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In the present study, thermodynamic properties of
coarse-grained protein models have been studied by an
extended ensemble method. Two types of protein model
were analyzed; one is categorized into a fast folder and
the other into a slow folder. Both models exhibit the
following thermodynamic transitions: the collapse
transition between random coil states and spatially
compact, but non-native states and the folding transi‐
tion between the collapsed states and the folded native
states. Caloric curve for the fast folder shows strong
statistical ensemble dependence, while almost no
ensemble dependence is found for the slow folder.
Microcanonical caloric curve for the fast folder exhibits
S-shaped temperature dependence on the internal
energy around the collapse transition which is reminis‐
cent of the van der Waals loop observed for the first
order transition; at the transition temperature, the
collapsed and random coil states coexist dynamically.
The corresponding microcanonical heat capacity is

Corresponding author: Shinichi Miura, Faculty of Mathematics and
Physics, Kanazawa University, Kakuma, Kanazawa, Ishikawa
920-1192, Japan.
e-mail: smiura@mail.kanazawa-u.ac.jp

found to have negative region around the transition.
This kind of exotic behaviors could be utilized to
distinguish fast folding proteins.
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Introduction
Proteins are heteropolymers consisting of amino acid

residues linearly linked by peptide bonds. Protein
molecules are known to spontaneously fold into compact
three-dimensional structures and to biologically function in
the native states. Since the pioneering experiments by
Anfinsen and coworkers [1], it has been known that the
amino acid sequence uniquely determines the native states.
To understand how the information coded in the amino acid
sequence is translated into the corresponding three-
dimensional structure is the core of the protein folding
problem. Understanding the problem would allow us to
predict three-dimensional structures in the native states
only by the knowledge of the amino acid sequence. Despite
many remarkable advances in the last decades [2–7], the

Coarse-grained protein models studied exhibit two thermodynamic transitions: the collapse transition between random coil and spatially
compact, but non-native states and the folding transition between the collapse and native states. Caloric curve for a fast folding model shows
strong statistical ensemble dependence especially around the collapse transition, while almost no ensemble dependence is found for a slow
folder. Microcanonical caloric curve for the fast folder exhibits S-shaped temperature dependence on the internal energy around the collapse
transition; the corresponding microcanonical heat capacity is found to have negative region around the transition. This kind of exotic behaviors
could be utilized to distinguish fast folding proteins.
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protein folding problem is still far from a solution.
It is important to point out that not all polypeptides are

proteins; only a very small subset of all the possible
sequences of the 20 naturally occurring amino acids has
been selected by evolution. While natural proteins fold into
uniquely determined native states quickly, a generic
polypeptide does not. Much effort has been made to under‐
stand this issue; one important perspective is provided by
the consistency principle [2] which states that various
energy terms in proteins, for example, short- and long-
range interactions, are consistent with each other. This idea
has been extended as the principle of minimum frustration
and applied to the random energy model to shed light on
the phase behavior of proteins [8]. These theoretical efforts
have been unified as a perspective assuming that protein
has a funnel-shaped energy landscape with a bias toward
native structures [3,9].

In the present study, we have adopted a coarse-grained
protein model developed by Honeycutt and Thirumalai [10]
to investigate thermodynamic behavior associated with pro‐
tein folding. This HT model has originally been introduced
to examine the possibility that metastable states are relevant
for protein folding. In this model, conformational frustra‐
tion prevents efficient relaxation to the global potential
energy minimum. To model a fast folding protein, the origi‐
nal model has been modified with the help of the consis‐
tency principle [11–14], the resulting coarse-grained model
is referred to be a Go-like HT model. The original and Go-
like HT models have been studied theoretically [10–18].
Potential energy landscape (PEL) of the HT models has
been explored by the eigenvector following and basin-
hopping methods [12,14]; while the original HT model is
characterized by the frustrated PEL around the global
potential energy minimum, the Go-like HT model where
the frustration in the original model is removed exhibits a
funnel type PEL. Thermodynamic properties have been
studied by the histogram method and several enhanced
sampling methods [11,13,15–18]. In the present study, we
have applied our enhanced sampling method, the multi‐
canonical generalized hybrid Monte Carlo method [19] to
the original and Go-like HT models to explore thermo‐
dynamic transitions of the protein models. Special attention
has been paid to the statistical ensemble dependence of
caloric curves to distinguish fast folders from slow folders.
Convexity of the microcanonical entropy is demonstrated
to play a key role to characterize the fast and slow folders.

