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Background: Radiotherapy is one of the most common treatments for esophageal squamous

cell carcinoma (ESCC). Radioresistance is a major obstacle that limits the efficacy of

radiotherapy. H19 has been considered as a factor affecting radioresistance, whereas the

specific mechanism of H19 in ESCC radioresistance remains to be further elucidated.

Purpose: The objective of this study was to identify the relationship between H19 and radio-

resistance. The findings are expected to provide new insights into the treatment of radioresistant

ESCC.

Methods: The expression levels of H19 in ESCC was analyzed using the online database

starBase. The Oncomine database was used to further verify the association between H19

expression and patient age, gender, and tumor stage. The overall survival rates of ESCC

patients were analyzed using the KM plotter database. Clonogenic survival was conducted to

identify the value of survival fraction. The optical density values were obtained via MTS

assays. Cells migration and stemness were observed through Transwell and sphere formation

assays. The expression levels of H19, miR-22-3p and WNT1 were analyzed using qPCR.

Results: In our study, we firstly screened the H19 according to the online database starBase, and

then the Oncomine database and KM plotter database showed that H19 expression was signifi-

cantly upregulated in the ESCC tissues and associated with poor prognosis. Secondly, an ESCC

radioresistant cell line, KYSE150R was established. Clonogenic survival showed that radiation

decreased the value of survival fraction. MTS assays suggested that optical density values in

KYSE150R cells were significantly higher than that in KYSE150 cells. Transwell and sphere

formation assays showed radiation enhanced cell migration and stemness in ESCC cells. In

addition, qPCR showed that H19 was upregulated in KYSE150R cells, and survival fraction

assays showed that knockdown of H19 decreased the survival fraction values. MTS assays,

migration and invasion assays suggested that H19 inhibited cells proliferation, migration and

stemness in radioresistant KYSE150 cells. Moreover, qPCR assay showed that miR-22-3p expres-

sion levels was downregulated, but WNT1 was upregulated in KYSE150R cells as well as protein

levels. Luciferase activity assay further showed that miR-22-3p inhibits the WNT1 expression.

Conclusion: Our results demonstrate that H19 knockdown downregulates the WNT1

via upregulating miR-22-3p expression, which leads to the inhibition of cells prolifera-

tion, migration and stemness in the radioresistant ESCC cells.
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Introduction
Esophageal cancer (EC) is a malignant cancer that occurs in the esophageal

epithelial tissue, and is common tumor and one of leading causes of mortality

worldwide.1 Based on the differences in histology, EC is divided into two main
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subtypes: Esophageal adenocarcinoma (EA) and

Esophageal squamous cell carcinoma (ESCC).2

Generally, ESCC accounts for 90% of EC and is the

predominant histological type versus EC in China.3 For

ESCC treatments, radiation therapy is one of the com-

monly used methods, which can be used alone or in

combination with chemotherapy and surgery.4 Despite

great advances in radiotherapy technology, tumor recur-

rence and metastasis caused by radioresistant cancer cells

lead to the increased mortality and the poor overall 5-year

survival rate in ESCC patients.5 Currently, few clinical

approaches are able to predict the effects of radiation

therapy in patients with cancer or its effect on the radio-

sensitivity of cancer cells. Thus, it is significant to inves-

tigate mechanisms that promote radiation resistance in

ESCC. Meanwhile, identifying more biomarkers that

involved in ESCC are expected to improve the efficacy

of radiotherapy.

