

Fontaine et al.3 developed a method for converting hazard ratio estimates obtained with Cox 

proportional hazards regression to estimates of YLL that can be used by clinicians, the 

general public, and those interested in understanding the effects of factors such as high BMI 

on relevant aspects of lifespan. Such an approach, while useful, is cumbersome to 

implement and required three different datasets (one to estimate the hazard ratios, one to 

estimate distributions of the risk factor in the general population, and one to estimate overall 

survival distributions in the general population). Furthermore, there was no readily 

accessible solution for obtaining a confidence interval for YLL estimates. Hence, a method 

which more directly yielded estimates expressed in terms of years of survival time would be 

more desirable.

Fully parametric models offer an alternative to Cox regression that can provide direct 

estimates of YLL even in the presence of high censoring rates. However, new problems 

emerge: namely, which distribution should be used? Human longevity is characterized by: 1. 

bimodality, including peaks at infancy and old age; 2. strong left skew. If investigators seek 

a good fit over all ages, then they may need to address the bimodality challenge by 

considering complex mixture models such as the five-parameter Siler model or the eight-

parameter Heligman-Pollard and Mode-Busby models. However, models with fewer 

parameters are better for interpretability and reproducibility5. By contrast, when the outcome 

of interest is YLL, life expectancy, or median survival times, then the fit of the tails may not 

matter greatly.
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For instance, in a typical epidemiological study that estimates the effects of obesity or other 

metabolic risk factors on morbidity or mortality, the patients are adults, obviating the need 

for the distribution to accurately estimate mortality among the very young or very old. The 

central limit theorem guarantees that a normal parametric model (given a sufficient sample 

size) will accurately estimate the mean, even if the outcome is not normally distributed.

Unfortunately, the normal distribution, while easy to interpret, does not very effectively 

address the strong left skew challenge. The mean may differ significantly from the median, 

and other quantiles will be inaccurately predicted. Closer approximations can be obtained 

through extreme value distributions such as Weibull or Gompertz. By convention, the 

Gompertz distribution is typically used to model all-cause mortality while the Weibull 

distribution is used for specific causes of death4, but a more effective solution would be 

desirable.

Recently, Robertson and Allison11 introduced the compressed normal distribution, which 

was especially designed to accommodate features of the observed distribution of human 

lifespan after the period of high mortality rate in early childhood. This distribution expanded 

upon the findings of Kannisto12, who observed that the distribution of longevity conditioned 

on survival to the modal age closely resembled the behavior of a normal distribution. 

Kannisto also noted that the standard deviation of remaining lifespan conditional upon 

having survived until age X seemed to decrease more rapidly as a function of X than would 

occur were total lifespan were normally distributed.

The normal distribution is characterized by the location-scale transformation:

(2)

Robertson and Allison11 derived a distribution where a compression of the standard 

deviation occurs with advancing age, by modifying the location-scale transformation:

(3)

Above, λ is an upper bound of longevity and (1-x/λ) is the unspent portion of longevity at 

age x. The denominator decreases as x increases. In effect, it conditions the scale on attained 

age, and models the increasing homogeneity of survivors as they age. The compressed 

normal distribution was found to model life table data more accurately than other three-

parameter distributions, including the Makeham-Gompertz, generalized extreme value, 

generalized gamma, and the Azzalini skew-normal distributions.

To demonstrate the advantages of parametric survival analysis, we fit models of different 

distributions to a large epidemiologic data set with a high censoring rate. We also 

demonstrate the uses of multi-parameter optimization, which is not currently a common 

practice in survival analysis.
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Materials and Methods

Statistical Analysis

When age is the outcome of interest, and a study enrolls participant i who was alive as of 

age ai, the model should incorporate left truncation to reflect the conditional probability of 

surviving to age ai at the beginning of the study6. Doing so makes the proper adjustments for 

older participants who have higher life expectancies (Figure 1). The likelihood equation is 

then:

(1)

where ei is the age of participant i upon exiting the study, whether alive or dead; f is the 

density function; θ is the vector of distribution parameters; and Π is the product of a 

sequence.