Method
We first briefly review the multicanonical ensemble

method. The multicanonical ensemble [20–23] is an artifi‐
cial statistical ensemble whose probability density in the
potential energy space ρmc(U) is given using the density of
the potential energy states Ω(U) by

ρmc(U) ∝ Ω(U)e−W U = constant (1)

where W(U) is a weight function to realize the constant flat
distribution of the potential energy. The obvious choice of
the weight function is provided by W (U) = ln Ω(U), how‐
ever, Ω(U) is not known a priori. Thus, it must be deter‐
mined by other techniques; we have used the replica
exchange method [24,25] with the Weighted Histogram
Analysis Method (WHAM) [26,27]. In the present study,
the multicanonical distribution is generated by the general‐
ized hybrid Monte Carlo that is originally a method to
generate the canonical ensemble [28].
The generalized hybrid Monte Carlo (GHMC) method is

a method to combine MD and MC methods. The configura‐
tion of the system is generated by an equation of motion
and the trial configuration is accepted according to the
Metropolis criterion as in MC method. Here, we briefly
describe our GHMC method to generate the multicanonical
ensemble [19]. We first regard the multicanonical ensemble
as a fictitious canonical ensemble by introducing the fol‐
lowing multicanonical potential: Umc(U)=kBT0W(U({ri})
where T0 is an arbitrary temperature. Then, the multicanoni‐
cal distribution can be interpreted as a fictitious canonical
distribution at the temperature T0 by

ρmc(U) ∝ Ω(U)e−Umc(U)/kBT0 (2)

where kB is the Boltzmann constant. Here, we introduce the
following Hamiltonian Hmc:

Hmc = ∑
i = 1

N pi
2

2mi
+ Umc(U) (3)

where pi is the fictitious momentum and mi is the associated
fictitious mass of an ith particle. Using the Hamiltonian
Hmc, we obtain the following equations of motion [22,23]:

dri
dt =  

∂Hmc
∂pi

=  
pi
mi

,

dpi
dt =  −

∂Hmc
∂ri

= −  
∂Umc
∂U  ∂U

∂ri
. (4)

Given an initial state, the system state is evolved by numer‐
ically integrating the above equations over nMD steps with
the time increment Δt using a symplectic integrator [29].
The map from the initial state to the trial state is represented
as UΔτ: ({ri},{pi})→({ri'},{pi'}) where Δτ=nMD×Δt. The trial
state is accepted by the following Metropolis criterion:

ri′ , pi′ =
ℱ ∙ U ∆ τ ri , pi with a probability

min 1, e− ∆Hmc/kBT0

ri , pi otherwise
(5)
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where
∆Hmc =  Hmc ℱ ∙ U ∆ τ ri , pi − Hmc ri , pi  and
ℱ is an operator that negates the momentum

ℱ: ri , pi ri , −pi . (6)

The momentum flip is needed to satisfy the detail balance
condition in the phase space. It is noted that the Hamiltonian
is invariant under the momentum flip. Then, we finally apply
the momentum flip and define the next accepted state
vector: ℱ  ri′ , pi′

t . The extra momentum flip is
included so that the trajectory is reversed on an MC rejec‐
tion instead of on an acceptance.

In the GHMC method, the momentum is partially
refreshed at each GHMC step. We mix the momentum p
with a Gaussian noise vector u drawn from the Maxwell
distribution at the temperature T0 that is carried out by the
following equation:

pi′
ui′

=
 cos ϕ sin ϕ
−sin ϕ cos ϕ

∙ pi
ui

,     for    i = 1, ⋯, N. (7)

Here, ui is generated by ui = (mikBT0)1/2ξi where each com‐
ponent of ξi is given by the Gaussian random number with
zero mean and unit variance. The angle ϕ is introduced in
the range of 0<ϕ≤π/2 that controls the ratio of the momen‐
tum mixing. It is worthwhile to note that the standard
hybrid Monte Carlo [30,31] is recovered by ϕ = π/2 where
the momenta are fully refreshed at each GHMC step.