Cancer stem cells (CSCs), accounting for a small

part of the tumor mass, are a small proportion of

tumor cells with the capabilities of self-renewal and

differentiation.6 CSCs have been identified as the main

contributors for the recurrence and metastasis in

tumors.7–10 In addition, the correlation between

lncRNAs and CSCs-related transcriptional factors

expression (including OCT4, SOX2 and NANOG) has

been unveiled.11,12 More importantly, lncRNAs are asso-

ciated with stemness, such as, B4GALT1-AS1 promotes

colon cancer cell stemness.13 NEAT1 enhances the

radioresistance of cervical cancer.14 FAM83H-AS1 con-

tributes to the radioresistance, proliferation, and metas-

tasis in ovarian cancer.15

Using bioinformatic analysis, it showed the aberrant

expression of H19 in ESCC tissues and the correlation

between H19 and poor prognosis. H19, an imprinted

lncRNA, is one of the first identified lncRNAs.16

Accumulating evidence reveals that the dysregulated

H19 acts as the tumorigenic and anti-tumorigenic roles

in many tumors, such as bladder cancer,17 breast

cancer.18 Huang et al have reported that H19 are asso-

ciated with cell invasion and metastasis in EC.19 It has

been found that H19 plays some certain role in the

alteration of radio/chemoresistance in hepatocellular car-

cinoma cells.6 H19 also is associated with poor prognosis

in breast cancer patients and promotes cancer stemness.20

In addition, H19 interacted with miR-130a-3p and miR-

17-5p to modify radioresistance.21

Many reports have revealed that the implication of Wnt

signaling in various cancers.22,23 Meanwhile, researchers

also revealed its roles in radioresistance, such as LIG4

mediates Wnt signalling-induced radioresistance;24

microRNA-324-3p regulates nasopharyngeal carcinoma

radioresistance by directly targeting WNT2B;25 The inhi-

bitory role of miR-301a in cell migration and the facilitat-

ing role of miR-301a in radiosensitivity have been found

in radioresistant-ESCC cells.26 Wnt proteins are involved

in the differentiation of stem cells via the Wnt/β-catenin
signaling pathway27 or affect stem cell fate.28 The activa-

tion of Wnt/β-catenin signaling pathways is required for

human embryonic stem cells.29 Moreover, Wnt pathway

participated in inhibition of mouse embryonic stem cell

differentiation.30 However, little is known about the rela-

tionship between H19 and Wnt signaling in in radioresis-

tant ESCC cells.

In this current study, we aimed to elucidate the role of

H19 in radioresistant ESCC cells. We firstly found that

H19 is upregulated in the ESCC cells and associated with

poor prognosis. Then, we established radio-resistant

KYSE150 cells line, KYSE150R. The results showed

that radiation enhanced cells migration and stemness in

ESCC cells. Furthermore, we observed that knockdown

of H19 inhibits cells proliferation, migration, and stem-

ness in radioresistant KYSE150 cells. In addition, knock-

down of H19 downregulates WNT1 expression.

Overexpression of miR-22-3p inhibits WNT1 expression.

Our findings suggested that H19 promotes cells prolifera-

tion, migration, and stemness in the ESCC radioresistant

cells.

Materials and methods
Bioinformatic analysis
The expression levels of H19 in ESCC was analyzed using

the online database starBase (http://starbase.sysu.edu.cn/).

The publicly available Oncomine database (http://www.

oncomine.com) was utilized to further verify the associa-

tion between H19 expression and patient age, gender, and

tumor stage. The overall survival rates of ESCC patients

were analyzed using the KM plotter database (http://

kmplot.com/). Additionally, the starBase database was

also used to assess the combination between H19, miR-

22-3p and WNT1 in ESCC cells. The binding sites of

miR-22-3p in WNT1 were predicted using the bioinfor-

matics analysis tool TargetScan.
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Establishment of a radioresistant ESCC

cell line and cell culture
ESCC cell line KYSE150 was purchased from the Cell Bank

of Shanghai Institutes for Biological Sciences, Chinese

Academy of Sciences (Shanghai, China). KYSE150 cells

were cultured in RPMI-1640 medium (Gibco, Carlsbad, CA,

USA) supplemented with 10% fetal bovine serum (FBS,

Hyclone, Logan, USA). After reaching 50 to 60% confluence,

KYSE150 cells were exposed to 2 Gy X-ray irradiation

(2.5 Gy/min) using a Varian-6/100 Linear Accelerator

(Varian Medical Systems, Inc., Palo Alto, CA, USA). Next,

the mediumwas changed into the RPMI-1640 culture medium

(Gibco, Carlsbad, CA, USA) containing 10% fetal bovine

serum (FBS, Hyclone, Logan, USA). The culture medium

was changed every two days. 15% FBS was employed when

numerous dead cells were observed. Cells were further main-

tained in a humidified incubator with 5% CO2 (v/v). After

reaching 70% to 80% confluence, cells were passaged.

