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    Infections 

    INTRODUCTION 

   Asthma and chronic obstructive pulmonary 
disease (COPD) are common diseases and 
both result in signifi cant morbidity and mortal-
ity. Although they share some clinical features 
and although they may coexist in the same 
individual, they are distinct disease syndromes 
with diff erent pathogenetic mechanisms. In 
each case much of the morbidity and mortal-
ity is associated with exacerbations of disease, 
in response to a variety of trigger factors. A 
common feature of asthma and COPD is the 
important role of infection in triggering exac-
erbations. Infections have also been implicated 
in the etiology of the two diseases. Th is chapter 
will review the epidemiological evidence impli-
cating infectious pathogens as triggers and will 
discuss the mechanisms of interaction between 
the host–pathogen response and preexisting 
airway pathology that result in an exacerbation.  

    ASTHMA 

   Asthma aff ects 20–33% of children in the 
United Kingdom  [1] . It is a multifaceted syn-
drome involving atopy, bronchial hyperreac-
tivity, and IgE and non-IgE-mediated acute 
and chronic immune responses. Th e asthmatic 
airway is characterized by an infi ltrate of eosi-
nophils and of T-lymphocytes expressing the 
type 2 cytokines IL-4, IL-5, and IL-13. Trigger 
factors associated with acute exacerbations 
of asthma include exposure to environmental 
allergens, especially animals, molds, pollens and 
mites, cold, exercise, and drugs. Th e link between 

respiratory infection and asthma exacerba-
tions is well established although incompletely 
understood. In the 1950s this association was 
attributed to bacterial allergy  [2]  but it is now 
clear that the majority of exacerbations are due 
to viral rather than bacterial infection. 

    Epidemiology 

   Viral respiratory tract infections are a major 
cause of wheezing in infants and in adult 
patients with asthma. Th eir role may have been 
underestimated in early epidemiological stud-
ies because of diffi  culties in isolation and iden-
tifi cation  [3] . Th e introduction of PCR to such 
studies has implicated viral infection in the 
majority of asthma exacerbations. 

   Indirect evidence from population studies 
has established a signifi cant correlation between 
the seasonal variation in wheezing episodes in 
young children and peaks of virus identifi ca-
tion  [4] . Seasonal patterns of identifi cation of 
respiratory viruses are associated with peaks 
in hospital admissions for both children and 
adults with asthma indicating a role for such 
infections in severe asthma attacks  [5] . Direct 
evidence implicating viral infection in asthma 
exacerbations has been provided by studies 
showing an increased rate of virus detection in 
individuals suff ering asthma attacks. Viruses 
have been detected in 80–85% of asthma exac-
erbations in children                  [4–10]  and in 75–80% in 
adults            [11–14] . Th e highest rates of identifi ca-
tion are in those studies where subjects were 
followed prospectively allowing collection of 
clinical specimens early in the course of the ill-
ness, where PCR-based methods of diagnosis 
were used instead of or in addition to serology 
and culture, and where the methodology used 
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allowed for detection of rhinoviruses. Th e rate of detec-
tion of viruses between exacerbations when individuals are 
asymptomatic is only of the order of 3–12%. In contrast a 
study of transtracheal aspirates in adult asthmatics during 
exacerbations  [15]  yielded sparse bacterial cultures with no 
correlation to clinical illness and no diff erence from those 
of normal subjects. 

   In almost all studies of asthmatics, the predominant 
viruses are rhinoviruses (RV), infl uenza, RSV, and parain-
fl uenza viruses. RV alone are detected in around 50% of 
virus-induced asthma attacks. Adenoviruses, enteroviruses, 
metapneumoviruses, bocaviruses, and coronaviruses are also 
detected but less frequently. Infl uenza is only found during 
annual epidemics.  

    Experimental virus infection 

   Th e eff ects of respiratory virus infection in the nasal mucosa 
and upper respiratory tract have been extensively inves-
tigated. Th e eff ects of such viruses in the lower respira-
tory tract have been studied but detailed knowledge of the 
pathogenetic mechanisms involved in asthma exacerbations 
remains limited. Experimental respiratory virus infection 
in human volunteers is limited to mild disease by concerns 
of safety  [16] . Most such studies have therefore focused 
on the experimental innoculation of rhinovirus in allergic 
rhinitic or mild asthmatic individuals and normal control 
subjects                            [17–28] . Such studies provide a useful model of 
natural virus infection in asthma and off er the advantages 
of patient selection and monitoring, under controlled con-
ditions before, during, and after infection, of administra-
tion of active and placebo medication, of ability to sample 
the lower airway with timing from onset of infection accu-
rately defi ned and the study of RV-induced eff ects includ-
ing asthma symptomatology, lung function, and airway 
pathology/immunology. 

   Recent epidemiological evidence confi rms a synergis-
tic interaction between virus infection and allergen expo-
sure in precipitating hospital admissions for asthma        [29, 
30] . Other trigger factors that may interact with infection 
include air pollution. A study of asthmatic children demon-
strated an increased risk of developing an asthmatic episode 
within 7 days of an upper respiratory tract infection if the 
nitrogen dioxide level was greater than 28        μ g/m 3         [9, 31] . 

   Most studies of experimental virus infection in aller-
gic subjects are performed outside the relevant season for 
allergen exposure. One attempt to provide a model combin-
ing allergen exposure and virus infection utilized RV infec-
tion in subjects with allergic rhinitis. Individuals received 
three high dose allergen challenges in the week prior to 
innoculation to try to mimic combined allergen exposure 
and virus infection  [32] . Interestingly, prior allergen chal-
lenge in this model, somewhat unexpectedly, appeared to 
protect against an RV cold with delayed nasal leukocytosis, 
increased generation of the proinfl ammatory cytokines IL-6 
and IL-8 and a delayed, less severe clinical course. Th ere was 
an inverse correlation between nasal lavage eosinophilia and 
the severity of cold symptoms. Th e explanation proposed by 
the authors of this study is that limited high dose allergen 
challenge may not reproduce the eff ects of chronic low dose 

allergen exposure and may stimulate the production of anti-
infl ammatory mediators such as IL-10 or antiviral cytokines 
such as IFN- γ  or TNF- α . In work by de Kluijver  et al . the 
eff ects of a 10-day period of low dose allergen exposure in 
house-dust mite sensitive and/or experimental RV16 infec-
tion were studied. No synergistic or additive eff ects were 
observed as regards lung function parameters  [33] . Further 
development of models of experimental combined allergen 
exposure and virus infection is clearly required. 

   We have recently adopted the approach of infect-
ing asthmatic volunteers with RV and then sending them 
home to continue their normal allergen exposure in the 
natural environment  [34] . We investigated physiologic, 
virologic, and immunopathologic responses to experimental 
rhinovirus infection in blood, induced sputum, and bron-
chial lavage in 10 atopic mild asthmatic and 15 nonatopic 
normal volunteers. Rhinovirus infection induced signifi -
cantly greater lower respiratory symptoms, lung function 
impairment, increases in bronchial hyperreactivity, and 
eosinophilic lower airway infl ammation in asthmatic com-
pared to normal subjects. We also saw trends to increased 
neutrophils and lymphocytes in the lower airway in asth-
matics, and coincident reductions in blood lymphocytes, 
suggesting traffi  cking to the airway. In asthmatic, but not 
normal subjects, virus load was signifi cantly related to lower 
respiratory symptoms, bronchial hyperreactivity, and reduc-
tions in blood total and CD8  �   lymphocytes and lung func-
tion impairment was signifi cantly related to neutrophilic 
and eosinophilic lower airway infl ammation. Th is study 
demonstrated increased rhinovirus-induced clinical illness 
severity in asthmatic compared to normal subjects, provided 
evidence of strong relationships between virus load, lower 
airway virus-induced infl ammation, and asthma exacerba-
tion severity and suggests that this approach could provide 
a very good model in which to examine asthma exacerba-
tion pathogenesis as well as treatment interventions.  

    Rhinovirus infection of the lower airway 

   Whereas other respiratory viruses such as infl uenza, parain-
fl uenza, RSV, and adenovirus are well recognized causes of 
lower airway syndromes such as pneumonia and bronchioli-
tis and are capable of replication in the lower airway, until 
recently there was uncertainty as to whether RV infection 
occurred in the lower airway or solely in the upper respi-
ratory tract  . Although the possibility of nasopharyngeal 
contamination cannot be ruled out, RV has been detected 
in lower airway clinical specimens such as sputum  [35] , 
tracheal brushings  [26] , and BAL  [36]  by both RT-PCR 
and culture. RV has been cultured in cell lines of bronchial 
epithelial cell origin  [37]  and replication has been dem-
onstrated in primary cultures of bronchial epithelial cells 
         [38–40] . Th e preference of RV for culture at 33°C rather 
than 37°C has been used as an argument against lower air-
way infection but there is now evidence that replication 
does occur at lower airway temperatures  [41] . Finally the 
use of  in situ  hybridization has conclusively demonstrated 
RV replication in bronchial biopsies of subjects following 
experimental infection  [38]  and recent immunochemistry 
data suggests a preference for basal cells  [42] . Th ese data 



37Infections

473

confi rm that RV infection of the lower airway does occur 
and directly implicate lower airway infection in the patho-
genesis of asthma exacerbations.  

    A mouse model of rhinovirus-induced 
asthma exacerbation 

   Investigation into the pathogenesis of rhinovirus infections 
and rhinovirus-induced asthma exacerbations has been 
severely hampered for the  � 50 years since their discovery, 
as it has been believed that rhinoviruses only infect humans 
and chimpanzees. However, a mouse model of rhinovirus 
infection has recently been successfully developed for the 
fi rst time. New methods of purifi cation and concentration 
of rhinoviruses, were used to show that for the minor group 
of rhinoviruses (the  � 10% that use the LDL receptor as 
their mode of entry into cells), wild-type BALB/c mice 
can be successfully infected and that most of the disease-
related outcomes observed in humans were reproduced in 
this unique new model. Th ese outcomes include induction 
of both innate and acquired immune responses, induction 
of mucin synthesis and secretion, induction of both acute 
neutrophilic and prolonged lymphocytic airway infl amma-
tion, and induction of chemokines responsible for chemo-
attraction of neutrophils, lymphocytes and dendritic cells as 
well as a range of proinfl ammatory cytokines. Mice trans-
genic for a chimera of ICAM-1, the receptor for the major 
group ( � 90%) of rhinoviruses, in which the rhinovirus-
binding domains were human, but the remainder of the 
molecule mouse were then developed. Th is transgenic mouse 
was then able to be infected by major group strains, thus 
generating mouse models capable of being infected by all 
rhinovirus serotypes. Finally an established mouse model of 
allergic airway infl ammation was used to demonstrate that 
rhinovirus infection of this model resulted in rhinovirus-
induced exacerbation of allergic airway infl ammation. Th e 
asthma-related outcomes exacerbated by infection in this 
model include exacerbation of airway hyperresponsiveness, 
exacerbation of mucin synthesis and secretion (MUC5AC 
and MUC5B), exacerbation of neutrophilic, eosinophilic, 
and lymphocytic airway infl ammation, and augmented 
induction of both Th 1 (IFN- γ ) and Th 2 (IL-4 and -13) 
cytokines. Th e development of this novel mouse model of 
rhinovirus-induced asthma exacerbations, should allow 
mechanisms of disease to be investigated  in vivo  and true 
causation be established  in vivo .  [43] .  

