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Abstract: Hepatocellular carcinoma (HCC) is one of the most aggressive types of cancer and lacks
effective therapeutic approaches. Most HCC develops in the setting of chronic liver injury, hepatic
inflammation, and fibrosis. Hepatic stellate cells (HSCs) and cancer-associated fibroblasts (CAFs) are
key players in liver fibrogenesis and hepatocarcinogenesis, respectively. CAFs, which probably derive
from HSCs, activate into extracellular matrix (ECM)-producing myofibroblasts and crosstalk with
cancer cells to affect tumor growth and invasion. In this review, we describe the different components
which form the HCC premalignant microenvironment (PME) and the tumor microenvironment (TME),
focusing on the liver fibrosis process and the biology of CAFs. We will describe the CAF-dependent
mechanisms which have been suggested to promote hepatocarcinogenesis, such as the alteration of
ECM, CAF-dependent production of cytokines and angiogenic factors, CAF-dependent reduction of
immuno-surveillance, and CAF-dependent promotion of epithelial-mesenchymal transition (EMT).
New knowledge of the fibrosis process and the role of CAFs in HCC may pave the way for new
therapeutic strategies for liver cancer.

Keywords: hepatocellular carcinoma (HCC); fibrosis; cancer-associated fibroblasts (CAFs); hepatic
stellate cells (HSCs); tumor microenvironment

1. Introduction

Hepatocellular carcinoma (HCC) is one of the most aggressive and fastest growing
malignancies [1]. HCC is only second to lung cancer as a leading cause of cancer-related death
worldwide [2]. Since, in most patients, HCC is diagnosed at a late stage, therapeutic treatments are
limited and the five-year survival rate is less than 12% [3]. Most HCC cases are in southeast Asia,
where the major cause of HCC is chronic hepatitis B virus (HBV) infections. In contrast, in sub-Saharan
Africa, the main risk factor is exposure to aflatoxin B [4]. However, in Japan, North America,
and Europe, major causes of HCC are hepatitis C virus (HCV) infections, alcoholic liver disease,
and non-alcoholic fatty liver disease (NAFLD) [4]. This chronic liver injury causes liver fibrosis,
which is characterized by the activation of hepatic stellate cells (HSCs) into extracellular matrix
(ECM)-producing myofibroblasts [5–7]. In chronic liver injury, continuous accumulation of ECM
results in the progressive substitution of the liver parenchyma by scar tissue. Regardless of the etiology
of liver injury, HCC is strongly associated with liver fibrosis and cirrhosis, with about 80–90% of
HCC cases having underlying fibrosis [8], and approximately one in three patients with cirrhosis will
develop HCC in their lifetime [3]. However, it is still not clear whether fibrosis directly promotes HCC.
Currently, there are very limited therapies for HCC treatment. Therefore, a better understanding of the
role of fibrosis and myofibroblast activation in HCC development and progression may provide new
therapeutic options for the treatment of HCC.

Int. J. Mol. Sci. 2019, 20, 1723; doi:10.3390/ijms20071723 www.mdpi.com/journal/ijms

http://www.mdpi.com/journal/ijms
http://www.mdpi.com
http://www.mdpi.com/1422-0067/20/7/1723?type=check_update&version=1
http://dx.doi.org/10.3390/ijms20071723
http://www.mdpi.com/journal/ijms


Int. J. Mol. Sci. 2019, 20, 1723 2 of 19

2. The Premalignant and Tumor Microenvironment in HCC

The tumor microenvironment (TME) is defined as the tumor cell population in a complex
mixture of surrounding stromal cells, including fibroblasts, endothelial cells, pericytes, immune
cells, and proteins like ECM elements, cytokines, chemokines, and enzymes that are secreted by both
cancerous and non-cancerous cells [9]. Originally, the TME was not considered to have a role in cancer
progression; however, it is now proposed that the stroma is aberrantly activated in cancer and it
affects tumorigenesis. In the context of liver cancer, HCC is strongly associated with liver fibrosis and
cirrhosis, suggesting that the environment in which HCC rises may influence tumorigenesis. This is
different from many other tumors, where fibrosis develops as a reaction of tumor formation [10].
Therefore, it was recently proposed that the premalignant microenvironment (PME) and TME in HCC
should be differentiated [10]. PME is characterized by chronic liver injury, inflammation, and fibrosis,
and precedes tumor formation, whereas TME evolves in the already developed tumor.