Here, we summarize the algorithm of the multicanonical
GHMC method. We start with an initial state of the system
({ri},{pi}) and mix Gaussian noise vector ui drawn from the
Maxwell distribution at the temperature T0: pi←pi cos ϕ+ui

sin ϕ for i = 1, ..., N. Then, molecular dynamics calculation
based on Eq. (4) is performed for the time increment
Δτ = nMD×Δt to generate a trial state that is accepted by
the probability min{1, e− ∆Hmc/kBT0}. If the trial state is
rejected, the momenta in the initial state are negated by the
operator ℱ:

ri′ , pi′  ri , −pi . (8)

Models
In the present study, we have adopted a coarse-grained

model of a protein molecule developed by Honeycutt and
Thirumalai [10]; hereafter, we refer it HT model. The model
consists of N beads. Each bead corresponds to a coarse-
grained amino acid residue. Three types of beads are intro‐
duced in this model; hydrophobic (B), hydrophilic (L), and
neutral (N). The primary sequence of the HT model for
N=46 is as follows: B9N3(LB)4N3B9N3(LB)5L. The potential
energy for the HT model consists of the following terms:
bond-length, bond-angle, torsion-dihedral, and nonbonded
potential terms [32]:

UHT = Ubond + Uangle + Utorsion + Unonbonded. (9)

The bond-length energy Ubond is given by

Ubond = ∑
i = 1

N − 1 kr
2 ( ri + 1 − ri − a)2 (10)

where kr = 400ε/a2, ε is the average strength of the
hydrophobic interaction, and a is the equilibrium bond
length; a = ε = 1 in the present study. The bond-angle
energy is given by

Uangle = ∑
i = 1

N − 2 kθ
2 (θi − θ0)

2 (11)

where kθ = 20ε/rad2, θi is the bond angle defined by the
successive three beads along the chain i, i + 1, i + 2, and
θ0 = 1.8326 rad is the equilibrium bond angle. The torsion
dihedral energy is represented as

Utorsion = ∑
i = 1

N − 3
Ai 1 + cos ϕi + Bi 1 + cos 3ϕi (12)

where ϕi is the dihedral angle defined by the successive
four beads i, i + 1, i + 2, i + 3; Ai = 0 and Bi = 0.2ε if two or
more neutral (N) beads are included, otherwise Ai = Bi = 
1.2ε. The nonbonded energy is given by

Unonbonded = 4ε ∑
i = 1

N − 3
∑

j − i + 3

N
Cij

a
rij

12
− Dij

a
rij

6
(13)

where rij = |ri – rj|. If both i and j beads are the hydrophobic
(B), Cij = Dij = 1; Cij = 2/3 and Dij = –1 for LL and LB
pairs. In the case of a pair including at least one neutral (N)
bead, Cij = 1 and Dij = 0. The global minimum energy struc‐
ture is known to be a β-barrel structure with an energy of
U0 = –49.2635 for the HT model; the minimum energy
structure is defined to be the native structure of the HT
model. The potential energy landscape around the native
structure is found to be highly frustrated. Here, we intro‐
duce a Go-like HT model guided by the consistency principle
[11–14]; the original HT model has been modified by
removing the attractive interactions between non-
contacting hydrophobic beads in the native structure of the
HT model. By this treatment, the native structure is specifi‐
cally stabilized and the frustration in the original model is
expected to be greatly reduced. In the present study, the
Go-like model is constructed by setting Dij = 0 for the pair
whose interparticle distance rij is longer than 1.3a in the
native structure of the original model [11]. The resulting
minimum potential energy is found to be U0 = –41.0228
that is higher than that of the original model due to switch‐
ing off the attractive interaction between noncontact pairs
in the global minimum structure, while the native structure
itself is intact.
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Computational details