    Physiological eff ects of experimental 
rhinovirus infection 

   Subjects with asthma and/or allergic rhinitis exhibit 
increased pathophysiological eff ects as a result of RV infec-
tion as compared to nonatopic, nonasthmatic controls. 
With detailed monitoring, it is possible to detect reductions 
in both peak fl ow  [44]  and home recordings of FEV 1   [24]  
in atopic asthmatic patients in the acute phase of experi-
mental RV16 infection. Th ere is an enhanced sensitivity 
to histamine and allergen challenge after RV16 innocula-
tion in nonasthmatic atopic rhinitic subjects        [19, 45] . RV16 

increases asthma symptoms, coinciding with an increase in 
the maximal bronchoconstrictive response to methacholine 
up to 15 days after infection  [20] . Th ere is also a signifi cant 
increase in sensitivity to histamine in asthmatic subjects 
after RV16 infection, most pronounced in those with severe 
cold symptoms  [25]  and our recent study confi rmed that 
these reductions in lung function and increases in symp-
toms and airway hyperresponsiveness were observed only in 
asthmatic, but not in normal subjects  [34] .  

    Components of the antiviral immune 
response 

   Current concepts of a typical antiviral immune response, as 
reviewed in detail elsewhere        [46, 47] , result from research in 
human volunteers and patients but also in experimental ani-
mals, especially inbred mice. Results of animal studies may 
not be directly applicable to the outbreed human population 
but ethical considerations often limit direct investigation of 
the human immune system. All immune responses are a 
combination of nonspecifi c (innate) and specifi c (adaptive) 
immunity. 

   Nonspecifi c or innate  [48]  elements include: phago-
cytes such as neutrophils and macrophages that engulf and 
destroy viruses; natural killer (NK) cells that recognize and 
destroy virus-infected cells on the basis of reduced HLA 
class I expression; cells including NK cells, neutrophils, 
macrophages, mast cells, basophils, epithelial cells that 
release cytokines, such as interferons, with immunoregula-
tory or antiviral actions; components of body fl uids such 
as complement, defensins, and surfactant proteins that are 
capable of neutralizing viruses independently of, or in com-
bination with, antibodies. 

    Complement 

   Some viruses may also cause complement-mediated dam-
age. Complement components bind to epithelial cells both 
 in vitro  and  in vivo  during RSV infections. C3a and C5a 
are increased in human volunteers infected with infl uenza 
A virus  [49] . Th ere is little information on the role of com-
plement in immunity to RV. Recent data suggests that the 
RV 3C protease cleaves the complement factors C3 and C5 
which may interfere with the destruction of virus-infected 
cells  [50] . For other viruses, for example infl uenza, the com-
plement system forms an important link between the innate 
and specifi c immune systems. Mice defi cient for the third 
component of complement are highly susceptible to pri-
mary infl uenza, showing reduced priming of T-helper cells 
and cytotoxic T-cells in lung draining lymph nodes and 
severely impaired recruitment into the lung of virus-specifi c 
CD4  �   and CD8  �   eff ector T-cells producing IFN- γ   [51] . 
Activation of the complement cascade may be necessary for 
the function of other innate antiviral proteins such as serum 
mannose-binding protein  [52]   

    Defensins 

   Th e  α  and  β  defensins are small cationic antimicrobial pep-
tides which have the capacity to kill bacteria, fungi, and 
enveloped viruses by disruption of the microbial membrane. 
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 In vivo  they are probably most important in phagocytic vac-
uoles and on the surface of skin and mucosal epithelia. In 
addition to their direct antibiotic role, defensins are increas-
ingly being found to have immunomodulatory actions  [53]  
and to play a role in cell recruitment through activation of 
certain chemokine receptors, for example hBD3 and CCR6 
on dendritic cell (DC). 

   Specifi c immunity involves production of antibody 
by B-lymphocytes and the activities of cytotoxic T-cells 
following processing and presentation of viral antigens by 
additional cells of the immune system, the most impor-
tant of which are probably dendritic cells. Immunological 
memory modifi es the overall response to reinfection by pre-
viously encountered virus and alters the timing and magni-
tude of contributions due to diff erent components.   

    Time course of innate and adaptive 
immunity in primary and secondary 
infections 

   In primary infection, viruses replicate in the respiratory tract 
reaching peak levels at around days 2–4. At this time type I 
interferons are fi rst detected, peaking around days 2–3 and 
falling to become undetectable once active replication has 
ceased. Interferons activate NK cells, fi rst detectable around 
day 3 and peaking around day 4. In addition to destruction 
of virally infected cells NK cells release cytokines includ-
ing IFN- γ  that activate additional infl ammatory cells in the 
airway including macrophages. Such nonspecifi c immune 
mechanisms are essential in early defense against virus 
in the fi rst few days. In addition, the innate immune sys-
tem plays a role in stimulating specifi c immunity and may 
infl uence the nature of the specifi c response, for example 
whether this is characterized by type 1 or type 2 cytokines. 

   Meanwhile, viral antigens are processed locally and 
in regional lymph nodes by dendritic cells and presented 
to T-cells. CD4  �   and CD8  �   T-cells are detectable from 
around day 4 then generally decline as infection resolves to 
become undetectable by day 14. However, memory CD4  �   
and CD8  �   responses may persist for life. T-cell recruit-
ment is dependent on the production of chemokines and 
on alterations in the expression of adhesion molecules on 
the endothelium of infl amed tissues. Time is also required 
to generate B-cell responses. Mucosal IgA may be detected 
around day 3, serum IgM from days 5–6 and IgG days 7–8, 
increasing in amount and avidity over the next 2–3 weeks. 
IgA falls normally to low or undetectable levels over 3–6 
months. Serum IgG may remain detectable for life. Specifi c 
immune mechanisms such as CD8  �   T-cells and immu-
noglobulin are responsible for the eradication of infectious 
virus usually by 7–10 days after infection. 

   Secondary infection with the same virus results in 
rapid mobilization of B- and T-cell specifi c immunity with 
an earlier T-cell peak coinciding with the NK cell peak 
around days 3–4. If reinfection is with the same serotype a 
rapid increase in levels of preexisting neutralizing antibodies 
may limit viral replication to such an extent that infection is 
clinically silent. Because this results in fewer infected cells 

there is relatively less activation of nonspecifi c immunity 
and it may be diffi  cult to detect a CD8  �   T-cell response. 

   Following experimental infection of seronegative sub-
jects with RV2  [54]  serum-specifi c antibodies are detectable 
at 1–2 weeks, reach a maximum at 5 weeks, persist for at 
least a year and may remain elevated many years after infec-
tion. Local specifi c antibody levels may be lost more rap-
idly. High levels of serum neutralizing antibody or specifi c 
IgA protect against reinfection with the same rhinovirus 
serotype. However, since it appears relatively late, recovery 
from illness for seronegative hosts which usually occurs at 
7–10 days must be due to other components of the immune 
response. In seropositive subjects preexisting serum neutral-
izing antibodies to RV39 and to RV-Hanks modify experi-
mental infections in human subjects        [55, 56] . Local IgA and 
IgG passing from the vasculature into the pulmonary inter-
stitium contribute to viral clearance. However, the 100 �  RV 
serotypes mean that repeated infection with RV to which an 
individual lacks appropriate antibodies is common  . 

   T-cell responses to RV demonstrate MHC class I 
restricted cross-reactivity between serotypes due to specifi -
city for conserved epitopes within the capsid proteins VP 
1–3  [57] . RV16- and RV49-specifi c T-cell clones from 
human peripheral blood demonstrate recognition of both 
serotype specifi c and shared viral epitopes  [58] . Vigorous 
proliferation of and IFN- γ  production by PBMC in 
response to RV16 in seronegative subjects is associated 
with reduced viral shedding after inoculation  [59] , thus 
T-cells responses also appear protective.  

    Interactions between virus infection and 
asthmatic airway infl ammation 

   Th e interaction of respiratory virus infection and chronic 
asthmatic airway infl ammation results in respiratory symp-
toms that are more severe than those suff ered by nonas-
thmatic individuals        [34, 60]  and case-control studies have 
demonstrated clear synergistic interactions between virus 
infection and allergen exposure in increasing risk of exac-
erbation        [29, 30] . Th e detailed immunological mechanisms 
underlying this interaction are currently being investigated, 
but recent data suggest defi cient production of type I ( β ), 
type II ( γ ), and type III ( λ ) IFNs, as well as Th 1 cytokines 
(IL-12) and anti-infl ammatory cytokines (IL-10), are likely 
to increase virus-induced lower airway infl ammation          [34, 
61, 62] . Th ese defi ciencies are also accompanied by aug-
mented production of Th 2 cytokines suggesting that per-
haps allergen-induced infl ammation is also increased in the 
pathogenesis of virus-induced asthma exacerbations. 

   Bronchial infl ammation is likely therefore a central 
event for virus-induced asthma exacerbations. Th e processes 
involved include interacting cascades from the complement, 
coagulation, fi brinolytic, and kinin systems of the plasma as 
well as cell-derived cytokines, chemokines, and arachidonic 
acid metabolites. Our understanding of the interaction of 
viruses with these cascades in asthma is incomplete and it 
is likely that diff erent viruses interact with each system to 
diff erent extents. However, it is reasonable to believe that in 
all cases the initial trigger of the infl ammatory reactions is 
epithelial cell–virus interaction. 
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    Table 37.1    summarizes some of the current hypoth-
eses proposed to explain the mechanisms of exacerbation of 
asthma following respiratory virus infection. Th e evidence 
supporting these hypotheses is reviewed in detail below.  

    The role of the airway epithelial cell 

   Th e airway epithelium is an important component of anti-
viral defense. In addition to its function as a physical bar-
rier to the entry of viruses, the responses of epithelial cells 
(EC) following viral infection, whether or not this results in 
destruction of the cell, contribute to both innate and adap-
tive antiviral immune responses. Information regarding the 
eff ects of RV on EC comes from  in vivo  studies and from 
 in vitro  models using either cultured primary airway EC or 
cell lines of epithelial cell origin such as A549, BEAS-2B, 
and H292. 

   EC contribute to the immune response following 
virus infection through the production of cytokines and 
chemokines ( Fig. 37.1   ). Th ey may also act as antigen pre-
senting cells particularly during secondary respiratory viral 
infections. Epithelial cells express MHC class I and the 
costimulatory molecules B7-1 and B7-2 and this expression 
is upregulated  in vitro  by RV16  [63]  ( Fig. 37.2   ). 

   Th e extent of epithelial cell destruction observed in 
the airway varies according to virus type. Infl uenza typically 
causes extensive necrosis  [64] , whereas RV causes little or 
only patchy damage. Destruction of epithelial cells results 
in both an increase in epithelial permeability, and increased 
penetration of irritants and allergens, and exposure of the 
extensive network of aff erent nerve fi bers. Both eff ects may 
contribute to increased bronchial hyperresponsiveness. 