2.1. Premalignant Microenvironment in HCC

Several mechanisms have been proposed to promote tumor formation in PME (Figure 1).
First, chronic liver injury causes hepatocyte cell death. It has been demonstrated in mice that
abolishing the expression of antiapoptotic proteins such as Nemo, Tak1, Mcl-1, or Bcl-xl, specifically in
hepatocytes, increased hepatocyte apoptosis, fibrosis, and consequently, HCC development [11–15].
Accordingly, studies in chronic HBV and HCV patients have shown that elevated levels of ALT,
which reflect hepatocyte death, positively correlate with the risk of developing HCC [16,17].
In this setting, hepatocyte death in turn triggers several other mechanisms, such as compensatory
hepatocyte proliferation, liver fibrosis, inflammation, the increased generation of reactive oxygen
species (ROS), and DNA damage. Hepatocyte proliferation is the consequence of injury-induced
necrosis. Continuous cycles of this destructive–regenerative process are proposed to give rise to
replication-related mutations in hepatocytes [18] and eventually HCC.
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Figure 1. Mechanisms which promote HCC formation in PME. In PME, chronic liver injury
causes hepatocyte death, which triggers inflammation, the activation of hepatic stellate cells into
ECM-producing myofibroblasts, compensatory hepatocyte proliferation, the release of reactive oxygen
species (ROS), and DNA damage. Continuous cycles of this destructive–regenerative process,
which precedes tumor formation, are proposed to give rise to replication-related mutations in
hepatocytes and eventually HCC. The links between the different mechanisms are indicated here.

Fibrosis is the main feature of hepatic PME [3]. Liver fibrosis starts as a protective wound
healing response to acute liver damage. However, if the injury persists, fibrosis becomes chronic
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and dysfunctional [19]. Morphologically, liver fibrosis is characterized by the accumulation of ECM,
followed by the formation of fibrous scar and subsequent cirrhosis [19,20]. HSCs are the main
ECM-producing cells in the injured liver [21]. In healthy livers, quiescent HSCs localize in the space of
Disse, function as pericytes, and store vitamin A. However, following continuous liver injury, HSCs
activate into myofibroblasts; express alpha-smooth muscle actin (α-SMA); migrate to the site of tissue
repair; and secrete ECM, chemokines, and cytokines. In the normal liver, ECM is formed by collagen
type IV and VI; however, in fibrotic livers, there is a shift towards the accumulation of fibrillar collagens
like type I and III, along with an increased deposition of non-collagenous glycoproteins like fibronectin,
undulin, laminin, hyaluronan, elastin, and proteoglycans [20]. Moreover, the deposition of ECM is
accompanied by a reduction in the activity of ECM-degrading matrix metalloproteinases (MMPs),
favoring the formation of the fibrotic scar [22]. Several human studies have shown that a high fibrosis
index and liver stiffness, which are indirect measurements of liver fibrosis, positively correlate with
HCC risk [23–25]. Moreover, it was also demonstrated that liver fibrosis is linked to increased HCC
recurrence after curative resection [26–29].

Another important feature of hepatic PME is inflammation, which, like fibrosis, is part of
the protective wound healing response to acute liver damage. In the short-term, inflammation is
believed to be beneficial, eliminating pathogens and favoring liver regeneration. However, chronic
inflammation is detrimental and is linked to fibrosis, cirrhosis, and HCC. In fact, HSCs can be activated
by several cytokines and growth factors, which are secreted by immune cells, including Kupffer cells,
bone marrow-derived monocytes, Th17 cells, and innate lymphoid cells (ILC). Those inflammatory
cytokines have been shown to modulate hepatic fibrogenesis in vivo and in vitro [30]. Proinflammatory
mediators that have a role in HCC development include IL-1, IL-6, TNF-α, and IL-17 [31,32].
Additionally, secreted cytokines and growth factors can promote proliferative and anti-apoptotic
signals in epithelial and tumor cells or induce angiogenesis, therefore favoring tumorigenesis.
Interestingly, neutrophils and IL-1 promote hepatocarcinogenesis, but have a limited role in hepatic
fibrosis [18,33–35]. Although IL-6 is reported to protect against liver fibrosis, it contributes to HCC
development [36–39]. An additional effect of the recruitment of inflammatory cells in the PME is
the production of ROS by activated macrophages, activated HSCs, and neutrophils. ROS not only
promote fibrosis by facilitating HSCs activation and migration [40], but can also directly induce cancer
by generating DNA damage and mutations in hepatocytes [41], or by causing the selective loss of CD4+
T lymphocytes, which mediate tumor immunosurveillance [42]. Consequently, it has been reported
that antioxidants which inhibit ROS formation can effectively reduce hepatocarcinogenesis [43,44].