Repeat the above process until the total radiation reached

60 Gy. The obtained cells were designated KYSE150R cells,

and further cultured for ≥2 weeks before the subsequent

experiments.

H19 knockdown assays
Specific small interfering RNA (siRNAs) for H19 and nega-

tive control siRNA (NC-si) were obtained from RiboBio

(Guangzhou, China). KYSE150R cells were planted into 12-

well plates (1x106/well) and incubated for 12 h. H19-si or NC-

si was transfected into cells using X-treme GENE transfection

reagent (Roche, Basel, Switzerland) according to the manu-

facturer’s instructions. After 48 h transfection, total RNAwas

isolated and used for analysis of the mRNA and protein

expression. The sequences of H19-si in this study were as

follows, siRNA GACACCAUCGGAACAGCAG and NC-si

5ʹ-UUCUCCGAACGUGUCACGU-3ʹ (sense).

Clonogenic survival assays
KYSE150 and KYSE150R cells transfected with H19-si or

untransfected with H19-si were plated into 6-well plates

((2x106/well). Cells were incubated at 37 °C in a humidified

incubator with 5% CO2. After incubation for 24 h, cells were

irradiated with 0, 2, 4, 6, or 8 Gy using X-ray irradiation. After

incubation for 48 h, cellswerewashed twicewith PBS,fixed in

70% methanol, and stained with 0.1% crystal violet. Colonies

containing more than 50 cells were counted. The survival

fraction of each dose was determined using the equation survi-

val fraction = colonies counted/(cells seeded × PE) ×100%.

Cell proliferation assays
To determine the proliferative ability of cells, the MTS assays

were performed. Cells were seeded into 96-well plates (5x103/

well) containing 100 µLof 10%FBS/medium and incubated at

37 °C with 5%CO2. After incubation for 1 to 7 days, theMTS

assays were conducted according to the manufacturer’s

instructions. The cell viability was determined by measuring

the optical density (OD) at 490 nmwavelength using a spectro-

photometer FP-6500 (JASCO Corp.).

Transwell assays
Transwell assays were performed in 6.5 mm Transwell cham-

bers with 8 μm pores (Corning Costar, Corning, NY, USA) to

evaluate the migration ability of cells according to the manu-

facturer’s instructions. The upper chamber was loaded with

cells in serum-freemedium.The lower chamberwasfilledwith

medium containing 10% FBS. After incubation for 24 h, cells

that had invaded through the membrane were fixed with

methanol and stained with 0.1% crystal violet (Sigma-

Aldrich, St. Louis, MO, USA). The number of cells in the

lower chamber was counted using an inverted microscope

(×100 magnification).

qPCR analysis
Total RNA was extracted from cells with Trizol reagent

(Invitrogen, Carlsbad, CA, USA) according to the manufac-

turer’s instructions. cDNA synthesis was performed using

the high capacity cDNA Reverse Transcription Kit (Applied

Biosystems, Foster City, CA). GAPDH and U6 were used as

the internal control. All qPCR assays were performed with

a CFX Connect™ Real-Time PCR Detection System (BIO-

RAD Laboratories, Inc., California, USA), and the fold

changes were calculated by the relative quantification

(2−ΔΔCt) method. The primers were shown in Table 1.

Sphere-forming assays
Cells were digested using 0.25% trypsin (Sigma); washed

twice using calcium/magnesium-free phosphate-buffered sal-

ine (PBS); suspended in serum-free DMEM-F12 medium

supplemented with 1% penicillin-streptomycin solution,

20 ng/mL epidermal growth factor, 10 ng/mL basic fibroblast

growth factor, and 2% B27; and then seeded in a low-

attachment T25 flask (Corning). Cells were collected after

5 days, and then digested using Accutase enzyme and seeded

into 96-well plates. Cells were cultivated for 7–14 days, and

the spheres were then assessed using a microscope.
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Western bolt analysis
Cells were grown in 6-well plates (1x106) and transfected

with the indicated plasmids and siRNA using

Lipofectamine 2000 (Thermo Fisher Scientific). Cells

were washed with precooling phosphate-buffered saline

(PBS), and cells were collected and then lysed for

20 mins in cold lysis buffer (Beyotime Institute of

Biotechnology). Extracts were clarified by centrifugation

(12,000 rpm/min) for 30 mins at 4 °C. Protein samples

were resolved by electrophoresing on 10% polyacrylamide

gel electrophoresis (SDS-PAGE) and then transferred to

polyvinylidene fluoride (PVDF). Membranes were blocked

in Tris-buffered saline (TBS) containing 5% nonfat dry

milk and 0.05% Tween-20 for 20 mins with shaking and

then incubated with primary antibody following the man-

ufacturer’s instructions for 2 hrs at room temperature.