 TABLE 37.1          Current hypotheses for the pathogenesis of virus-induced 

asthma exacerbations.  

    Epithelial disruption  Reduced ciliary clearance 

     Increased permeability 

     Loss of protective functions 

      Kinins 

   Mediator production  Complement 

     Arachidonic acid metabolites 

     Nitric oxide 

     Reactive oxygen products 

     Cytokines 

   Induction of infl ammation  Chemokines 

     Immune cell activation 

     Adhesion molecule induction 

     Impaired innate IFN production 

   Immune dysregulation  Impaired apoptosis 

     Impaired Th1 immunity 

     Impaired IL-10 production 

     Augmented Th2 immunity 

     Increased total IgE 

   IgE dysregulation  Antiviral IgE production 

     Airway smooth muscle 

   Airway remodeling  Fibroblasts 

     Myofi broblasts 

     Growth factors 

     Increased cholinergic sensitivity 

   Alterations of neural responses  Neuropeptide metabolism

 modulation 

      β -adrenergic receptor dysfunction 

 FIG. 37.1          Airway epithelial cells participate in the immune response to respiratory virus, producing a variety of cytokines and chemokines with actions on 

other cells. In addition the migration of infl ammatory cells is aided by the upregulation of adhesion molecules and interferons help to establish an antiviral 

state in neighboring epithelial cells. Upregulation of MHC class I may facilitate presentation of viral antigens.    
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    In vivo  RV causes some shedding of infected ciliated 
EC  [65] , but the extent of viral infection of the epithelium 
may be incomplete even in the nose  [66] .  In vitro  stud-
ies exposing monolayer cultures of nasal epithelial cells to 
respiratory viruses at 10 3 –10 4  TCID 50 /ml demonstrate no 
detectable CPE (carboxypeptidase E) with RV or corona-
virus in contrast to the extensive destruction with infl uenza 
and adenovirus  [67] .  Ex vivo  infection of cells from both 
the upper and the lower respiratory tract suggest that less 
than 10% of cells in the epithelium are infected by RV  [68] , 
however the extent of virus-induced epithelial damage may 
be considerably greater in asthmatic than in normal sub-
jects, as asthmatic epithelium has been shown to be much 
more susceptible  in vitro   [61] .  In vivo  studies of degrees 
of epithelial damage would be technically challenging, but 
could generate interesting fi ndings.  

    Receptors for entry of RV into host cells 

   Viruses enter into and replicate within airway EC. Entry is 
dependent on the interaction with host cell surface proteins 
which function as receptors. In the case of the major group 
RV this is ICAM-1  [69]  and infection can be blocked by 
antibodies to ICAM-1 or with soluble ICAM-1  [37] . Th ere 
is relatively limited expression of ICAM-1 in airway epi-
thelium prior to RV infection  [70]  and this may explain the 

patchy nature of infection. Th e upregulation of ICAM-1 
in the asthmatic airway is one possible explanation for the 
increased severity of RV infection in asthma. RV upregulates 
expression of its own receptor ICAM-1 both  in vitro  and 
 in vivo . Following experimental infection with RV, ICAM-1 
expression is upregulated in nasal epithelium within 24       h, 
declining by day 5  [71] . RV has similar eff ects on EC from 
the lower airway. RV has been shown to upregulate ICAM-1 
in primary bronchial EC  in vitro   [72]  and ICAM-1 is 
upregulated in bronchial biopsies following experimental 
infection of asthmatic subjects with RV16  [73] . 

   Th ere are two forms of ICAM-1: membrane bound 
(mICAM-1) which favors viral infection by acting as a 
virus receptor and soluble (sICAM-1) which binds virus 
outside the cell and can thereby inhibit virus infection. RV 
infection of EC is reported to alter the balance in favor of 
further infection by inducing mRNA for mICAM-1 whilst 
suppressing that of sICAM-1  [74] . Th e LDL receptor is the 
receptor for the minor group RV. RV2 infection of primary 
human tracheal EC (PHTEC) is blocked by an antibody to 
the LDL receptor and is also reported to upregulate LDL-R 
expression  [48] . 

   ICAM-1 expression by human nasal EC is upregulated 
 in vitro  by exposure to a number of infl ammatory cytokines 
and mediators including IL-1 β , IL-8, IFN- γ , TNF- λ , and 
the eosinophil-derived proteins MBP and ECP  [75] . IL-1 β  
in particular may be important in RV-induced induction of 
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 FIG. 37.2          Preexisting asthmatic airway infl ammation may modify a predominantly Th1 antiviral immune response, favoring a Th2 or mixed response which 

may provide less effi  cient viral clearance and result in prolonged virus-induced infl ammation, increased associated immunopathology and increased tissue 

damage.    
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ICAM-1. Antibodies to IL-1 β  but not TNF- α  decreased 
viral replication and ICAM-1 expression by PHTEC  [76] . 
Not all respiratory epithelial cell lines behave in the same way 
as primary EC – for example A549 cells express ICAM-1 
at lower levels constitutively and show upregulation by 
IFN- γ  and TNF- α  but not by ECP or MBP. Th e eff ect of 
IFN- γ  is complex. Whilst IFN- γ  upregulates ICAM-1 in 
uninfected cells this cytokine inhibits ICAM-1 upregulation 
by RV14 in H292 cells and its presence results in reduced 
viral titers        [72, 77] . 

   A preexisting elevation of ICAM-1 expression in 
the asthmatic airway may contribute to increased  symptom 
severity of RV infection. Type 2 cytokines (IL-4, IL-5, 
IL-13) upregulate ICAM-1 in H-292 cells  [78] . Allergen 
challenge results in upregulation of ICAM-1 on conjunc-
tival and nasal EC in atopics  [79] . In nasal brushing EC 
from atopics, basal ICAM-1 levels were increased relative 
to nonatopics and elevated in the relevant allergen season. 
Nasal EC from atopics showed further upregulation after 
 in vitro  culture with allergen. Th e highest basal ICAM-1 
was found on nasal polyp EC and this was increased fur-
ther after RV14 infection. Viral titers after RV14 infection 
were signifi cantly higher for polyp EC than for nonatopic 
and atopic nonpolyp EC  [80] . 

   Modifi cation of EC ICAM-1 expression is therefore 
of possible therapeutic benefi t.  In vitro  RV increases expres-
sion of ICAM-1 and VCAM-1 in primary bronchial EC 
(PBEC) cultures and in A549 cells via a mechanism involv-
ing NF- κ B          [5, 81, 82] . One of the actions of corticoster-
oids is inhibition of NF- κ B  [83] . In both A549 cells and 
in PBEC pretreatment with three corticosteroids, hydro-
cortisone, dexamethasone, and mometasone furoate inhib-
its RV16-induced increases in ICAM-1 surface expression, 
mRNA, and promoter activation without alteration of 
virus infectivity or replication. Dexamethasone suppresses 
ICAM-1 in PHTEC and inhibits RV infections  [84] . 
Dexamethasone does not inhibit infection of PHTEC by 
minor group RV2  [85] . Disappointingly, a study of inhaled 
corticosteroids in asthmatics prior to experimental RV 
infection failed to show reduced virus-induced ICAM-1 
expression in bronchial biopsies  [73]  but it is possible that 
a longer course and/or a higher dose of inhaled steroid or 
administration of oral steroids might have demonstrated a 
signifi cant eff ect. 

   Other drugs which aff ect EC ICAM-1 include reduc-
ing agents  [86] , the H 1  receptor antagonists desloratidine/
loratidine which inhibit RV-induced ICAM-1 upregulation 
in HPBEC and in A549 cells  [87]  and erythromycin which 
inhibits infection of PHTEC by both major group RV14 
and minor group RV2 through eff ects including ICAM-1 
reduction, blockage of RV RNA entry into endosomes and 
small reductions in LDL receptor expression  [88] .  

    RV induction of EC production of cytokines 
and chemokines 

   EC can activate and recruit a variety of other cell types such 
as lymphocytes, eosinophils, and neutrophils through the 
production of chemokines and cytokines ( Fig. 37.1 ). Such 

cells are important components of the antiviral response but 
may also contribute to airway infl ammation and dysfunc-
tion in asthma. 

    Type 1 interferons 

   Interferons (IFN) play an important role in innate resist-
ance to viruses  [89] , acting on virus-infected cells and sur-
rounding cells to produce an antiviral state characterized 
by the expression and antiviral activity of IFN-stimulated 
genes (ISGs). Th ere are three main types of IFN, type 1 
(IFN- α , IFN- β , IFN- ω , IFN- τ ), type 2 (IFN- γ ) and the 
recently discovered type 3 (IFN- λ s        [90, 91] ). EC can pro-
duce both type 1 and type 3 IFNs. Th ere are 14 IFN- α  
genes but only 1 IFN- β  gene. IFN- β  synthesis involves NF-
 κ B, ATF/JUN and the interferon regulatory factors (IRFs) 
(up to 10 of which are currently identifi ed), activation of 
which occurs in response to virus-specifi c signals including 
dsRNA, a product of the replication of ssRNA viruses such 
as RV, RSV, and infl uenza. 

   IFN- β  and IFN- α 4 are expressed early through the 
action of IRF3. Activation of the IFN intracellular signaling 
pathway is required for induction of IRF7 which is required 
for transcription of the full range of IFNs. DNA microarray 
analysis has shown that following binding to their receptors 
on target cells IFNs trigger a complex signaling pathway 
(mainly JAK-STAT) resulting in the transcription of hun-
dreds of ISGs  [92] . 

   Several ISGs have been well studied. Th ese include 
the dsRNA-activated serine/threonine protein kinase 
(PKR) which reduces cellular mRNA translation and tran-
scriptional events, two enzymes involved in mRNA degra-
dation, 2 
 5 
 oligoadenylate synthetase (OAS) and RNase L, 
the myxovirus resistance (Mx) proteins and RNA-specifi c 
adenosine deaminase (ADAR) which is involved in RNA 
editing. Th ese ISGs inhibit virus replication at a number of 
levels and not surprisingly, viruses have evolved mechanisms 
to resist the actions of IFNs, for example blocking of PKR 
by the infl uenza NS1 protein  [93] . IFNs also upregulate 
cellular expression of MHC class I and II molecules there-
fore increasing antigen presentation to CD8  �   and CD4  �   
T-cells and enhancing cellular immune responses. 

   One recent study has examined type 1 interferon pro-
duction by primary bronchial epithelial cells from  normal 
and asthmatic subjects infected  ex vivo  with RV  [40] . 
Asthmatic EC following infection released a higher titer of 
virus into culture supernatant and exhibited impaired apop-
tosis and a greater degree of necrotic cell death, favoring 
release of virus from dying cells. Th is was accompanied by 
lower concentrations of IFN- β  after infection. Addition of 
IFN- β  to asthmatic ECs inhibited virus replication to levels 
observed in ECs from normal subjects. Th is study suggests 
that the production of IFN- β  is defi cient in asthmatic ECs 
and that replacement/augmentation of IFN- β  to boost the 
innate immune response could be a novel approach to treat-
ment of virus-induced asthma exacerbations  [94] .  