2.2. Tumor Microenvironment in HCC

TME in HCC consists of a dynamic network of non-tumoral stromal cells, including
cancer-associated fibroblasts (CAFs), B and T cells, neutrophils, endothelial cells, and tumor-associated
macrophages (TAMs) (Figure 2). Interestingly, it has recently been shown that, upon liver injury,
the expression of adenine dinucleotide phosphate (NADPH) oxidase 1 (NOX1) by macrophages
promotes hepatocarcinogenesis by inducing the production of inflammatory cytokines [45]. In addition
to these cellular components, the TME is also characterized by profound ECM remodeling [46].
Altogether, the TME interacts bidirectionally with the tumor, generating a tumor-permissive niche.
In the following paragraphs of this review, we will provide a detailed overview of CAFs and how they
contribute to the development of HCC. TAMs and the other components of the TME are beyond the
scope of this review.

3. Cancer-Associated Fibroblasts (CAFs)

3.1. Origin of CAFs

Fibroblasts were first described by Virchow and later Duvall in 1858 as spindle-shaped cells of
the connective tissues that produce collagen. Later in 1971, Giulio Gabbiani showed that fibroblastic
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cells with contractile properties, called myofibroblasts, may be involved in wound healing [47].
Several studies using genetic cell fate mapping have provided strong evidence that the major
precursors of α-SMA-expressing myofibroblasts in most types of experimental liver diseases are
HSCs [48–50]. Therefore, CAFs most likely derive from HSCs. However, some controversies
remain and, other than HSCs, the proposed sources of myofibroblasts are parenchymal cells
undergoing epithelial-mesenchymal transition (EMT), bone marrow (BM)-derived cells, mesothelial
cells, and portal fibroblasts (PFs).

Epithelial cells line the surfaces of the body and are located in all organs. EMT is a process in
which epithelial cells lose their polarity, acquire a migratory capacity, and become myofibroblasts.
Although some studies have shown that hepatocytes and cholangiocytes upregulate α-SMA and
suppress epithelial markers under prolonged in vitro culturing [51,52], elegant lineage-tracing
experiments have demonstrated that myofibroblasts found in experimental liver fibrosis do not
originate from epithelial cells [53–55]. These results therefore suggest that myofibroblasts do not
originate from EMT in fibrogenesis in vivo [56].

Two BM-derived cells which may potentially become myofibroblasts are mesenchymal stem cells
(MSCs) and fibrocytes. MSCs are multipotent cells that can give rise to several cell types, including
adipocytes, myocytes, chondrocytes, and osteoblasts. However, recent studies have shown that MSCs
may actually have antifibrotic properties and provide a protective microenvironment in the recruited
tissue [57].

In contrast, some studies have suggested that in a number of solid tumors, myofibroblasts can
originate from the bone marrow [58–61]. Fibrocytes are cells with a spindle-like shape that were first
described in 1994 [62]. They are characterized by co-expressing fibroblast markers (collagen type I,
vimentin, and fibronectin) and hematopoietic cell markers (CD45, CD34, MHCII, CD11b, Gr-1, CD54,
CD80, CD86, CCR2, CCR1, CCR7, CCR5) [63,64]. Studies have suggested that fibrocytes are recruited
to the liver in response to both cholestatic and carbon tetrachloride (CCl4)-induced liver injury, where
they can differentiate into α-SMA+ myofibroblasts with a contribution range of between 3% and
50% [65–67].