In this section, we describe details on the calculations of
the original and Go-like HT models. Algorithmic para‐
meters of the multicanonical GHMC method are the fol‐
lowing: the fictitious temperature T0, mixing angle ϕ, MD
time step Δt and MD steps nMD in single GHMC step. The
fictitious temperature was set to be 0.5. As guided by our
previous results [19], we adopted ϕ = π/8 and nMD = 20 for
both original and Go-like HT models in the present calcula‐
tions. We set Δt = 0.015 for the original HT model and
Δt = 0.020 for the Go-like HT model. Total number of the
GHMC steps amounted to 2.0×107 for the original HT
model and 4.0×107 for the Go-like HT model. The potential
energy distribution was designed to be flat in the energy
range [–43, 95] for the HT model and [–34, 95] for the
Go-like HT model. The potential energy distributions
calculated by our multicanonical GHMC are presented in
Figure 1. We find that the distribution in the range specified
above is flat enough, demonstrating efficient sampling in
configuration space. To perform the multicanonical

Figure 1 Potential energy distributions generated by the multi‐
canonical GHMC calculations for the HT model (upper panel) and the
Go-like HT model (lower panel).

calculation, we first numerically determined the multi‐
canonical weight W(U). For the original HT model, we per‐
formed the replica exchange HMC calculations. 30 replicas
were used to cover the energy range to be flatten; the
exchange probabilities were in the range from 40 to 60%.
1.0 × 106 HMC steps were carried out for each replica.
Then, in order to obtain W(U), the density of potential energy
states Ω(U) was evaluated using the replica exchange results
with the help of the WHAM method. For the Go-like HT
model, the density of potential energy states Ω(U) was
evaluated similarly.

Results and Discussion
We first show the time series of the potential energy of

the protein models along the multicanonical GHMC trajec‐
tory. The potential energies are presented in Figure 2. It is
found that the broad range of the potential energy is
covered by the multicanonical GHMC method, as com‐
pared to the standard canonical simulation, see Figure 7.
The multicanonical calculations sample various structures
from spatially extended random coils to compact structures
around the global potential energy minimum. While the
potential energy continuously changes in the case of the
original HT model, intermittent fluctuation of the potential
energy is observed for the Go-like HT model. To reveal the
underlying potential energy landscape, we have applied the
inherent structure analysis [33–39] to the multicanonical
GHMC results. In this analysis, the structures along the
trajectory are instantaneously quenched down to the abso‐
lute zero; each structure is mapped to the potential energy
minimum nearest in the configuration space. In the present
study, this mapping was performed by the conjugate gradient
method. As mentioned in Sec. 3, the minimum potential
energy is given by U0 = –49.2635 for the original HT
model and by U0 = –41.0228 for the Go-like HT model. For
the original HT model, almost energetically degenerate
inherent structures are found around the global minimum,

Figure 2 The potential energy U and the potential energy of the associated inherent structure UIS as a function of GHMC steps for the HT
model (left panels) and the Go-like HT model (right panels). The snapshot gives the global minimum energy structure. Each bead corresponds to a
coarse-grained amino acid residue. Three types of beads are introduced in this model; hydrophobic (blue), hydrophilic (yellow), and neutral (red).
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demonstrating frustrated energy landscape. On the other
hand, the inherent structures around the global minimum
are sparsely distributed for the Go-like HT model; the
energy of the global minimum structure is found to be well
separated from those of metastable structures. In Table 1,
the number of the inherent structures found is listed for
both the original and Go-like HT models. For the original
HT model, the number is in good agreement with a previous
work [17] in low energy ranges; in higher energy ranges,
larger number of inherent structures are found in comparison
with the previous work. This demonstrates that broader
sampling in the configuration space has been realized by
our multicanonical GHMC calculation. In the case of the
Go-like HT model, the number of the inherent structures is
reduced especially in the low energy ranges, corresponding
to the sparse potential energy distribution of the inherent
structures seen in Figure 2.

Using the configurations distributed according to the
multicanonical density, we can evaluate the canonical
ensemble average of physical quantities. The canonically
averaged value of a physical quantity A(r1, ..., rN) is given
by

A =
AeW U − βU

mc

eW U − βU
mc

(14)

where ‹…› indicates the canonical ensemble average while
‹…›mc indicates the multicanonical ensemble average. We
also analyze the results on the basis of the microcanonical
ensemble. The thermodynamic potential of the micro‐
canonical ensemble is given by the entropy S(E) calculated
using the density of states Ω(E) by

S E = kBlnΩ E (15)

where E is the internal energy. In the present multicanoni‐
cal calculations, the density of potential energy states Ω U
can straightforwardly be evaluated. The density of states
Ω(E) is linked with the density of the potential energy
states Ω U  by the following relation [40]:

Ω(E) = CN ∫U0

E
(E − U)

3N
2 − 1Ω(U)dU (16)

where CN = (2mπ)3N/2Z/Γ(3N/2); here Z is the partition func‐
tion and Γ is the gamma function. Using the entropy, for
example, the temperature T(E) is obtained by

1
T E = ∂S E

∂E . (17)

We present the caloric curves for the original and Go-
like HT models in Figure 3. The internal energy E by the
canonical ensemble is given as follows:

E = 3
2NkBT + U (18)

The associated heat capacity is calculated using the vari‐
ance of the potential energy

C = 3
2NkB +

U2 − U 2

kBT 2 (19)

For both models, the internal energy decreases on cooling.
For the Go-like HT model, steep decrease is found around
T = 0.61. The corresponding heat capacity has a clear peak
around the temperature. The peak signals the transition
from a random coil state at high temperature to a spatially
compact collapsed, but non-native state at low temperature,
which has been verified by examining the order parameter
introduced below. Regarding the spatial extent, we find
steep decrease of the radius of gyration Rɡ around the tran‐
sition on cooling, as shown in Figure 3. According to the
previous studies [16,41–43], we call it the collapse transi‐
tion. For the original HT model, similar but much milder
temperature dependence is found for the caloric curve and
the heat capacity; a peak in C also signals the collapse tran‐
sition. In Figure 3, the microcanonical caloric curve, E vs
T = (∂S/∂E)–1 is also presented. For the Go-like HT model,
remarkable ensemble dependence is observed; the caloric
curve is found to exhibit S-shaped dependence around the
collapse transition temperature Tθ, which is reminiscent of
the van der Waals loops regarding the first order transition

Table 1 Number of inherent structures

HT model Go-like HT model

Energy range Present work STMD Energy range Present work

U0<U≤–49 5 5 U0<U≤–41 1
–49<U≤–48 35 35 –41<U≤–40 1
–48<U≤–47 159 149 –40<U≤–39 5
–47<U≤–46 383 309 –39<U≤–38 15
–46<U≤–45 742 547 –38<U≤–37 31
–45<U≤–44 1222 760 –37<U≤–36 80
–44<U≤–43 1886 918 –36<U≤–35 457

STMD indicates the statistical temperature molecular dynamics results reported in Ref. [17].
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[44]. This point will further be discussed later. In the micro‐
canonical caloric curve, we find another inflection point
around T = 0.57 corresponding to the folding transition
temperature characterized by the order parameter below.
This observation suggests that the microcanonical caloric
curve contains richer information compared with the
canonical counterpart. For the original HT model, almost
no ensemble dependence is found for the caloric curve. This
type of strong ensemble dependence of the caloric curve
has been observed for a fast folding protein model charac‐
terized by two states, folded and random coil states [45]. In
Ref. [45], the model has been demonstrated to show a first-
order type transition; the above statistical ensemble depen‐
dence is known to be observed for finite systems exhibiting
first-order type transitions. In the present study, the HT
models are characterized by three states, folded, collapsed
and random coil states.

To quantitatively analyze the folding transition to the
native state, the following order parameter is introduced
[16,42]:

Q =  1
M ∑

i, j > i + 4

N
θ ϵ − rij − rij0 , (20)

where rij0  is the distance between beads i and j in the native
state, ϵ = 0.2 in the present study, M is the normalization
constant and θ(x) is the Heaviside step function. This order
parameter is designed to give unity for the native structure
and small values for other structures. We also examine the
order parameter fluctuation χQQ defined by

χQQ = 〈Q2〉 − 〈Q〉2 . (21)

The calculated results are presented in Figure 4. At high
temperature, the averaged order parameter is vanishingly
small for the both models, since the proteins are in random
coil states. For the Go-like HT model, the order parameter
rapidly increases around T = 0.6 with lowering the temper‐
ature; the associated fluctuation χQQ has a peak at Tf = 0.57
that indicates the folding transition from the collapsed state
to the native state. For the original HT model, on the other
hand, the averaged order parameter gradually increases; a
peak in the fluctuation function is found at much lower
temperature Tf = 0.19 in comparison with the Go-like HT
model. The transition temperatures are collected in Table 2;
the transition temperatures are in good agreement with
previously reported values [11]. Using the transition

Figure 4 The order parameter Q (upper panel) and the order
parameter fluctuation χQQ (lower panel) as a function of temperature
T; blue curves for the original HT model and red curves for the Go-
like HT model.