    Type III interferons 

   A new family of interferons, called type III IFN- λ s, and 
characterized by three elements:  λ 1,  λ 2, and  λ 3, also termed 
IL-29, IL-28A, and IL-28B, has recently been described 
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       [90, 91] . Th e three highly homologous IFN- λ  proteins 
demonstrate limited (about 20%) homology to type I IFNs 
 [95] . Human IFN- λ s bind to a unique heterodimeric 
 receptor (IFN- λ R), composed of CRF2-12 (also designated 
IFN- λ R1), and CRF2-4 (also designated IL-10R2) shared 
with other class II cytokine-receptor ligands including IL-
10, IL-22, and IL-26  [90] . 

   Viral infection induces upregulation of IFN- λ  
mRNA in epithelial cells, peripheral blood mononuclear 
cells (PBMCs), and dendritic cells                [90, 91, 96–99] . IFN- λ s 
exhibit some similar biological properties to type I IFNs: 
they induce Jak/STAT pathways that lead to the upregu-
lation of several antiviral proteins and enzymes including 
2 
 ,5 
 -OAS and MxA, have antiviral activity  in vitro           [90, 91, 
97]  and have also exhibited antviral activity in an  in vivo  
model of vaccinia virus-infected mice  [100] . Based on cur-
rent knowledge, it thus appears that both IFN- α /- β  and 
IFN- λ  ligand-receptor systems can independently induce 
an antiviral state by engaging similar participants of the 
antiviral response, though the signaling pathways involved 
in IFN- λ  production are currently largely unknown. Recent 
data suggest that IFN- λ  may be involved in antiviral 
responses against RV.  In vitro  RV infection of a bronchial 
epithelial cell line (BEAS-2B) led to IFN- λ  production and 
this cytokine demonstrated a dose-dependent antiviral eff ect 
against RV  [62] . Moreover, IFN- λ  production occurred 
after  in vitro  infection of primary bronchial epithelial cells, 
macrophages, and BAL cells from healthy volunteers. 

   We have recently investigated the production of IFN- λ s 
in response to RV in primary bronchial ECs and in BAL 
cells (90% macrophages) from normal and asthmatic sub-
jects  [62] . Production of IFN- λ 1 and IFN- λ 2–3 was defi -
cient in ECs and BAL cells from asthmatic subjects after 
 in vitro  RV infection and induction of IFN- λ s by RV infec-
tion of ECs was strongly inversely related to RV replication. 
To determine whether IFN- λ  production was important 
in determining responses to RV infection  in vivo , the same 
volunteers were then experimentally infected with RV16, 
the severity of symptoms and reductions in lung function 
were monitored and the virus load was determined in BAL. 
 In vitro  production of IFN- λ s by RV infection of BAL cells 
was strongly inversely correlated with both common cold 
symptoms and  in vivo  virus load and strongly positively cor-
related with severity of falls in lung function, in asthmatic 
and normal volunteers experimentally infected with RV16. 
Asthmatic patients, in whom  in vitro  IFN- λ  production in 
BAL cells was signifi cantly lower than in normal subjects, 
exhibited increased common cold symptoms and reductions 
in lung function and virus load after  in vivo  RV16 infec-
tion. In marked contrast normal subjects had robust IFN- λ  
responses, less severe cold symptoms, lower virus load, and 
no signifi cant changes in lung function. Th ese results docu-
ment the importance of IFN- λ  in the host defense against 
RV infection  in vitro  and  in vivo  and indicate that defi cient 
IFN- λ  production is likely to be important in the patho-
genesis of virus-induced asthma exacerbations.  

    Proinfl ammatory cytokines and chemokines 

   Viral infection of the respiratory tract results in signifi -
cant changes in the pattern of cytokine expression by a 

number of cell types, by both cells of the immune system, 
which may be increased in number and activation status, 
and by cells often considered to be structural but which in 
fact contribute signifi cantly to the immune response such 
as EC. Effi  cient orchestration of the immune response by 
cytokines is essential for eradication of virus. Modifi cation 
of cytokine expression in the airway may contribute to the 
increased severity of virus infection in asthma. 

    In vitro  studies of bronchial EC lines or macrophages 
have demonstrated the production of a wide range of proin-
fl ammatory cytokines such as IL-1, IL-6, IL-11, IFN- α , 
IFN- γ , TNF- α , and granulocyte-macrophage colony stim-
ulating factor (GM-CSF) and the chemokines IL-8, ENA-
78, RANTES, and IP-10 and macrophage infl ammatory 
protein (MIP)-1 α  in response to RV and RSV            [37, 101–
103] .  In vivo  these cytokines can be found in nasal lavage in 
association with RV infection  [104] . 

   Th e specifi c roles of individual cytokines in the human 
lower airway during viral infection are not well understood, 
but increasing information is becoming available. Such 
cytokines and chemokines activate and recruit a variety of 
other cells including lymphocytes, eosinophils, and neu-
trophils. IL-1, TNF- α , and IL-6 share proinfl ammatory 
properties such as the induction of the acute phase response 
and the activation of both T- and B-lymphocytes. IL-1 
enhances the adhesion of infl ammatory cells to endothe-
lium, facilitating chemotaxis  [105] . TNF- α  is a potent 
antiviral cytokine but  in vitro  increases the susceptibility 
of cultured epithelial cells to infection by RV14 through 
upregulation of ICAM-1  [37] . IL-6 has been shown to 
stimulate IgA-mediated immune responses. IL-11 may 
also be important in virus-induced asthma  [106] . It appears 
to cause bronchoconstriction by a direct eff ect on bron-
chial smooth muscle  [102] . Production of this cytokine by 
human stromal cells  in vitro  is increased by RV14, RSV, and 
parainfl uenza type 3 but not by cytomegalovirus (CMV), 
herpes simplex virus (HSV)-2 or adenovirus.  In vivo  IL-11 
is elevated in nasal aspirates from children with colds, levels 
correlating with the presence of wheezing. 

   Similarly the chemokine MIP-1 α  is increased in 
nasal secretions during natural viral exacerbations of asthma 
 [107] . Studies in MIP-1 α  knock-out mice suggest that it 
mediates pneumonitis due to infl uenza  [108] . Th e other 
chemokines IL-8 and ENA-78, will recruit and activate 
neutrophils, while RANTES and IP-10 will do the same 
for lymphocytes  [103] . 

   Viral upregulation of cytokines and chemokines 
may be mediated through certain key transcription factors. 
Increases in IL-6 and IL-8 production by cultured epithe-
lial cells due to RV was dependent on NF- κ B          [82, 107, 109]  
and further upstream, protein kinase R (PKR)-mediated 
RV-induced RANTES, IL-8, and IL-6  [110] . Rhinovirus 
induction of IL-8 was shown to require IkappaB kinase-
beta (IKK β ) and the transcription factor NF-IL-6 as well as 
NF- κ B. Similar observations have been made with regard 
to the induction of IL-1, -6, -8, -11, and TNF- α  by RSV 
       [111, 112] , thus the potential role of inhibition of NF- κ B 
in this context has generated considerable interest. 

   In addition to the induction of IL-1 α  and IL-1 β  
RV infection results in substantial increases in IL-1ra both 
 in vivo  and  in vitro . Th is is a relatively late eff ect, occurring 
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48–72       h after infection and may contribute to symptom res-
olution  [113] .  

    Kinins and nitric oxide 

   A multitude of infl ammatory mediators are generated or 
act on the epithelial surface. Bradykinin, a-nine-amino acid 
peptide generated from plasma precursors as part of the 
infl ammatory process has been shown to be present in nasal 
secretions of RV-infected individuals  [114] . Bradykinin 
given intranasally is able to reproduce some of the symp-
toms of the common cold such as sore throat and rhini-
tis  [115] . Although the presence of kinins in the lungs of 
virus-infected individuals has not been reported they are 
present in both the upper and lower airways in allergic reac-
tions              [114–118] . 

   Nitric oxide (NO) is produced by diverse sources 
including epithelial, endothelial, and smooth muscle cells. 
In human airways NO appears to be important in relaxa-
tion of the human airway smooth muscle  [119] . Nitric 
oxide (NO) may be important in a range of respiratory dis-
eases  [120]  including asthma  [121]  and in virus infection 
 [122] . NO is produced both by the constitutive enzymes, 
nitric oxide synthase (NOS)1, and NOS3 and by the induc-
ible, calcium-independent NOS2 expressed by airway EC 
 [123]  and macrophages. 

   In asthma there is increased NOS2 expression and 
an elevated level of exhaled NO  [124]  that falls with cor-
ticosteroid therapy; the level of exhaled NO correlates with 
sputum eosinophilia and methacholine responsiveness 
 [125] . In contrast in stable COPD, exhaled NO levels are 
not diff erent from normal subjects  [126]  although there 
may be an increase during exacerbations  [127] . In fact 
 in vitro  cigarette smoke reduces cytokine-induced NOS2 
mRNA expression in the LA-4 murine cell line, in A549 
cells and in PHBEC  [128] . 

   Th e relative importance of the benefi cial antimicrobial 
activity of NO versus the potentially disadvantageous sup-
pression of IFN- γ  may be dependent on the specifi c patho-
gen. NOS2 knock-out mice show an increased susceptibility 
to infections  [129] , perhaps because release of NO may be 
important for NK cell-mediated target cell killing  [130] . 
However NO may also possess antiviral activity.  In vitro  
RV induces NOS expression in HPBEC  [131] . Th ere is 
increased expression of NOS2 mRNA in cultured HPBEC 
after RV16 infection  [132] . NO inhibits RV-induced pro-
duction of IL-6, IL-8, and GM-CSF and viral replication 
in a human respiratory epithelial cell line        [132, 133] . RSV 
also induces NOS2 and increases nitrite levels in superna-
tant from A549 cells, from HPBEC culture and in BAL 
fl uid from RSV-infected BALB/c mice, eff ects opposed by 
IL-4 and dexamethasone but unaff ected by IL-13 or IFN- γ  
 [134] . Replication of RSV in Hep2 cells is inhibited follow-
ing transfection with a retroviral construct containing NOS 
and this inhibition is abolished by the NOS inhibitor, NG-
methyl- l -arginine  [135] . Replication of infl uenza A and B 
in Mabin Darby kidney cells is severely impaired by the NO 
donor,  S -nitroso- N -acetylpenicillamine  [136] . 

   Overall there is evidence that  in vivo  increased lower 
airway NO production may be of benefi t in virus-induced 
asthma exacerbations. Work in a guinea pig model suggests 

that one mechanism for increased airway hyperresponsive-
ness during respiratory virus infection is through inhibition 
of NOS enzymes and a loss of NO-related relaxation of 
airway smooth muscle  [137] . Studies of human asthmatics 
would also suggest that NO has a protective role in virus-
induced exacerbations. Following experimental RV16 infec-
tion patients with the greatest increase in exhaled NO had 
smaller increases in histamine airway responsiveness  [131] . 