Mesothelial cells form a monolayer of specialized cells which line the body’s serum cavities and
internal organs. They originate from the embryonic mesoderm layer and have features similar to
epithelial cells. Cell fate mapping has demonstrated that during embryonic development, mesothelial
cells can give rise to both PFs and HSCs [68,69]. However, it is not clear whether they can be a source of
myofibroblasts in liver fibrosis. Interestingly, Asahina and coworkers have shown that mesothelial cells
differentiate into both HSCs and myofibroblasts after CCl4-induced liver injury, whereas in cholestatic
liver injury, they only differentiate into HSCs, not myofibroblasts [70,71]. However, a recent study has
suggested that mesothelial cells may have a role in fibrosis of the liver capsule [67].

Portal fibroblasts are a heterogenous population and reside underneath the bile duct epithelium.
Since markers which can discriminate fibroblasts from other mesenchymal cells are lacking, it
is challenging to identify or purify quiescent PFs. However, activated PFs were first described
in cholestatic liver disease by electron microscopy, histology, and immunohistochemistry [72–74].
Cell phenotyping has demonstrated that during experimental biliary fibrosis, PFs differentiate into
α-SMA-expressing myofibroblasts that produce ECM [75–77]. A study proposed that markers such as
elastin, Thy1, and Ntpdase2, were specifically expressed by murine PFs, but not by HSCs [78]. The work
of Iwaisako et al., using collagen promoter-driven green fluorescent protein (GFP) transgenic mice, has
identified two myofibroblast populations: Vitamin A-positive HSCs and Vitamin A-negative PFs [79].
The unifying proposal is that in CCl4-induced liver fibrosis, myofibroblasts mainly derive from HSCs,
whereas in early cholestatic injury, PFs constitute the major source of myofibroblasts. However, in
later cholestatic disease, HSCs again give rise to the majority of myofibroblasts. A novel signaling
pathway involving the interaction of mesothelin with a MUC16-Thy1-TGFβRI complex regulates
TGF-β1-mediated activation of PFs during cholestatic liver fibrosis [80].
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In summary, current studies regarding the origin of hepatic myofibroblasts indicate that,
depending on the type of liver injury, they mostly arise from liver-resident HSCs and to a lesser
extent, from activated PFs. Mesothelial cells contribute to capsular fibrosis, whereas the contribution
to liver fibrosis from BM-derived cells is quantitively small.

3.2. Markers of CAFs

In order to study and detect CAFs in the tumor, a specific marker is needed. However, a unique
marker for CAFs has not been found. Several markers have been proposed to identify CAFs (Table 1);
nonetheless, most of them are not unique to CAFs. For example, α-SMA is widely recognized as a
robust CAFs marker [81]; however, it is also expressed by myofibroblasts [82] and its expression may
vary between different CAF subtypes [83]. Another CAFs marker is the membrane-bound serine
protease fibroblast activation protein α (FAPα), which is upregulated in the majority of epithelial
carcinomas [84]. However, it has been shown that FAPα is also not specific to CAFs [85]. Recently,
it has been demonstrated that FAPα is expressed in a certain sub-population of CAFs, but absent in
others [86]. Fibroblast specific protein 1 (FSP-1) is another CAFs marker [87,88], which is also present
in epithelial cells undergoing EMT [89] and in bone marrow-derived cells [90]. Additional proteins
expressed in some CAFs include tenascin-C [91], periostin [92], neuron-glial antigen-2 (NG2) [93],
podoplanin [94], and the novel identified marker microfibril associated protein 5 (MFAP5) [95].
In summary, the expression of CAFs markers is very heterogenous and it depends on the CAFs
subpopulation being analyzed. Therefore, the discovery of CAF-specific markers will be vital to
identify and therapeutically target this cell population.

Table 1. Markers of CAFs.

CAFs Markers References

α-SMA [81]
FAPα [84]
FSP-1 [87,88]

Tenascin-C [91]
Periostin [92]

NG2 [93]
Podoplanin [94]

MFAP5 [95]

3.3. CAFs in HCC

α-SMA-positive myofibroblasts are found in both human and murine HCC. For example, analysis
by immunohistochemical technique of liver biopsy specimens from eight patients with HBV-related
cirrhosis and HCC demonstrated that desmin-positive and α-SMA-positive cells were present in the
perisinusoidal space and between tumor cells [96]. These results were confirmed by another study
where liver specimens resected from 24 patients with HCC were analyzed by electron microscopy and
immunohistochemistry. Interestingly, stromal cells strongly positive for α-SMA were found between
endothelial cells and trabeculae of cancer cells [97]. Moreover, in vivo experiments demonstrated that
the majority of cells producing collagens in human HCC were myofibroblasts [98]. In vitro experiments
conducted in the same study then showed that HCC cell lines like HepG2, HuH17, and Hep3B, can
increase ECM deposition in myofibroblasts by releasing a soluble mediator in the conditioned medium.