Figure 3 The internal energy E (top panel), the heat capacity C (middle panel) and the radius of gyration Rg (bottom panel) as a function of
temperature T. Blue curves for the original HT model and red curves for the Go-like HT model; solid lines indicate the canonical ensemble results
and dashed lines in the upper panel indicate the microcanonical ensemble results. The internal energy for the Go-like HT model around T = 0.57 is
given in an inset.
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temperatures, the following parameter σ can be introduced
and is known to be correlated with the folding time of
proteins [43]:

σ =
Tθ − Tf

Tθ
(22)

where Tθ is the collapse transition temperature. Protein
molecules for σ<0.1 are empirically known to show fast
folding and those for σ>0.6 slow folding. As seen in the
Table, the Go-like HT model falls in the range of the fast
folder and the original model in the slow folder.

To further gain the insight on the nature of the transi‐
tions, we present the entropy S(E) as a function of the inter‐
nal energy E around the collapse transition in Figure 5.
While the entropy is found to be a concave function of E
for the original HT model, the entropy has a convex E
dependence in some energy region for the Go-like HT
model. In the convex region, we can draw a tangent com‐
mon to two energy values; the slope is found to be indeed
the inverse Tθ. The internal energy distribution at the
temperature Tθ is also presented in Figure 5. The internal
energy indicates bimodal distribution for the Go-like HT
model. The lower energy peak corresponds to the collapsed
state and the higher energy peak the random coil state; the

Table 2 The folding transition temperature Tf and the collapse tran‐
sition temperature Tθ for the HT and Go-like HT models

Tf Tθ σ

HT model 0.19 (0.19) 0.65 (0.66) 0.71 (0.71)
Go-like HT model 0.57 (0.59) 0.61 (0.61) 0.07 (0.03)

The parameter σ is defined by σ=(Tθ–Tf)/Tθ. Values in parentheses are
given in Ref. [11].

peak energy difference gives the latent heat as seen in the
first order transition. Thus, the collapse transition for the
Go-like HT model could be categorized into the first
order type transition. For the original HT model, the energy
distribution is unimodal, suggesting the collapse transition
could be categorized into a continuous type transition. As
shown in Figure 6, the energy distribution for the both
models at the folding transition temperature is found to
be unimodal; again, the folding transition for the both
models could be a continuous type. In Figure 7, the instan‐
taneous potential energy and the order parameter are
plotted along the canonical GHMC trajectory controlled at
the temperature Tθ. For the Go-like HT model, low and high
potential energy states are clearly shown to coexist dynami‐
cally; the former is the collapsed state and the latter the
random coil state. Typical configurations of the collapsed
and the random coil states are presented in Figure 7. It is
worthwhile to mention that the collapsed state has rela‐
tively large value of the order parameter Q. This is due to
the fact that the collapsed state for the Go-like HT model
has a barrel region consisting of three β-strands common to
the native structure. To further clarify this point, we intro‐
duce a partial order parameter Qp that is defined by Eq. (20)
only using the above β-barrel region. This parameter is nor‐
malized to be unity if the region is similar enough with the
β-barrel found in the native state. In Figure 8, the calculated
Qp is presented. The large Qp values are observed for the
collapsed state. The trend is clearer for the partial order
parameters calculated using the inherent structures which
have larger values close to unity. This demonstrates that the
collapsed state could be regarded to be a partially folded
state. On the other hand, the collapsed state for the original
HT model has no such partial structural similarity with the
native state.