In the process of writing this paper, we identified a shortage of available software that is 

able to fit parametric survival models for left-truncated, right-censored data. As of this 

writing, parametric survival analysis in SAS is done via PROC LIFEREG, but does not 

allow specification of age at entry7. SPSS is not able to fit parametric survival models8. In 

R, procedure phreg in package “eha” is theoretically able to do the above, but did not return 

plausible results9. In STATA, procedure streg is able to do the above, but is not able to fit 

the normal or logistic distributions10. Additionally, there appeared to be inconsistencies in 

the way log-likelihood scores are tabulated: some software dropped constant terms from the 

equations (such as  for the normal distribution) while others kept them.

Since equation (1) is a straightforward optimization problem, we decided to write our own 

software to maximize the likelihood and solve for the parameters. The software was written 

in R, and made use of procedure optim. We specified the conjugate gradients method with 

gradient functions. The programs were short (a few dozen lines per distribution), and the 

model calculations only took a few seconds on modern desktop computers. All constant 

terms were preserved. We fit the Gompertz, Weibull, logistic, and normal distributions. We 

verified the consistency of estimated parameters with STATA software for the Gompertz 

and Weibull distributions. Since we had the flexibility of choosing any distribution, we also 

included the compressed normal distribution.

Study Data

For the purposes of illustrating parametric models and gauging their real-world utility, we 

selected a recent population-based study with a simple data structure that did not involve 

complex sampling, as with NHANES13 or the National Health Interview Survey14. A large 

data set including measured BMI values, smoking status, and age at follow-up was obtained 

from the Atherosclerosis Risk in Communities (ARIC) study15, begun in 1987. These data 

are characterized by a high censoring rate (85.0%), such that the Cox model could not 

estimate median survival times. All ARIC participants were African-American or European-

American, male or female.
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The variables fitted were smoking and BMI. Smoking was coded with indicator variables for 

current and former smokers. BMI was fitted as a cubic polynomial in keeping with 

conventions3,16. For ease of interpretation, BMI variables were also centered and scaled as 

(BMI-25)/10, such that the “intercept” terms corresponded to a BMI of 25. We also tested 

for interactions between BMI and smoking, sex, and race. We checked that the interaction 

terms yielded results consistent with stratified analyses by race, sex, or smoking status. Also, 

we validated our findings with Cox models.

A total of 15,703 participants had known values for BMI, smoking status, and age at follow-

up (Table 1). Fifteen percent of the participants had deaths observed over the course of the 

study, while 85% of the observations were censored. The participants in the study came 

from a relatively narrow age range of 45 to 61 at baseline; the subjects were no older than 81 

at the end of the study. ARIC exemplifies the characteristics of many population-based 

studies, which have limited age ranges and high censoring rates. Nevertheless, the large 

sample sizes yielded estimates that were consistent with previous population-based studies.

Results

Model Comparisons

All five distributions yielded similar log-likelihood scores and gave similar estimates of 

longevity (Figure 2). This phenomenon occurred due to the limited age range of the patients 

in the study, which limited the information on the tails of the distribution. All models 

yielded similar results for the effects of predictor variables; smoking was associated with 

reduced longevity while BMI exhibited a J-curve pattern. The compressed normal 

distribution (in the solid black line) gave slightly lower estimates due to its thicker left tail, 

which was found elsewhere to follow the distribution of life table longevities more closely 

than other distributions11. The J-curve was more pronounced for smokers, consistent with 

some previous studies (Figure 3).17,18

We found that YLL estimates were similar whether we defined them in terms of means or 

medians (Figure 4); again, this was consistent with the limited age range of patients in the 

study. We also verified our findings by fitting the Cox model (Figure 5); the estimated 

hazards are a mirror image of Figure 4.