Multiple clinical studies have investigated the correlation between the presence of α-SMA-positive
myofibroblasts and prognosis after HCC resection. For example, in 130 HCC cases, it was observed
that the presence of peritumoral-activated HSCs positively correlates to poor clinical outcome after
curative resection [28]. Other studies have confirmed these observations and suggested that metastasis
was increased in patients expressing HSC signature genes [26,29,99,100]. Several in vitro and in vivo
studies have demonstrated that HSCs can support the growth of HCC cell lines. For example, it was
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shown that conditioned media from human primary HSCs induced the proliferation and migration
of human HCC cell lines cultured in monolayers [101], and similar results were also observed in a
three-dimensional spheroid coculture system. In the same study, co-injection of HSCs and HCC cells
into nude mice increased tumor growth and invasiveness, and inhibited necrosis. Another study
using conditioned media from culture-activated rat HSCs and McA-RH777 rat HCC generated similar
results [102]. Further in vitro studies demonstrated that activated CAFs repressed apoptosis in the
Huh7 cell line by increasing the Bcl-2/BAX ratio through SDF-1/CXCR4/PI3K/AKT signaling [103].
Another work tried to discriminate the effect of human primary CAFs and primary non-tumoral
fibroblasts (NTFs) on human HCC cell lines. The co-culture experiments demonstrated that CAFs
up-regulated gene expressions of TGF-β1 and the fibroblast-activated protein (FAP) of HuH-7 and
JHH-6, while NTF did not induce the expression of either gene [104]. Interestingly, it was also shown by
co-culturing human hepatoma cells and activated human HSCs that the crosstalk between these cells
is bi-directional, causing an increased expression of proinflammatory cytokines in hepatoma cells and
an increased expression of VEGF and MM9 in HSCs [99]. It was demonstrated that there is a positive
feedback loop between CAFs and the forkhead box Q1 (FOXQ1)/N-myc downstream-regulated
gene 1 (NDRG1) axis, which drives HCC initiation [105]. Several in vivo studies have confirmed
the results observed by co-culture experiments. Subcutaneous co-transplantation of an HSC cell line
with MIM-R hepatocytes promoted tumor progression by inducing autocrine TGF-β signaling and
nuclear β-catenin accumulation in neoplastic hepatocytes [106]. Similarly, when co-transplanted into
nude mice, the HSC cell line LX2 promoted the growth of HepG2 tumors by increasing proliferation
and angiogenesis and reducing HepG2 apoptosis [107]. In another study, T6 HSCs orthotopically
co-injected into the livers of nude mice, together with H22 HCC cells, increased the tumorigenicity
and invasiveness of the cancer cells by promoting angiogenesis [108]. Overall, evidence presented
by such studies suggests that CAFs/HSCs are positive regulators of HCC. However, a recent study
showed that HSCs may limit HCC progression though the orphan receptor endosialin, which may
negatively regulate hepatotropic cytokines, including IGF2, RBP4, DKK1, and CCL5 [109]. This study
supports the increasing recognition that HSCs not only have pro-tumorigenic functions, but may also
inhibit cancer growth. For example, depleting CAFs in experimental pancreatic ductal adenocarcinoma
promoted tumorigenesis [110,111].

4. CAF-Dependent Mechanisms of Hepatocarcinogenesis

Several CAF-dependent mechanisms support tumor growth in the liver (Figure 2). For example,
CAFs can change the ECM stiffness and in turn affect tumorigenesis. Moreover, CAFs secrete
cytokines and other factors which may promote tumor growth, tumor angiogenesis, and epithelial to
mesenchymal transition (EMT). CAFs have also been shown to indirectly affect HCC by cross talking
with immune cells and reducing immune surveillance.
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4.1. CAF-Dependent Alteration of ECM Promotes HCC