   In experimental animals parainfl uenza virus-induced 
hyperreactivity correlates with a defi ciency in constitutive 
NO production  [137] . Increased levels of exhaled NO are 
found in nonasthmatic volunteers following natural colds 
 [138]  as well as in asthmatic patients after experimental 
RV infection  [131] . In the latter study, an inverse associa-
tion between NO increase and worsening of airway hyper-
responsiveness was demonstrated arguing in favor of a 
protective role for this substance. Th is is further supported 
by the observation that NO reduces cytokine production 
and viral replication in an  in vitro  model of RV infection 
 [133] . Interestingly, studies of viral upper respiratory tract 
infections have failed to demonstrate an increase in nasal 
NO after experimental RSV, RV, and infl uenza infections 
 [139] . In normal subjects experimental infl uenza infection 
increased oral NO 8 days postinfection but had no eff ect 
on nasal NO  [140] . Th is raises the possibility that during 
respiratory virus infection induction of NO is selective for 
the lower respiratory tract.  

    Signaling pathways 

   Th e responses of airway EC to virus infection are conse-
quences of the interactions between virus and the intracellu-
lar signaling pathways of the host cell  [141] . Knowledge of 
the mechanisms involved for rhinoviruses is currently very 
limited. Activation of signaling pathways may be depend-
ent on cell surface receptor (ICAM-1, LDL-R) binding 
or may occur during viral replication within the cell. Th e 
need for replicative virus is demonstrated by the inhibi-
tion of RV induction of EC cytokines after UV inactiva-
tion. One product of replication, common to ssRNA viruses 
such as RV and also RSV and infl uenza, is dsRNA, which 
has been shown to activate components of signaling path-
ways including dsRNA-dependent protein kinase PKR, 
IKK β , NF- κ B, and p38 mitogen-activated protein kinase 
with resultant induction of IL-6, IL-8, and RANTES        [110, 
142] . Activation of EC by dsRNA may be direct or indirect 
through the interferon system as discussed above. It has also 
been reported that dsRNA and virus infections activate EC 
through binding to TLR3        [143, 144] .   

    Eff ects of viruses on airway smooth 
muscle cells 

   Studies utilizing isolated rabbit tissues and human cultured 
airway smooth muscle cells suggest that, for RV16, expo-
sure to the virus may have a direct eff ect on smooth muscle 
cells, resulting in increased contractility to acetylcholine and 
impaired relaxation to isoproterenol. Th is eff ect is depend-
ent on ICAM-1 and appears to involve an autocrine sig-
naling mechanism including upregulation of production of 
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IL-5 and IL-1 β  by the airway smooth muscle itself  [145] . 
A more recent study demonstrated that RV induction of 
IL-6 and IL-8 was increased in smooth muscle cells from 
asthmatic compared to normal subjects  [146] . Whether 
rhinovirus reaches airway smooth muscle cells in suffi  cient 
quantity to produce a signifi cant eff ect by this mechanism 
 in vivo  is as yet unknown. Th e eff ects of other respiratory 
viruses on smooth muscle require further investigation.  

    The cellular immune response to virus 
infection in the lower airway 

   A variety of leukocytes show changes in number, site of 
accumulation, and activation state in response to virus 
infection. Since these cells are also implicated in asthmatic 
infl ammation of the lower airway they provide potential 
sites of interaction between the immunopathologies of virus 
infection and asthma.  

    Monocytes/macrophages 

   Alveolar macrophages are present in large numbers in the 
lower airway. Th ey make up around 90% of the cells seen in 
BAL from normal volunteers  [28] . Th ey are ideally placed 
for early phagocytosis of virus particles and are likely to play 
an important role in the immune response through anti-
gen presentation to T-cells and through the production of 
cytokines and other mediators. RV has been shown to enter 
human monocytes and macrophages which express high 
levels of the major RV receptor ICAM-1. It has not been 
possible to demonstrate RV replication within alveolar mac-
rophages although low grade productive infection has been 
shown in the monocyte cell line THP-1  [147] . Replication 
also occurred in THP-1-derived macrophages but was lim-
ited in monocyte-derived macrophages which are relatively 
resistant to viral replication at least partly because of higher 
levels of type I interferon production  [148] . RV entry into 
monocytes results in activation and the production of both 
IL-8  [147]  and TNF- α   [149] . In monocyte and THP-1-
derived macrophages RV induction of TNF- α  is NF- κ B 
dependent  [148] . 

   A recent study reported that infectious but not UV-
inactivated RV-increased TNF- α  and IL-8 release by mac-
rophages derived from resected lung tissue. Interestingly, 
infectious rhinovirus-impaired LPS and lipoteichoic acid-
induced TNF- α  and IL-8 secretion by macrophages as well 
as the macrophage phagocytic response to labeled bacterial 
particles  [150] . Th is RV-induced impairment of cytokine 
responses to bacterial LPS and lipoteichoic acid and of 
phagocytosis in alveolar macrophages could lead to impair-
ment of antibacterial host defense may have important 
implications in the pathogenesis of exacerbations of respi-
ratory diseases including both asthma  [151]  and COPD 
 [152] . In contrast, infection of human monocytes  in vitro  
with infl uenza A causes alterations in structure and activa-
tion status and the production of IL-1 β  IL-6, TNF- α  IFN-
 α , and IFN- β   [153] , eff ects dramatically potentiated by 
subsequent exposure to bacterial LPS.  

    Dendritic cells 

   Dendritic cells are key cells in IFN production, as well as in 
antigen presentation both of allergens and pathogens with 
a capacity to induce both primary and secondary immune 
responses. Th ey may also play a role in the regulation of the 
type of T-cell-mediated immune response  [154] . RV infec-
tion has been shown to induce production of the dendritic 
cell attracting chemokine MIP-3 α   [43]  and to increase in 
number in the lung during RSV infection  [155] , suggest-
ing they are recruited to the lung during respiratory virus 
infections. However, they have also been shown to be pro-
duced from local precursors during RSV infection  [156] . 
Plasmacytoid dendritic cells are likely protective against 
infection as they have been shown to limit virus replication 
in RSV infections, as well as reducing airway infl ammation 
and airway hyperresponsiveness  [157] . In contrast, others 
have reported induction of the high affi  nity IgE receptor on 
dendritic cells during Sendai virus infection, and linked this 
with induction of mucus cell metaplasia and airway hyper-
reactivity  [158] . Th ere is thus increasing knowledge of the 
immunobiology of these cells during respiratory infections 
but their role in the context of viral exacerbations of asthma 
remains unclear and further studies are needed.  

    Lymphocytes 

   Bronchial biopsies demonstrate increases in cells positive for 
CD3, CD4, and CD8 within the epithelium and submucosa 
of both normal and asthmatic subjects following experimen-
tal RV infection  [21]  and we have recently demonstrated a 
trend toward increased numbers of lymphocytes in BAL 
from asthmatic compared to normal subjects ( p       	      0.06) [34] . 
Such increases coincided with peripheral blood lymphope-
nia, and reductions in blood total lymphocytes and CD8  �   
T-cells correlated strongly with virus load only in asthmatic 
subjects [34]  suggesting increased recruitment of T-cells to 
the asthmatic airway may be important in the context of 
asthma exacerbations. Since T-cells are believed to be key 
cells in the pathogenesis of asthma the eff ects of viruses on 
T-cells are of particular importance. 

   T-cell recruitment into the airway is at least partly 
under the infl uence of chemokines, including those whose 
production by EC is upregulated by viruses. Th e nature and 
the eff ectiveness of the specifi c immune response may be 
infl uenced by the balance of chemokine production by air-
way EC. Th is balance may in turn be infl uenced by preexist-
ing chronic infl ammation as found in asthma. 

   Studies of cloned T-cells suggest that Th 1 and Th 2 
cells show diff erential expression of chemokine recep-
tors. Th ere is increased expression of CXCR3 (receptor for 
IP-10, I-TAC, and Mig) and CCR5 (MIP-1 β ) in human 
Th 1 cells and increased expression of CCR4 (TARC and 
MDC) and to a lesser extent CCR3 (eotaxin and MCP-3) 
in Th 2 cells, with selective migration of cells in response to 
the appropriate chemokines. CCR1 (RANTES, MIP-1 α , 
MCP-3) and CCR2 (MCP-1, -2 ,-3, -4) were found on 
both Th 1 and Th 2 cells  [159] . Bronchial biopsies from asth-
matics show high levels of expression of CCR4 and signifi -
cant levels of CCR8 by T-cells  [160] . 
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   Increased recruitment of T-cells to the airway as a 
result of virus-induced chemokine production by EC could 
amplify preexisting allergic infl ammation. If the asthmatic 
airway microenvironment infl uences the pattern of chem-
okine expression following virus infection then this could 
alter the Th 1/Th 2 balance of the antiviral immune response.  

    CD4  �   T-cells 

   Th e CD4  �   T-cell response to virus infection is thought 
to be of the T-helper 1 (Th 1) type. It is thought that an 
eff ective antiviral immune response is characterized by the 
production of type 1 cytokines such as IFN- γ . IFN- γ , in 
addition to IFN- α , IFN- β , and IFN- λ  from monocytes 
and macrophages, plays a role in establishing an  “ antiviral 
state ”  in neighboring cells. IFN- γ  has a complex role in the 
pathogenesis of asthma. It appears to increase basophil and 
mast cell histamine release  [161]  but on the other hand 
inhibits the expression of type 2 cytokines. Production of 
IFN- γ  is increased in PBMC  [162]  and in nasal secretions 
 [104]  during RV colds and in human and animal models of 
infl uenza, parainfl uenza, and RSV infection          [119, 163, 164] . 
Th ere are exceptions where the antiviral response exhibits a 
Th 2 character or a mixture of Th 1/Th 2. In animal models 
of RSV, diff erent proteins of the virus may induce either 
Th 1 or Th 2 type responses and priming with such proteins 
prior to infection with whole virus can infl uence the char-
acter, eff ectiveness, and associated immunopathology of the 
immune response  [165] . 

   Asthma is believed to be characterized by type 2 
infl ammation. Many studies have demonstrated mutual 
inhibition of Th 1 and Th 2 cells        [166, 167] . It is therefore 
possible within an airway with a preexisting type 2 allergic 
asthmatic microenvironment that there may be inhibition 
of the normal eff ective type 1 antiviral immune response or 
that the system may be skewed toward type 2 responses. 

   Papadopoulos  et al . have shown that type 1 responses 
to RV are defi cient in individuals with asthma  [168] . 
PBMC taken from asthmatics and exposed  in vitro  to RV 
show lower levels of IFN- γ  and IL-12 and higher levels of 
IL-4 and IL-10 in culture supernatants than cells from nor-
mal subjects. Th e IFN- γ /IL-4 ratio was three times lower in 
the asthmatic group  [168] . 

   In a study by Gern  et al . of experimental RV16 infec-
tion in subjects with allergic rhinitis or asthma, the balance of 
airway Th 1 and Th 2 cytokines in induced sputum induced by 
viral infection was found to be related to clinical symptoms 
and viral clearance. Although protein could not be detected in 
sputum due to the presence of inhibitors of the ELISA assay 
used, there were increases in mRNA, as determined by semi-
quantitative RT-PCR, for both IL-5 and IFN- γ . An inverse 
correlation was demonstrated between the ratio of IFN- γ  
mRNA to IL-5 mRNA and peak cold symptoms. In addition 
subjects with RV16 still detectable 14 days after inoculation 
had lower IFN- γ /IL-5 ratios during the acute phase of the 
cold than those subjects who had cleared the virus  [169] . 