Samples were then washed with TBST (TBS-0.1%

Tween-20) and incubated for 1 hr with horseradish perox-

idase-conjugated secondary antibody (1:10,000 dilution).

Protein bands were visualized using enhanced chemilumi-

nescent substrate according to the manufacturer’s protocol

(Millipore, Billerica, MA, USA). The primary antibodies

were WNT1 and β-actin from ABclonal Biotechnology

(Wuhan, P.R. China).

Luciferase activity assays
The DNA sequences of 3ʹ-UTR-wide type ofWNT1 (WNT1-

WT) and the corresponding mutant vector 3ʹ-UTR-mutant

type of WNT1 (WNT1-MUT) were separately synthesized

and cloned into the pGL-3 basic vector (Promega, Madison,

WI, USA). Cells were planted into 24-well plates, and then

cells were co-transfected with WNT1-WT or WNT1-MUT

plasmids, miR-22-3p mimic or miR-NC (RiboBio,

Guangzhou, China), and pRL-TK plasmids (Promega,

Madison, WI, USA). Cells were collected and then luciferase

activity were measured using the Dual-Luciferase Reportor

Assay System (Promega, Madison, WI, USA).

Statistical analysis
Each experiment was repeated in triplicate. Unless other

noted, all data were presented as the mean ± SD. The

SPSS version 17.0 (SPSS, Chicago, IL, USA) was used

to perform all statistical analyses. Unless otherwise men-

tioned, one-way ANOVA was used for analyzing the dif-

ference in multiply group (>2). Two-way ANOVA was

used for analyzing the differences in luciferase activity

assay. P<0.05 was considered statistically significant.

Results
H19 is upregulated in the ESCC and

associated with poor prognosis
To seek more the ESCC related lncRNAs, the online

database starBase was firstly used. We found that H19

was upregulated (Figure 1A). Based on the Oncomine

database, we found that H19 expression had no effects

on gender, clinical stage IV, and age (Figure 1B–D).

However, data retrieved from the KM plotter database

showed that H19 expression was associated with a poor

prognosis in ESCC patients (Figure 1E, P=0.0052).

Collectively, these results suggest that H19 is upregulated

in the ESCC and associated with poor prognosis.

Radiation enhanced cells migration and

stemness
To explore the effect of radiation on ESCC cells, we

established the resistant cells in KYSE150 and

KYSE510 (failed). Therefore, we conducted clonogenic

survival and cell viability assays to verify the resistant

KYSE150 cells, KYSE150R. The results showed that

radiation decreased the value of survival fraction with

increasing of radiation doses (Figure 2A, P< 0.05).

Subsequently, MTS assays were conducted to analyze

cells viability. We observed that the OD values in

KYSE150R cells were significantly higher than that in

KYSE150 cells. (Figure 2B, P< 0.05). Taken together,

Table 1 The primers used for qPCR were listed

Gene Primer sequence (5ʹ-3ʹ)

H19 Forward TTACTGCTGCGTTTTATGTTGGG

Reverse GCTGGCCGATGTGATGACTA

miR-22-3p Forward GGGAAGCTGCCAGTTGAAG

Reverse GTGCGTGTCGTGGAGTCG

WNT1 Forward TTCAGACACGAGAGATGGAACT

Reverse CCAGCCTTCACTTGCTGAG

OCT4 Forward GTGTTCAGCCAAAAGACCATCT

Reverse GGCCTGCATGAGGGTTTCT

SOX2 Forward CTCGTGCAGTTCTACTCGTCG

Reverse AGCTCTCGGTCAGGTCCTTT

NANOG Forward TCCCGAGAAAAGATTAGTCAGCA

Reverse AGTGGGGCACCTGTTTAACTT

GAPDH Forward GGGAGCCAAAAGGGTCAT

Reverse GAGTCCTTCCACGATACCAA
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Figure 1 H19 is upregulated in the ESCC and associated with poor prognosis. (A) Online database starBase suggested that H19 was upregulated. (B–D) Oncomine
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we successfully constructed the KYSE150R cells.