As some past research has found3, African-Americans had higher optimal BMIs than did 

whites, and the difference was statistically significant (Table 2). White American non-

smokers had an optimal BMI of approximately 20, while African-American non-smokers 

had an optimal BMI of 25. Smokers fared relatively better in the overweight (25-30) range 

of BMI. The shifting of the peak may reflect the greater prevalence of chronic diseases 

among smokers and African-Americans, such that a lower BMI was more likely to be a 

result of disease rather than good lifestyle; we will explore this topic further in future papers.

Conditional Expectations

Finally, we illustrate one more benefit of parametric survival analysis (Figure 6). Life 

expectancy changes conditioned on attained age, as E(Y) ≠ E(Y | Y>y). By making use of 

conditional expectations, one can compute remaining life expectancy for a patient at a given 
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age. As baseline mortality rises with advancing age, the effect of risk factors on life 

expectancy decreases; this is apparent in the converging lines. This is a natural consequence 

of mathematics: among young people whose baseline mortality is low, a small change in the 

hazard rate causes a large increase or decrease in life expectancy. But among older people 

whose baseline mortality is high, the same change makes little difference in life expectancy. 

This phenomenon is consistent with repeated observations in the literature where BMI and 

smoking has a less deleterious effect on life expectancy among older patients.

Conclusions

Advantages of parametric models

Parametric modeling yielded results that were sensible and consistent in shape with those 

observed when modeling hazard ratios3. We contrast the life expectancy estimates in Figure 

4 to the Cox estimates in Figure 5. The Cox hazard ratios appear upside down to the life 

expectancy curves in Figure 4, with no direct formula for converting from hazard ratios to 

life expectancy. In particular, the normal distribution offers greater ease of interpretability, 

when the data set consists of subjects near the modal age of longevity and the outcome is 

YLL, median longevity, or life expectancy. These are marked advantages in the context of 

communicating with demographers, litigators, public health officials, clinicians, and the 

general public and we therefore advocate that in chronic disease and risk factor 

epidemiology parametric models be considered as a primary analytic approach.

Future directions

When greater precision is desired or the investigator is interested in quantiles other than the 

middle, we advocate the use of left truncation and possibly optimization of multiple 

parameters. There appears to be a gap in the capabilities of commonly available software, 

and we have written software that addresses this issue.

Additionally, extending this method to accommodate complex sampling, as is used in the 

NHANES series would be valuable. A Bayesian extension would also be useful for data sets 

with high-dimensional predictors, such as genomic data, where penalized regressions are 

needed.
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Figure 1. Conditional Probability of surviving past age 90
The probability was computed based on 2006 US life tables for white males, published by 

the CDC. A white male at birth has a 13% chance of surviving past age 90; by age 89, the 

probability increases to 89%.
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Figure 2. 
Predicted median life expectancy for non-smokers, based on BMI.
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Figure 3. 
Predicted median longevity by BMI and smoking status for each race/sex combination, 

based on the compressed normal distribution.
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Figure 4. 
YLL due to BMI.
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Figure 5. 
Hazard ratios inferred by Cox model.
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Figure 6. 
Life expectancy of white male non-smokers, conditioned on BMI and age.
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Table 2

Model results.

Variable Estimate SE p-value

mu 89.726 0.725 <.0001

sigma 25.644 2.600 <.0001

lambda 140.014 14.848 <.0001

Male −4.114 0.414 <.0001

African-American −6.038 0.524 <.0001

Former smoker −2.010 0.464 <.0001

Current Smoker −8.310 0.607 <.0001

BMI* −2.756 0.822 0.0008

BMI2 −2.202 1.064 0.0386

BMI3 0.480 0.337 0.1548

Smoker × BMI 4.723 1.187 0.0001

Smoker × BMI2 −7.533 1.860 0.0001

Smoker × BMI3 2.909 0.831 0.0005

African-American × BMI 2.821 0.725 0.0001

*
BMI was centered and scaled as (BMI-25)/10.
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