In the injured liver, activated HSCs secrete ECM proteins and there is a shift towards the
accumulation of fibrillar collagens like type I and III. In this altered biomechanical environment,
the ECM components can interact directly and indirectly with both cancer cells and stromal cells to
change their functions [112]. For example, it was shown that laminin-5, one of the components of the
ECM, secreted by primary cultures of human HSCs, stimulated cell migration in several HCC cell lines
by activating the MEK/ERK pathway [113]. Moreover, the increase and reorganization of ECM created
a stiff microenvironment in the liver. Interestingly, Schrader and collaborators have used “mechanically
tunable” matrix-coated polyacrylamide gels to show that an increase in matrix stiffness promoted
the proliferation of Huh7 and HepG2 cell lines through the PKB/Akt pathway. In contrast, a soft
environment favored cellular dormancy and stem cell characteristics in HCC [114]. Another study
using polyacrylamide supports of different stiffnesses suggested that HSCs are also affected by the
stiff environment. In fact, primary rat HSCs required a mechanical stiff substrate to differentiate into
myofibroblasts [115]. Similar results were also observed when studying CAFs in breast cancer [116].
Of importance, several studies which have measured liver stiffness by using elastography in patients
with chronic liver diseases, have confirmed that stiffness correlates with the risk of HCC [24,25,117,118].
The mechanical stress caused by alteration of the ECM is transmitted to the nearby cells by integrins and
discodin domain receptors (DDRs), which are responsible for mediating “outside-in” and “inside-out”
signaling between ECM and the cells [119]. A study using PDGFC transgenic or Pten null mice
as HCC models has shown that several collagen types and integrins were both up-regulated in
tumors in these mice, suggesting a correlation in the expression of HCC-associated ECM proteins and
ECM-integrins networks [120]. In accordance with these results, integrin β1 and integrin α6 were
upregulated in liver biopsies of HCC patients, and the integrin expression positively correlated with
pathological grade [121,122]. Integrins have been shown to promote cell proliferation by activating
the MAPK and Pi3K pathways, and cell survival through antiapoptotic signaling [123]. Therefore,
the altered ECM present in the HCC microenvironment may interact with integrins expressed in
hepatocytes, promoting tumor proliferation, migration, and invasion. Like integrins, DDR2 expression
was increased in several HCC cell lines and in 112 biopsies from HCC patients, and it was correlated
with clinicopathological features of poor prognosis [124]. DDR2 was shown to facilitate HCC invasion
and metastasis through activation of the ERK pathway and stabilization of the EMT marker SNAIL1,
and this signaling cascade was induced by collagen type I [124]. ECM degradation by MMPs is
another key process in the injured liver, which can affect tumorigenesis by releasing growth factors or
generating cleavage fragments [125]. Several studies have shown that MMPs can promote tumor cell
proliferation, progression, and invasion [126–129].

4.2. CAFs and Tumor Angiogenesis

Tissue hypoxia and vascular disorganization are typically observed in the injured liver. Hypoxia
inhibits liver regeneration and promotes angiogenesis, fibrogenesis, and hepatocarcinogenesis [130].
Angiogenesis is the physiological process through which new blood vessels form from pre-existing
vessels. Vascular endothelial growth factor (VEGF) is crucial for angiogenesis and it has been
shown that it is secreted by both primary and immortalized rat hepatic stellate cells after hypoxic
injury [131]. Thus, induction of VEGF may be important in the pathogenesis of liver injury and
hepatocarcinogenesis. Another angiogenic factor called angiopoietin-1 was increased in a human
fibrotic liver, and was expressed and secreted by activated HSCs isolated from fibrotic mice which
were treated by CCl4 or underwent bile duct ligation (BDL) surgery [132]. Another study observed
that the expression of angiopoietin-1 and angiopoietin-2 was upregulated in HCC patients and
correlated with tumor dedifferentiation and tumor vascularity. Moreover, the same study showed
that angiopoietin-1 and angiopoietin-2 can be detected in hepatoma cells, HSCs, and smooth muscle
cells [133]. Angiopoietein-2 was also found to be upregulated at both mRNA and protein levels in
patients with chronic hepatitis B, suggesting that it may contribute to pathological angiogenesis
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and HCC progression [134]. Several studies using 3D spheroids, co-culture systems of HSCs
with endothelial cells, and subcutaneous xenograft models, have shown that HSCs can promote
angiogenesis by producing proangiogenic mediators [107,108,135,136].