Therefore, we further performed related functional experi-

ments. Transwell assays were performed. The results

showed that cells migration ability was higher in

KYSE150R (Figure 2C, P<0.05). Then, sphere formation

assays were conducted. The results suggested that the

sphere formation ability was enhanced in KYSE150R

cells (Figure 2D). Furthermore, qPCR assays were per-

formed in KYSE150R and KYSE150 cells. We found that

the stemness-associated genes (OCT4, SOX2 and

NANOG) were significantly higher in KYSE150R cells.

(Figure 2E, P<0.05). Conjointly, these results indicate that

radiation enhanced cells migration and stemness in ESCC

cells.

Knockdown of H19 inhibits cells

proliferation, migration, and stemness in

radioresistant KYSE150 cells
To explore the role of H19 in ESCC radioresistant cells,

qPCR assays were performed. We found that H19 expres-

sion was significantly upregulated in KYSE150R cells.

(Figure 3A, P＜0.05). Then, survival fraction assays

were conducted. H19-si was transfected into KYSE150R.

We found that knockdown of H19 decreased the survival

fraction values with the increasing of radiation doses

(Figure 3B, P＜0.05). MTS and transwell assays were

conducted. The results suggested that knockdown of H19

inhibited cells proliferation and migration (Figure 3C, D, P

＜0.05). In addition, the sphere formation assays were

conducted. The results showed that knockdown of H19

markedly decreased the sphere formation ability of

KYSE150R cells (Figure 3E, P＜0.05). Moreover, the,

the levels of the stemness-associated genes were identified

using qPCR. We found that knockdown of H19 restrained

OCT4, SOX2, and NANOG expression levels (Figure 3F,

P＜0.05). Taken together, these results revealed that

knockdown of H19 inhibits cells proliferation, migration,

and stemness in radioresistant KYSE150 cells.

Knockdown of H19 downregulates

WNT1 expression
Based on the online starBase database, data showed that

H19 and WNT 3ʹUTR contain the binding sites of miR-22-

3p (Figure 4A). Knockdown experiment was conducted.

H19-si was transfected into KYSE150R cells and the results

showed that knockdown of H19 increased the levels of
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D) MTS and transwell assays indicated that knockdown of H19 inhibited cells proliferation andmigration ability. (E) Sphere formation assays showed that knockdown of H19 markedly
decreased the sphere formation ability of KYSE150R cells. (F) qPCR assays implied that knockdown of H19 restrained OCT4, SOX2, and NANOG expression levels. *P<0.05.
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miR-22-3p expression (Figure 4B, P< 0.05). In addition, we

further analyzed the association between H19 and WNT1.

The results showed that knockdown of H19 significantly

decreased WNT1 expression at both the mRNA and protein
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levels in KYSE150R cells (Figure 4C, D). Taken together,

knockdown of H19 upregulates miR-22-3p, while down-

regulates WNT1 expression.

Overexpression of miR-22-3p inhibits

WNT1 expression
To further explore the relationship of miR-22-3p and

WNT1, the bioinformatics analysis tool TargetScan was

used. The results showed that WNT1 3ʹUTR contained the

binding sites of miR-22-3p (Figure 5A). Then, qPCR assays

were conducted and the results showed that miR-22-3p

expression levels were downregulated, but WNT1 upregu-

lated in KYSE150R cells. (Figure 5B, C, P< 0.05).

Moreover, Western blot assays showed WNT1 protein

levels were upregulated in KYSE150R. (Figure 5D).

Luciferase activity assay showed a significant reduction

after co-transfection of miR-22-3p mimic in WNT1-WT

group, but not in the WNT1-MUT (Figure 5E, P＜0.05).

Furthermore, miR-22-3p mimic and NC were transfected

into KYSE150 and KYSE150R cells, separately. qPCR and

Western blot assays were performed to exam the WNT1

expression. The findings suggested that overexpression of

miR-22-3p inhibits WNT1 expression (Figure 5F, G).