   We have recently investigated the production of type 1 
and type 2 cytokines from BAL cells in asthmatic and normal 
subjects. We found that production of the type 1 cytokines 
IL-12 and IFN- γ  were suppressed in the asthmatics, 

while production of the type 2 cytokines IL-4, -5 and, -13 
were all increased  [34] . Importantly CD4  �   T-cell produc-
tion of IFN- γ  was strongly inversely correlated with virus 
load and reductions in lung function in the asthmatic sub-
jects when they then underwent RV experimental infection, 
suggesting that CD4  �   T-cell production of IFN- γ  is protec-
tive in the context of RV-induced asthma  [34] . Conversely, 
CD4  �   T-cell production of each of IL-4, -5, and -13 was 
positively correlated with lower respiratory symptom sever-
ity, suggesting CD4  �   T-cell production of each of IL-4, -5, 
and -13 are associated with more severe exacerbations. Th ese 
data are novel and important, but causal roles cannot be 
established in such human challenge studies. Investigation 
of the possible causal role of each these cytokines  in vivo  is 
now required using the newly developed mouse model  [43] .  

    CD8  �   T-cells 

   CD8  �   T-cells are important eff ector cells in specifi c cell-
mediated antiviral immunity. Th ey also demonstrate 
 polarization of cytokine production, the major Tc1 cytokine 
again being IFN- γ  and are believed to regulate CD4 Th 1/
Th 2 balance  [170] . In a murine asthma model induction of 
bystander CD4  �   Th 2 responses to ovalbumin resulted in a 
switch of virus-peptide specifi c lung CD8  �   T-cells to pro-
duction of Tc2 cytokines including IL-5 with, after virus 
peptide challenge, induction of airway eosinophilia  [171] . 
If this occurs in man it suggests a means whereby CD8 
antiviral function could be inhibited at the same time as 
CD8 amplifi cation of allergic infl ammation through IL-5 
induction of airway eosinophilia. Th e role of CD8  �   T-cell 
production of type 1 and type 2 cytokines in virus-induced 
asthma exacerbations requires investigation.  

     γ  δ -TCR  �   T-cells 

    γ  δ -TCR  �   T-cells are a minor subset of T-cells expressing 
receptors distinct from the  α  β  receptors found on the major-
ity of T-cells involved in adaptive immunity. Th ere appear to 
be at least two types of  γ  δ -TCR  �   T-cells. Th e fi rst type is 
found in the lymphoid tissue of all vertebrates and displays 
highly diversifi ed receptors. Th e second type, intraepithelial 
 γ  δ -TCR  �   T-cells, display receptors of limited diversity. It 
has been suggested that this second subset recognize mole-
cules expressed only by nearby infected cells. Candidate lig-
ands are heat-shock proteins, MHC class IB molecules and 
unorthodox nucleotides and phospholipids. Antigen is rec-
ognized directly rather than as processed peptide presented 
by MHC. Recognition of molecules expressed as a conse-
quence of infection rather than pathogen-specifi c molecules 
themselves would place  γ  δ -TCR  �   T-cells at the intersection 
of innate and adaptive immunity  [172] . 

   However, exaggerated responses to various pathogens 
and self tissues have been found in studies of mice defi cient 
in  γ  δ -TCR  �   �  T-cells rather than defi ciencies in control 
of pathogens. Such work has suggested that at least some  
γ  δ -TCR  �   �  T-cells have a regulatory role in modulating 
immune responses  [173] , a function consistent with their dem-
onstrated ability to secrete regulatory cytokines when activated. 
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   It has been reported that  γ  δ -TCR  �   T-cells are more 
numerous in the asthmatic airway  [174] . A recent study 
found a greater capacity for production of IL-5 and IL-13 
in bronchoalveolar lavage  γ  δ -TCR  �   T-cells from asthmatic 
subjects  [175] . If virus infection results in the release of mol-
ecules from epithelial cells that activate  γ  δ -TCR  �   T-cells in 
the respiratory mucosa, such cells could provide a source of 
type 2 cytokines that infl uence the nature of the subsequent 
immune response. Th e role of  γ  δ -TCR  �   T-cells in virus-
induced asthma exacerbations requires investigation.  

    Eosinophils 

   Eosinophils are increased in bronchial epithelium in biop-
sies taken from normal and asthmatic volunteers following 
experimental RV infection; in a small study eosinophilic 
infl ammation persisted for up to 6 weeks in asthmatic sub-
jects  [21]  and in our recent study eosinophil numbers in the 
BAL were signifi cantly (threefold) increased in asthmatic 
compared to normal subjects during the acute RV infection 
and correlated signifi cantly with reductions in lung func-
tion only in the asthmatic subjects  [34] . In allergic rhinitis 
experimental RV infection increases BAL eosinophils fol-
lowing segmental allergen challenge, again persisting for 6 
weeks  [28] , and increased levels of ECP are found in the 
sputum of RV-infected subjects  [23]  and during naturally 
occurring acute exacerbations of asthma  [13] . Eosinophils 
accumulate in the airway under the infl uence of IL-5, 
GM-CSF, IL-8, RANTES, and eotaxin  [176] . Of these 
only IL-5 has not been shown to be produced by airway 
EC  in vitro  after infection by RV. Expression of RANTES 
is increased in nasal secretions of children with natural virus-
induced asthma  [107] . RANTES is upregulated in primary 
nasal EC cultures by RSV  [177]  and RV  [178] . GM-CSF 
is important in bone marrow eosinophil production and in 
eosinophil survival  [176]  but levels are not increased dur-
ing viral upper respiratory tract infections          [107, 179, 180] . 
Levels of eotaxin in nasal lavage rise after experimental 
RV16 infection  [181] . Th ese data suggest a pathogenic role 
for eosinophils in virus-induced asthma. However, a protec-
tive role is also possible. In allergic rhinitic subjects, infected 
with RV after high dose allergen challenge, the severity and 
duration of cold symptoms were inversely related to the NL 
eosinophil count prior to infection  [32] . Eosinophils may 
contribute to viral antigen presentation. Eosinophils pre-
treated with GM-CSF bind RV16 via ICAM-1 and present 
viral antigen to RV16-specifi c T-cells, inducing prolifera-
tion and secretion of IFN- γ   [182] . Eosinophils have anti-
viral actions in parainfl uenza-infected guinea pigs  [183] . 
EDN and ECP have ribonuclease activity and reduce RSV 
infectivity  [184] . Th e role of the eosinophil in the antiviral 
immune response thus requires further evaluation.  

    Mast cells/basophils 

   Th ese cells are important sources of infl ammatory mediators, 
characteristic of allergic infl ammation in asthma. Mast cell 
basal and stimulated histamine release increases after virus 
infection  [185] . Airway mast cell numbers are upregulated 

in a rat model of parainfl uenza infection. Several viruses can 
enhance basophil IgE-mediated histamine release, but the 
role of this cell in human asthma is controversial. 

   Mast cells are also important sources of infl ammatory 
mediators. Th eir function and localization suggest an early 
interaction with viruses. Leukotriene (LT) C 4  is among the 
mediators responsible for the late phase of bronchospasm 
in asthma. During RSV infection increased levels of LTC 4  
were found in the nasopharyngeal secretions of infants  [186] . 
Levels correlated well with the symptoms of the disease with 
concentrations in infants presenting with bronchiolitis being 
fi vefold higher than in those with only upper respiratory 
tract symptomatology. Cultured alveolar macrophages can be 
infected with parainfl uenza virus and respond with an increase 
in arachidonic acid metabolism. Several of the products of this 
pathway are known inducers of airway constriction, including 
LTC 4 , LTD 4 , PGF 2 α  , and thromboxanes and/or stimulants of 
mucous secretion such as PGF 2 α  , LTB 4 , and 5-hydroxyeicosa-
tetraenoic acid  [187] . RV infection has been shown to induce 
prostaglandin and LT synthetic enzymes in bronchial biopsies 
in normal subjects, as well as trends for increased numbers of 
mast cells (  p       	      0.07) bronchoalveolar lavage fl uid cysteinyl-
leukotriene levels (  p       	      0.13), but these outcomes have not 
been studied in asthmatic subjects [188] .  

    Neutrophils 

   Neutrophils are recruited early during respiratory viral 
infection in response to the production of IL-8, Gro- α , and 
ENA-78 by EC and activated neutrophils are a prominent 
feature of severe asthma. Induced sputum   IS in asthmatics 
and nonasthmatics demonstrates a signifi cant increase in 
neutrophils at day 4 of a natural cold, correlating with spu-
tum IL-8  [189] . Similar results were obtained in IS taken 2 
and 9 days after experimental RV16 infection in asthmat-
ics. Intracellular staining demonstrated an increase in cells 
positive for IL-8 at day 2 attributable to increased IL-8 
positive neutrophils  [25] . Th e chemokine IL-8 is a potent 
chemoattractant for neutrophils but also acts on lym-
phocytes, basophils, and primed eosinophils. Increased IL-
8 has been found in NL from children with natural colds 
 [104] . Experimental RV16 infection of asthmatics resulted 
in elevated NL IL-8, correlating with cold/asthma symp-
tom scores and histamine PC20  [25] . IS from asthmatics 
with exacerbations has both elevated IL-8 and neutrophilia 
       [23, 190] . A study of experimental infection in asthmatic 
children also demonstrated elevated IL-8 and neutrophilia 
in NL during the acute infection and levels of neutrophil 
myeloperoxidase correlated with symptom severity  [191] . 
In asthma, exacerbations in asthmatic adults  [13]  those 
with virus infection had increased sputum neutrophils and 
increased neutrophil elastase and more severe clinical dis-
ease. Such studies suggest a prominent role for the neu-
trophil in tissue damage during virus-induced asthma.  

    Natural killer cells 

   Natural killer (NK) cells are an important part of the innate 
immune response, their function being the elimination of 
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a variety of target cells including virus-infected cells and 
the modulation of adaptive immunity toward viruses  [192] . 
Cell killing by NK cells may occur through natural killing, 
antibody-dependent cellular cytotoxicity (ADCC), or 
apoptotic killing of Fas-positive target cells via membrane 
bound FasL. Th e ability to directly kill virus-infected cells 
is regulated by a balance between inhibitory and activating 
receptors  [193] . Killer inhibitory receptors (KIRs), Ig-like 
receptors that recognize HLA-A, -B, or -C molecules, and 
the lectin-like CD94/NKG2A receptor that interacts with 
HLA-E allow NK cells to recognize cells expressing normal 
self MHC class I  [194] . Loss of inhibition occurs if potential 
target cells have lost class I expression following virus infec-
tion or if they display abnormal class I/peptide complexes. 