4.3. CAF-Secreted Cytokines

In liver fibrosis, the death of hepatocytes and cholangiocytes causes the activation of HSCs directly
or through several cytokines, which are secreted by immune cells. These inflammatory cytokines
have been shown to modulate hepatic fibrogenesis in vivo and in vitro [137]. In turn, activated
HSCs can produce cytokines that promote cancer proliferation and migration. For example, it was
shown that activated HSCs secrete TGF-β, which has a bipartite role. It is a tumor suppressor at
early stages of liver damage and regeneration, whereas it acts as a tumor promoter during cancer
progression [138], perhaps by inducing nuclear β-catenin accumulation in neoplastic hepatocytes [106].
Studies using transgenic mice have shown that TGF-β-dependent targeting of Snail is required
for the formation of liver cancers [139,140]. HSCs also produce hepatocyte growth factor (HGF),
which stimulates the motility of Hep3B, HepG2, and Huh7 cells and the migration of primary HCC
cells isolated from three patients. HGF promoted phosphorylation of its receptor c-Met and activation
of phosphatidylinositol 3-kinase (PI3-K) [141]. A more recent study has shown, by in vitro and in vivo
experiments, that HSC-secreted HGF might reduce HCC sensitization to chemotherapeutic agents
by promoting epithelial-mesenchymal transition (EMT) and cancer stem cell (CSC)-like properties
through the HGF/c-Met pathway [142]. Clinical studies have supported these observations, showing
that the expression of HGF and its receptor c-MET was elevated in cirrhotic tissues and in 80% of HCC
cases [143].

4.4. CAFs and Immune Surveillance

The immune system works as a barrier to tumor formation and progression and several studies
have shown that CD8+ cytotoxic T lymphocytes (CTLs), CD4+ Th1 T cells, and natural killer (NK)
and dendritic cells (DC) are critical to block tumor development [144,145]. Therefore, both the
innate and adaptive immunity contribute to immune surveillance. However, cancer cells can evade
the immune system either by producing immunosuppressive factors like TGF-β [146,147] or by
recruiting immunosuppressive inflammatory cells such as regulatory T cells (Tregs) or myeloid derived
suppressor cells (MDSC), which are able to inhibit the activity of cytotoxic lymphocyte cells [148,149].
It has been shown that populations of Tregs are increased in the tumor and peripheral blood of
HCC patients [150]. MDSC in mice express CD11b and Gr-1 and they can be found in the blood,
spleen, bone marrow, and tumor microenvironment [149]. In humans, MDSC are characterized by
the expression of markers such as CD34, CD33, CD15, and CD16 [151]. Like Tregs, MDSC are also
increased in HCC patients [152]. The mechanisms by which Tregs and MDSC limit antitumor immunity
have been extensively described previously [153,154] and they are beyond the scope of this review.
Using allografts, it was demonstrated for the first time that HSCs can modulate immunity in mice
and inhibit T-cell responses by inducing T-cell apoptosis [155,156]. Several studies have shown that
CAFs promote HCC by reducing immune surveillance. For example, a cellular transplantation model
in immunocompetent mice demonstrated that HSCs prevent T-cell infiltration in tumors, creating an
immunosuppressive microenvironment [157]. Immunohistochemical experiments and gene signature
analysis in HCC patients have shown that activated HSCs can interact with monocytes, promoting
the expression of immunosuppressive cytokines [29]. Moreover, in vivo-activated HSCs caused T-cell
hyporesponsiveness, increased T-cell apoptosis, an increased number of immunosuppressive Treg cells,
and T-cell mediated cytotoxicity inhibition [158]. Similarly, using the mouse hepatoma cell line H22
together with primary activated HSCs in an orthotopic liver tumor mouse model, it was demonstrated
that HSCs increase the number of MDSCs in HCC [159]. More recently, another study confirmed these
results and suggested that HSCs induce MDSC by the secretion of prostaglandin E2 (PGE2) [160].
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Moreover, it was also suggested, by using co-culture studies, that HSCs promote the conversion of
blood monocytes into MDCS in a CD44-dependent manner [161].