Collectively, our results indicated that miR-22-3p targets

WNT1 expression.

Discussion
Despite radiotherapy is a common treatment for ESCC,

radioresistance always occurs and limits the use of radio-

therapy. Resistance to radiation therapy leads to high tumor

recurrence rates, cancer metastasis, and poor prognosis, and

therefore clarifying the mechanism of radioresistance is

essential to control tumor growth during radiation

therapy.31 In this study, the upregulation of H19 in the

ESCC tissues and the association between H19 and poor

prognosis were obtained using the Oncomine database.

Although the mechanisms of tumor radioresistance are

complicated, studies with respect to the improvement of

radiosensitization have achieved continuous progression.32

LncRNAs regulate the transcription of genes associated

with DNA damage response, which is closely correlated

with sensitivity to radiation therapy. The potential associa-

tions between lncRNAs and stemness have also been

identified. For example, lncRNA HOTAIR regulates cell

viability and radiosensitivity through inhibiting miR-218

in colorectal cancer.33 H19 is aberrantly expressed in var-

ious cancers and plays an pivotal role in enhancing

stemness of cancer cells.34 CASC11 increases cancer cell

stemness and predicts postoperative survival in small cell

lung cancer. Moreover, previous evidence has revealed

that CSCs play important roles in cancer therapy.10,35–40

In addition, the interactions between lncRNAs and

miRNAs in tumor cells are implicated in tumor progres-

sion or regression.41 H19 has been reported to target miR-

194-5p, which was essential for development of colorectal

adenocarcinoma.42 Moreover, miRNAs have been widely

identified involved in radiosensitivity. NRF2 as a new

potential molecular target whose inhibition might repre-

sent a novel radiosensitizing in rhabdomyosarcoma.43

microRNA-153-3p enhances cell radiosensitivity by tar-

geting BCL2 in human glioma.44 microRNA-16-5p

enhances radiosensitivity in prostate tumor cells.45 miR-

122 has been found as a tumor suppressor to influence the

radioresistance in breast cancer.46 In addition,

One study showed that microRNA 301a targets WNT1

to suppress cell proliferation and migration and enhance

radiosensitivity in esophageal cancer cells.

In this study, we firstly screened the H19 according to

the online database starBase. Then, Oncomine database

and KM plotter database were used and the data showed

that H19 is upregulated in the ESCC and associated with

poor prognosis. To identify the role of radiation in the

resistant KYSE150 cells. The resistant KYSE150 cells,

KYSE150R was firstly established. Clonogenic survival

showed that radiation decreased the value of survival frac-

tion. MTS assays suggested that OD values in KYSE150R

cells were significantly higher than that in KYSE150 cells.

Subsequently, we further performed related functional

experiments. Transwell and sphere formation assays

showed that cells migration and sphere formation ability

were higher in KYSE150R, suggesting that radiation

enhanced cells migration and stemness in ESCC cells. To

figure out the role of H19 in ESCC radioresistant cells,

qPCR firstly showed that H19 expression was significantly

upregulated in KYSE150R cells. Furthermore, survival

fraction assays showed that knockdown of H19 decreased

the survival fraction values. A series of functional experi-

ments indicated that H19 inhibited cells proliferation,

migration and stemness in radioresistant KYSE150 cells.

Moreover, starBase database suggested that H19 and

WNT1 3ʹUTR contained the miR-22-3p binding sites. In

KYSE150R cells, qPCR assays showed that miR-22-3p

expression levels was downregulated, but WNT1 upregu-

lated as well as protein levels after transfected with H19-si.

Moreover, luciferase activity assay further showed that
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miR-22-3p inhibits the WNT1 expression. Our findings

may implicate that knockdown of H19 downregulates the

WNT1 via upregulating miR-22-3p expression, which

could contribute to the inhibition of cells proliferation,

migration and stemness in the radioresistant ESCC cells.

In conclusion
Our preliminary findings demonstrate that H19 promotes

cells proliferation, migration, and stemness in the ESCC

radioresistant cells. The more specified mechanisms remain

to be elucidated and therefore additional researches with

a large number of clinical samples are required for the

application of targeted therapy for ESCC radioresistance.

We will further investigate the potential role of H19 in

ESCC radioresistance.
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