   NK cells are rapid and effi  cient producers of cytokines 
such as IFN- γ , important both in early viral infection in the 
antigen-independent activation of antigen presenting cells 
such as macrophages, dendritic cells, and epithelial cells, 
and for biasing the development of CD4  �   Th 1 and CD8  �   
Tc1 cells. Cytokines and chemokines shown to enhance the 
activities of NK cells  in vitro  and  in vivo  include IFN- α /- β , 
IFN- γ , TNF- α , IL-2, IL-12, IL-15, IL-18, MIP-1 α  MIP-
1 β , MCP-1, 2, 3, and RANTES. Transforming growth fac-
tor (TGF)- β  and IL-10 inhibit NK cell activity  [195] . Type 
2 cytokines may also modulate NK function, increasing 
NK type 2 activities and decreasing NK type 1 activities. 
Human NK cells cultured in medium supplemented with 
IL-4 diff erentiated into NK type 2 cells, secreting IL-5 and 
IL-13 and when cultured in the presence of IL-12, diff er-
entiated into NK type 1 cells secreting IL-10 and IFN- γ . 
IL-4 and IL-13 have also been shown to suppress IL-2-
induced cytolytic and proliferative activities and IFN- γ  pro-
duction of human NK cells  [196] . NK cell production of 
IL-5 is enhanced by IL-4 and reduced by IL-10 and IL-12 
 [197] . In a mouse model of asthma, intracellular staining of 
NK cells has demonstrated IL-5 production and depletion 
of NK cells resulted in reduced airway eosinophilia  [198] . 

   Th e function of NK cells in the asthmatic airway is as 
yet unexplored. It may be that, in an airway environment rich 
in type 2 cytokines, that NK type 1 function and eff ective 
antiviral activity are inhibited. If this is the case then a key 
component of the early immune response would be defi cient 
and viral clearance would be impaired. In addition, if NK 
type 2 function is favored by the asthmatic microenviron-
ment, production of type 2 cytokines by NK cells in response 
to virus infection might be one mechanism for amplifi ca-
tion of allergic infl ammation. Th ese hypotheses are as yet 
untested in human studies of experimental virus infection.  

    B-lymphocytes and interaction of viruses 
with IgE-dependent mechanisms 

   An elevated serum total and allergen-specifi c IgE are fea-
tures of  “ extrinsic ”  or atopic asthma. IgE-mediated mecha-
nisms are certainly important in the pathophysiology of 
extrinsic asthma. Recent studies suggest a similar airway 
pathology in both extrinsic and  “ intrinsic ”  nonatopic asthma 
 [199]  where there is an absence of specifi c serum IgE 
and negative skin prick tests to aeroallergens. It has been 

suggested that there may be the production of local IgE to 
as yet unknown environmental allergens in intrinsic asthma. 

   Upregulation of total IgE or virus-/allergen-specifi c 
IgE locally or systemically during respiratory virus infection 
would be expected to contribute to the duration and sever-
ity of symptoms of an asthma exacerbation. 

   Intranasal challenge with RV39 results in an increase 
in total serum IgE in allergic rhinitic subjects but no 
increase in preexisting allergen-specifi c IgE  [200] . In chil-
dren with asthma, during infection with infl uenza A there 
was no change in total IgE but increases were observed in 
specifi c serum IgE to house dust mite and in  ex vivo  prolif-
erative and IL-2 responses of lymphocytes challenged with 
house dust mite allergen  [201] . In a study of RSV infec-
tion in infants the development of serum RSV-specifi c IgE 
occurred more frequently in atopics and correlated with 
clinical wheezing, histamine levels in nasal secretions, and 
hypoxia  [202] . Th ere is no information as yet on the pres-
ence of local virus-specifi c IgE in the airway during asthma 
exacerbations.   

    COPD 

   Increasing interest in the clinical features and pathogenesis 
of COPD refl ects the worldwide importance of the disease. 
More than 14 million patients are aff ected in the United 
States alone. It is predicted to become the third leading 
cause of death worldwide by 2020  [203] . National and glo-
bal initiatives have been launched and management guide-
lines have been published        [204, 205] . 

   Th e frequency of exacerbations is a major factor in 
the quality of life of patients with COPD  [206] . Th e typical 
clinical features of an exacerbation include increased dysp-
nea, wheezing, cough, sputum production, and worsened gas 
exchange. Although noninfectious causes of exacerbations 
such as allergy, air pollution, or inhaled irritants including 
cigarette smoke may be important, acute airway infections 
are the major precipitants  [207] . Th e infection and conse-
quent host infl ammatory response result in increased airway 
obstruction. 

    Epidemiology 

   It is likely that two-thirds to three-quarters of COPD exac-
erbations may be caused by viral infections. In a study of 
186 patients rhinoviruses, infl uenza virus, parainfl uenza 
virus, and coronavirus were signifi cantly associated with 
COPD exacerbations  [208] . Between 60% and 70% of 
exacerbations are associated with preceding symptoms of 
a common cold. Th e frequency of exacerbations requiring 
hospitalization is higher in the winter. One explanation for 
this could be the increased frequency of respiratory viruses 
at this time of the year. A recent study of 321 exacerbations 
in 83 patients with moderate to severe COPD using new 
diagnostic methods including RT-PCR shows a high inci-
dence of viral infection  [209] . Viruses were detected in nasal 
aspirates at exacerbation in almost 40% of cases. Rhinovirus 



Asthma and COPD: Basic Mechanisms and Clinical Management

484

was the most common, occurring in 58% of cases where a 
virus was present. Th e presence of virus was associated with 
increased dyspnea, cold symptoms, and sore throat and 
with prolonged recovery from exacerbation. Earlier stud-
ies relying on serology and virus culture quote lower virus 
detection rates of 15–20%            [208, 210–212] . Other studies of 
more severe exacerbations using more comprehensive PCR 
methods confi rmed the importance of virus infection, with 
viruses being detected in around 50% of exacerbations        [152, 
213] . Because these studies all involve sampling relatively 
late in the course of illness, it is likely that these detection 
rates underestimate the true importance of virus infections. 

   Th e role of bacteria in precipitating exacerbations is 
also somewhat controversial. Bacteria may have a primary 
role in the development of an exacerbation and/or represent 
a secondary superinfection of an initial viral process. Various 
bacterial species are present in the airways of 25–40% of 
patients, even when the COPD is stable but increased fre-
quency of recovery of bacteria during exacerbations ( � 55%) 
as well as higher bacterial loads during exacerbations both 
suggest that they play an important role in a signifi cant 
number          [152, 214, 215] . Signifi cant bacterial infection has 
been suggested when there is an abundance of neutrophils 
in the sputum  [216]  and when the sputum is purulent and 
green (due to neutrophil myeloperoxidase)  [217] . Bacteria 
may contribute to the pathogenesis of an exacerbation due 
to increased bacterial loads of bacteria already colonizing 
diseased airways, however in addition to this, acquisition of 
new bacterial strains has also been shown to be important, 
increasing the risk of exacerbation over twofold  [218] . 

   Th e major bacterial organisms associated with 
COPD exacerbations are nontypable  Haemophilis infl uen-
zae ,  Streptococcus pneumoniae , and  Moraxella (Branhamella) 
catarrhalis         [219, 220] .  Mycoplasma pneumoniae  and 
 Chlamydia pneumoniae  may play a part        [221, 222] . Evidence 
also suggests that in more severe patients with a baseline 
FEV 1  of 35% predicted or less, gram-negative bacteria espe-
cially  enterobacteriaceae  and  pseudomonas  play an important 
part in acute exacerbations  [223] . 

   Recent studies have addressed the role of coinfection 
with both bacteria and viruses – one study showed this to 
occur in 25% of exacerbations, and that patients with dual 
infection had more marked lung function impairment and 
longer hospitalizations  [152] . Another reported that exac-
erbations with both cold symptoms (a marker of putative 
viral infection) and a bacterial pathogen, the FEV 1  fall was 
greater and symptom count was higher than those with a 
bacterial pathogen alone  [224] . Th us even in exacerbations 
in which viruses are detected, bacteria can also contribute to 
exacerbation severity. 

   Although the results of placebo-controlled trials show 
confl icting results, overall the eff ects of antibiotic treatment 
also support an etiological role for bacteria in exacerbations 
in some patients. A meta-analysis of nine studies showed a 
small overall benefi t when antibiotics were used for COPD 
exacerbations  [225] . Th e largest study included 362 exacer-
bations in 173 outpatients  [216] . Compared with placebo, 
the rate of symptom resolution and improvement of peak 
expiratory fl ow during exacerbations was slightly but signifi -
cantly faster when patients were treated with co-trimoxazole, 
amoxicillin, or doxycycline. More importantly, treatment 

failures as defi ned by respiratory deterioration were nearly 
twice as likely in the placebo group. Benefi t from antibiotics 
was most evident for patients with most symptoms (dysp-
nea, increased sputum volume, and sputum purulence). 

   Guidelines for the use of antibiotics in acute exacer-
bations of COPD are unclear because of the diffi  culties in 
defi ning the role of bacterial infection in an individual case. 
Th e American Th oracic Society statement on COPD  [205]  
suggests using antibiotics if there is evidence of infection 
(fever, leukocytosis, CXR changes) but not all patients with 
bacterial bronchial infection have fever (this is more com-
mon in viral infection or pneumonia) and few have CXR 
changes. Th e European Respiratory Society recommends 
antibiotics if the sputum is purulent, using standard antibi-
otics as fi rst line, and sputum culture if these fail  [226] .  

    Evidence for a role for bacterial infection in 
pathogenesis/progression of COPD 

   Bacterial infection has a defi nite role in the pathogenesis 
of other chronic lung diseases such as cystic fi brosis and 
bronchiectasis where bacterial infection is chronic, causing 
not only acute exacerbations but also infl uencing long-term 
prognosis  [207] . 

   In these diseases chronic bacterial infection occurs as 
the host immune response is unable to clear the bacteria, 
the continuous infection leads to continuous infl ammatory 
responses and continuous tissue damage  [207] . Host and 
bacterial factors attract and activate neutrophils, which pro-
duce proteinases and reactive oxygen species. Lung antipro-
teinase defenses are overwhelmed. Both proteinase enzymes 
and reactive oxygen species cause damage to the epithe-
lium, stimulating mucus production and impairing muco-
ciliary clearance. Neutrophil elastase stimulates epithelial 
cell production of the chemokine IL-8 which attracts fur-
ther neutrophils and in addition impairs phagocytosis by 
destroying antibody and cleaving complement receptors 
from neutrophils and complement components from bacte-
ria. Neutrophils are also stimulated by cigarette smoke. 

   Identifi cation of bacteria during exacerbation is also 
associated with increased levels of infl ammatory media-
tors in BAL and/or sputum. Th ese include reactive oxidant 
species, IL-8, TNF- α , neutrophil elastase, LTB 4 , and mye-
loperoxidase and many others. Th ese clearly have poten-
tial to cause considerable tissue damage, as well as further 
recruitment and activation of infl ammatory cells. COPD 
patients, particularly those at the more severe end of the 
disease spectrum, may also be chronically colonized by bac-
teria between exacerbations, bacterial numbers then increas-
ing during exacerbations. In a study using bronchoscopic 
protected brush specimens  [214]  10 of 40 COPD patients 
were colonized with bacteria when stable. During exacer-
bations 50% had bacteria present and when present, bacte-
rial numbers were greater. When protected brush specimens 
were taken during severe acute exacerbations of COPD 
requiring ventilation  [227]  bacteria were detected in 50% 
but it was not possible to distinguish patients more likely 
to have bacteria on the basis of clinical features or other 
investigations. 
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   Th e major bacterial pathogens isolated during bron-
chial infections all form part of the commensal fl ora in the 
nasopharynx. Bronchial infections occur in patients with 
abnormal airways with reduced host defenses. Persistence 
of bacteria within the bronchial tree may come about 
through toxins that impair mucociliary clearance, enzymes 
that breakdown local immunoglobulin, products that alter 
immune eff ector cell function, adherence to mucus and 
damaged epithelium, or other mechanisms of avoiding 
immune surveillance        [207, 228] . 