4.5. CAFs and EMT

EMT is a biological process in which epithelial cells lose their apicobasal polarity, thus allowing
them to travel through the ECM like mesenchymal cells [162]. Cells undergoing EMT acquire increased
invasiveness, enhanced production of ECM, and more resistance to apoptosis. There are three types
of EMT: type 1 gives rise to primary parenchymal cells during embryogenesis; type 2 occurs during
wound healing and organ fibrosis; and type 3 modifies the phenotype of cancer cells and is associated
with tumor intravasation, migration, and metastasis [163,164]. Several signals, such as TGF-β,
epidermal growth factor (EGF), and PDGF, produced by the tumor stroma and in particular by CAFs,
may be implicated in EMT [163]. In particular, TGF-β, which signals through both Smad-dependent
and -independent pathways, is considered to be the main EMT promoter in epithelial cells, including
hepatocytes [165]. Thus, it was shown that TGF-β induces EMT in Ras-transformed hepatocytes [166].
Results from an in vivo HCC model where HCC cells were co-injected with myofibroblasts, and from
an in vitro model with a micro-organoid HCC, suggested that the hepatic tumor-stroma crosstalk
promotes tumor growth and EMT through a TGF-β and PDGF signaling axis [167].

Other studies have suggested that the TGF-β pathway may be important in the maintenance
of self-renewal and pluripotent stem cells, which replicate and generate non-stem differentiated
cells. It has been proposed that HCC can originate from a small subset of cancer stem cells,
which are transformed from a hypothetical normal stem cell niche [168,169] or from differentiated
hepatocytes [170]. Interestingly, experiments performed in rats have suggested that EMT due to chronic
TGF-β stimulation produces cancer stem cells from hepatic progenitor-like cells. The same study also
showed that pharmaceutical inhibition of microRNA-216a/PTEN/Akt signaling could be a novel
strategy for HCC prevention [171]. Another study which employed six different human HCC cell lines
has shown that tumor cells with a mesenchymal-like phenotype are refractory to sorafenib-induced
cell death [172]. Therefore, these results suggest that EMT induced by TGF-β signaling derived from
the tumor stroma may play an important role in supporting tumor growth, and in the generation of
chemo-resistant cells, which have stem-like features in HCC.

5. Conclusions

CAFs are one of the most important components of the tumor microenvironment in HCC.
Although several studies have shown different mechanisms by which those cells affect HCC growth,
this area requires more study. Although the majority of studies presented in this review suggest that
CAFs in HCC are positive regulators of cancer, CAFs have been shown to act both as a positive and
negative regulator of tumorigenesis in different types of cancer [173]. Therefore, an open question
is whether CAFs may somehow have a protective effect and prevent tumor growth in HCC as well.
Further studies aiming to answer this question may be important for designing innovative therapeutic
approaches. For example, CAFs may be pharmacologically targeted to secrete anti-tumor factors,
which might hinder HCC growth and progression. It is also important to understand the origin of
CAFs, although HSCs are considered to be the main source. Identification of CAF-specific markers
will be crucial to discriminate them from HSCs in the PME and TME of HCC, and to specifically target
this cell population.
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Abbreviations

HCC Hepatocellular carcinoma
HSCs Hepatic stellate cells
CAFs Cancer-associated fibroblasts
PFs Portal fibroblasts
ECM Extracellular matrix
EMT Epithelial-mesenchymal transition
PME Premalignant microenvironment
TME Tumor microenvironment
HBV Hepatitis B virus
HCV Hepatitis C virus
NAFLD Non-alcoholic fatty liver disease
α-SMA Alpha-smooth muscle actin
MMPs Matrix metalloproteinases
ROS Reactive oxygen species
TAMs Tumor-associated macrophages
NADPH Nicotinamide adenine dinucleotide phosphate
NOX1 NADPH oxidase 1
CCl4 Carbon tetrachloride
BDL Bile duct ligation
FAP Fibroblast activated protein
NTF Non-tumoral fibroblast
VEGF Vascular endothelial growth factor
EGF Epidermal growth factor
DDRs Discodin domain receptor
PI3-K phosphatidylinositol 3-kinase
HGF Hepatocyte growth factor
CSC Cancer-stem cell
FAPα Fibroblast activation protein α

FSP-1 Fibroblast specific protein 1
NG2 Neuron-glial antigen-2
MFAP5 Microfibril associated protein 5
Treg Regulatory T cell
MDSC Myeloid derived suppressor cell
DC Dendritic cell
NK Natural killer
CTLs Cytotoxic T lymphocytes
MSCs Mesenchymal stem cells
GFP Green fluorescent protein
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