In the microcanonical ensemble, it might seem that a

Figure 5 Microcanonical entropy S(E) and the potential energy distribution P(E) at the collapse transition temperature Tθ for the HT model
(left panels) and the Go-like HT model (right panels). Dashed line in the right upper panel indicates Tθ.
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Figure 8 The partial order parameter Qp (upper panel) and the
corresponding partial order parameter calculated by the inherent struc‐
ture QIS, p (lower panel) for the Go-like HT model at the collapse tran‐
sition temperature Tθ as a function of the canonical GHMC steps.

stable internal energy intermediate between the collapsed
and random coil states could be given by phase separation;
however, the system is too small to phase-separate. The van
der Waals loop type behavior observed for the caloric curve
can be understood by the kinetic energy distribution at
fixed internal energy E. The kinetic energy distribution
P(K; E) for a given internal energy E can be written by [46]

P K; E =  Ω E − K K s − 1 /2 (23)

where K is the kinetic energy and s=3N–6. The calculated
result is presented in Figure 9. For the Go-like HT model,
in the vicinity of the collapse transition, the kinetic energy
distribution broadens toward lower energy with increasing
the internal energy. This arises from the system climbing up
the potential energy surface, accompanying the β-barrel
deformation in the collapsed state. The resulting averaged

Figure 6 Microcanonical entropy S(E) and the potential energy distribution P(E) at the folding transition temperature Tf for the HT model
(left panels) and the Go-like HT model (right panels).

Figure 7 The potential energy U and the order parameter Q at the collapse transition temperature Tθ as a function of the canonical GHMC
steps for the HT model (left panels) and the Go-like HT model (right panels). The left and right figures are typical configurations of the collapsed
and the random coil states for the Go-like HT model, respectively.
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kinetic energy shows the S-shaped dependence as seen in
the microcanonical caloric curve. For the original model,
monotonic dependence of the averaged kinetic energy is
observed, although the kinetic energy distribution broadens
at the collapse transition. The S-shaped dependence seen
for the Go-like HT model yields the exotic energy depen‐
dence of the heat capacity. The microcanonical heat
capacity is evaluated by

C E = ∂E
∂T = − 1

T E 2
∂2S E
∂E2

−1

(24)

The calculated heat capacity is presented in Figure 10. For
the Go-like HT model, the negative heat capacity is found
around the collapse transition, reflecting the S-shaped loop
in the microcanonical caloric curve. Indeed, this is due to
the fact that an increase in the internal energy causes a
temperature reduction. A peak is found around the folding
transition arising from the inflection point in the micro‐
canonical caloric curve. For the original HT model, a broad
peak is found at the collapse transition.

Figure 10 The microcanonical heat capacity as a function of the
internal energy E for the HT (blue curve) and the Go-like HT (red
curve) models.

Figure 9 The kinetic energy distribution as a function of the internal energy E for the HT model (upper panel) and the Go-like HT model
(lower panel). Dashed lines indicate the averaged kinetic energy as a function of the internal energy.
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Conclusion

In the present study, we have performed the multicanoni‐
cal generalized hybrid Monte Carlo (GHMC) calculations
for coarse-grained protein models. One is a model proposed
by Honeycutt and Thirumalai (HT) and the other is a modi‐
fied version called a Go-like HT model that the global min‐
imum structure is specifically stabilized. While the original
HT model is characterized by highly frustrated energy land‐
scape near the global potential energy minimum, the Go-
like HT model has a deep global potential energy minimum
of the native state. The protein models exhibit two types of
thermodynamic transitions; the collapse transition between
random coil states and spatially compact, but non-native
states and the folding transition between the collapsed
states and the folded native states. The collapsed state for
the Go-like HT model actually is found to be a partially
folded state, while the collapsed state for the original HT
model has no structural similarity with the native folded
state. An empirical parameter regarding foldability defined
using the transition temperatures indicates that the original
HT model is a slow folder and the Go-like HT model is a
fast folder. Caloric curve for the Go-like HT model is found
to show strong statistical ensemble dependence, while that
for the original model does not. Microcanonical caloric
curve for the Go-like HT model shows S-shaped tempera‐
ture dependence of the internal energy around the collapse
transition that is reminiscent of the van der Waals loop
characteristic of the first order transition; at the transition
temperature, the collapsed and random coil states coexist
dynamically. The associated microcanonical heat capacity
has negative region around the transition. On the other
hand, the original HT model does not show such exotic
behaviors. This ensemble dependence and the associated
negative heat capacity could be utilized to distinguish fast
folding proteins. An important future direction of the
present study includes extension of our treatment to more
realistic all atom models to explore the energy landscape of
hydrated proteins; such a study with the help of integral
equation theories of liquids [47,48] is in progress in our
research group.
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