   Bacterial colonization in the stable state represents 
an equilibrium in which the number of bacteria present in 
the bronchial tree is contained by the host defenses but not 
eliminated. During an exacerbation this equilibrium is upset 
and bacterial numbers increase, inciting an infl ammatory 
response. Change will usually occur because of a change 
in the host rather than altered virulence of the bacteria, for 
example as a result of viral infection.  

    Evidence for a role for viruses in 
pathogenesis/progression of COPD 

   Exacerbations associated with viral infections also have 
increased levels of many infl ammatory mediators also found 
in bacterial exacerbations including TNF- α , IL-8, neutrophil 
elastase, myeloperoxidase, and LTB 4 . In contrast to bacterial 
exacerbations where neutrophils and neutrophil products pre-
dominate, during a viral exacerbation both neutrophils and 
eosinophils are present and eosinophil products such as ECP 
are also increased  [152] . Other mediators implicated include 
ENA-78, RANTES, and endothelin–1  [229] . 

   It has also been suggested that persistent virus infec-
tion contributes to the progression of COPD. In particu-
lar, adenovirus appears to persist in a latent form in which 
viral proteins are produced without replication of complete 
virus. Such latent infection may amplify lung infl ammation 
due to cigarette smoke  [230] . Adenoviral E1A DNA per-
sists in human lungs from patients with COPD compared 
with patients of similar age, sex, and smoking history who 
do not have COPD  [231] . Th e E1A protein has been dem-
onstrated in airway epithelial cells from smokers  [232] . It is 
able to amplify many host genes through attachment to the 
DNA-binding sites of transcription factors  [233] . Airway 
epithelial cells transfected with E1A produce excess infl am-
matory cytokines such as IL-8  [234]  and surface adhesion 
molecules such as ICAM-1  [235]  after  in vitro  challenge by 
an NF- κ B-dependent mechanism  [236] . 

   RSV has been identifi ed in induced sputum from 
patients with stable COPD. Th ese individuals have a higher 
plasma fi brinogen and serum IL-6, a higher pCO 2  and 
increased frequency of exacerbations  [209] . Th is suggests 
either that low grade persistent RSV infection contributes 
to COPD severity or that patients with more severe COPD 
are less able to clear RSV from the airway. 

   Th e immunology of virus infection in COPD is not 
well understood. Less data is available than for virus infec-
tion in asthma since this has not been a major subject of 
human experimental infection studies. In a small safety 
study of four patients, inoculation with low dose RV16 
resulted in symptomatic colds, viral replication, signifi cant 

increases in lower respiratory tract symptoms, and reduc-
tions in PEF and FEV 1  typical of an acute exacerbation of 
COPD  [237] . Further studies are clearly needed in view of 
the increasing evidence for a major role for viruses in caus-
ing COPD exacerbations.  

    Therapy for infective exacerbations of 
asthma and COPD 

   Currently much of the treatment of infective exacerba-
tions of asthma and COPD is symptomatic, consisting of 
increased bronchodilators, either short-acting  β  2 - agonists 
in inhaled or intravenous form or anticholinergics or the-
ophyllines, or supportive in the form of oxygen and in 
severe cases noninvasive or invasive ventilatory measures. 
Corticosteroids are widely used in inhaled or oral form for 
their anti-infl ammatory actions. Th e eff ects of corticos-
teroids are the result of actions at many points in various 
infl ammatory cascades. Whilst this undoubtedly contributes 
to their benefi cial eff ects it also results in signifi cant local 
and systemic side eff ects, in particular if oral steroid treat-
ment is prolonged or frequent. In addition systemic steroids 
may interfere with the antiviral immune response resulting 
in reduced viral clearance  [238] . 

   In persistent asthma, control of disease is achieved 
predominantly with inhaled corticosteroids. Th ere is a role 
for additional drugs such as long-acting  β  2 -agonists and 
leukotriene antagonists. Th e long-acting  β  2 -agonists in par-
ticular appear to increase the eff ectiveness of inhaled cor-
ticosteroids allowing the dose needed to achieve control to 
be reduced  [239] . Th ere is also evidence that these drugs 
in combination with inhaled corticosteroids may further 
reduce exacerbation frequency  [240] . Th e leukotriene antag-
onists appear to be most eff ective in treating or preventing 
exacerbations in children        [241, 242] . 

   Regular corticosteroid treatment is however only par-
tially eff ective at preventing exacerbations. In adult asthma 
inhaled steroids reduce exacerbation frequency by only 40% 
 [243] . In school age children inhaled steroids are ineff ec-
tive at reducing exacerbation frequency, duration, or severity 
 [244] . In preschool age children with virus-induced wheeze 
oral steroids are ineff ective even in those with primed eosi-
nophils  [245] . 

   Specifi c antibiotic therapy is available for bacterial 
infections and is indicated where there is good evidence of 
such infection or when the exacerbation is severe and bacte-
rial involvement is a possibility. 

   However, as discussed above the majority of infective 
asthma exacerbations are of viral rather than bacterial origin 
and viruses are also common in exacerbations of COPD.  

    Vaccination 

   Th e success of vaccination to prevent respiratory virus infec-
tions has been limited by signifi cant variation within the 
major virus types causing disease. Th ere are 102 serotyped 
strains of rhinovirus and several more that have not been 
serotyped and no eff ective vaccine has been introduced. 
A decavalent vaccine  [246]  developed in the 1970s was 
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ultimately of limited effi  cacy. Th e infl uenza viruses dis-
play antigenic shift and drift. Vaccines must be modifi ed 
every 2–3 years to cover the strains prevalent at the time. 
Vaccination against RSV experienced a major setback in 
the 1960s when the use of formalin-inactivated virus in 
young babies resulted in increased disease severity follow-
ing subsequent virus infection  [247] . Eighty percent of 
vaccinated children required hospitalization when subse-
quently infected with RSV, as compared to 5% of controls. 
Th e lungs of two vaccinated children who died contained 
eosinophilic infi ltrates. It has been suggested that formalin 
inactivation may have modifi ed epitopes within the RSV G 
and F surface glycoproteins, resulting in a modifi ed immune 
response to subsequent infection with enhanced immun-
opathology  [248] . Vaccinated individuals demonstrate a 
number of diff erences from individuals who have suff ered 
natural RSV infection including a lack of specifi c mucosal 
antibodies and defi cient neutralizing and fusion-inhibiting 
serum antibodies  [249] . Th ere are also diff erences in the 
cell-mediated immune response with some vaccinated indi-
viduals demonstrating peripheral eosinophilia and exagger-
ated lymphocytic proliferative responses to RSV  [250] . To 
protect against RSV infection a successful vaccine would 
need to provide more eff ective protection than natural 
infection, which is itself frequently followed by reinfection 
 [251] , and would have to be administered early in infancy 
to have an eff ect on infant bronchiolitis.  

    Treatment for virus-induced asthma 
exacerbations 

   Simple nonspecifi c treatments for the common cold do exist 
although their effi  cacy is debated. Vitamin C and zinc glu-
conate  [252]  both may shorten the duration of a cold by 1–2 
days. Th e inhalation of humidifi ed hot air provides sympto-
matic relief  [253] . Nasal IFN- α  is an eff ective treatment for 
the common cold  [254]  but must be given either prior to or 
shortly after exposure to the virus. It is also expensive and is 
associated with signifi cant local side eff ects such as bleeding 
and discharge. Th ese problems have limited its clinical use. 
However IFN therapy for virus-induced asthma exacerba-
tions may be more useful in view of the defi ciencies identi-
fi ed by recent studies. Further because of the large number 
of viruses producing similar clinical syndromes, the gen-
eral antiviral properties of IFNs would provide signifi cant 
advantage over the use of specifi c antiviral drugs.  

    Antivirals 

   Specifi c antiviral agents exist for infl uenza. Amantidine 
and rimantidine are eff ective against infl uenza A. Th e use 
of amantidine has been limited by CNS side eff ects such as 
dizziness and insomnia; fewer such side eff ects are seen with 
rimantidine. Both drugs are indicated during epidemics for 
treatment and prophylaxis in high risk groups including 
asthmatics. Neither is active against infl uenza B. Two neu-
raminidase inhibitors, zanamivir and oseltamivir, are active 
against both infl uenza A and B          [255–257] . Th ese agents are 
eff ective in preventing infection when used as prophylaxis 

during the infl uenza season and, as treatment, they reduce 
the duration of illness if started within 36–48       h of the onset 
of illness. Zanamivir must be given by inhalation whereas 
oseltamivir can be given orally. Ribavirin is a nucleoside 
analog active against RSV  in vivo  and also against infl u-
enza  in vitro . Nebulized ribavirin therapy is licensed for use 
in hospitalized infants and children in the fi rst 3 days of 
RSV bronchiolitis. It is however expensive and of unproven 
benefi t on clinical outcome. Because of its toxicity it is not 
appropriate for asthma. RSV enriched immunoglobulin 
was eff ective as prophylaxis for infants at high risk of RSV 
bronchiolitis  [258]  but has been superseded by RSV neu-
tralizing monoclonal antibodies  [259] .  

    Antirhinoviral agents 

   RV are a major target for drug treatment. It has been esti-
mated that rhinoviruses result in 6–10 colds per year in 
young children  [260] . As yet no eff ective agent is avail-
able for clinical use. Capsid-binding/canyon inhibitors 
block RV binding to host cell receptor (ICAM-1 in the 
case of the major group). One example in phase 3 clinical 
trials is pleconaril (Picovir). Th ese drugs can be extremely 
potent but their clinical usefulness is often limited by tox-
icity, the need for rapid initiation of therapy and the pos-
sible development of resistance. Alternative targets include 
soluble ICAM-1 which inhibits major rhinovirus infection 
and conserved viral enzymes such as protein 3D, the RNA-
dependent RNA transcriptase, protein 2C, the associated 
ATP-helicase, and the cysteine protease 3C.  

    New approaches 

   Alternative approaches to direct antiviral therapy are sup-
pression of virus-induced infl ammation, or strategies that 
promote innate or type 1 immune responses in individuals 
with excessive type 2 responses. Understanding the com-
plexities of the antiviral immune response, in particular how 
it may be altered in the context of preexisting chronic air-
way diseases such as asthma is an essential fi rst step. Further 
work is needed to elucidate the important sites of interac-
tion between the immunological networks of asthma and of 
virus infection. Greater knowledge is required if we are to 
identify key targets for therapeutic intervention, the aim of 
which will be to minimize immunopathology whilst main-
taining or enhancing the host anti-viral immune response.   
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