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Abstract: Increasing evidence points towards the existence of a bidirectional interconnection between
metabolic disease and neurodegenerative disorders, in which inflammation is linking both together.
Activation of members of the peroxisome proliferator-activated receptor (PPAR) family has been
shown to have beneficial effects in these interlinked pathologies, and these improvements are often
attributed to anti-inflammatory effects of PPAR activation. In this review, we summarize the role
of PPARs in immune cell function, with a focus on macrophages and T cells, and how this was
shown to contribute to obesity-associated inflammation and insulin resistance, atherosclerosis,
and neurodegenerative disorders. We address gender differences as a potential explanation in
observed contradictory results, and we highlight PPAR-induced metabolic changes as a potential
mechanism of regulation of immune cell function through these nuclear receptors. Together, immune
cell-specific activation of PPARs present a promising therapeutic approach to treat both metabolic
and neurodegenerative diseases.
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1. The Interrelationship between Metabolism, Inflammation, and Neurodegenerative Disease

1.1. Inflammation and Metabolic Disease

Although inflammation is a vital response to infection and tissue injury, non-resolved chronic
inflammation is associated with many pathological processes. Several of these pathologies, in which
inflammation is a common denominator, are grouped under metabolic syndrome, including obesity,
type 2 diabetes, cardiovascular disease, and fatty liver disease [1].

Over the past two decades, a clear link has been established between obesity-associated
inflammation and the development of insulin resistance, which eventually leads to type 2 diabetes [1].
As a result of insulin resistance, the body needs higher levels of insulin to help glucose enter cells.
The β cells in the pancreas try to keep up with this increased demand for insulin by producing more.
Over time, however, insulin resistance can lead to type 2 diabetes and prediabetes, because the β cells
fail to keep up with the body’s increased need for insulin.

Initially, studies showed that adipose tissue expansion in obesity is accompanied by an increase
in cytokine and chemokine expression, such as tumor necrosis factor (TNF)-α, interleukin (IL)-6,
monocyte chemoattractant protein (MCP)-1, and interferon (IFN)-γ. Some of these cytokines/
chemokines were shown to impair insulin action in normally insulin-sensitive tissues, leading to
insulin resistance. Later, it was demonstrated that this obesity-induced adipose tissue inflammation
was largely the result of a shift in the balance of anti-inflammatory towards pro-inflammatory immune
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cells [2]. In lean adipose tissue, regulatory B cells (Bregs), regulatory T cells (Tregs), T helper 2 (Th2)
cells, eosinophils, and type 2 innate lymphoid cells (ILC2s) maintain an anti-inflammatory environment
through the production of IL-10, IL-4, IL-5, and IL-13. These anti-inflammatory cytokines promote
anti-inflammatory M2 polarized macrophages in adipose tissue. By contrast, obesity-associated
adipose tissue expansion is accompanied by an increase in elastase-secreting neutrophils, mast cells,
and IFNγ-secreting CD8+ T cells, Th1 cells, and natural killer (NK) cells. Inflammatory mediators
secreted by these cells promote pro-inflammatory M1 macrophage polarization and their release of
IL-1β, IL-6, and TNF-α cytokines [2].

Likewise, atherosclerosis is also associated with a chronic and non-resolving immune response.
The accumulation of lipoproteins in the arterial wall, characteristic of atherosclerosis, triggers first an
innate immune response, dominated by monocyte/macrophages, followed by an adaptive immune
response involving primarily Th1, but also Th17 and Th2 cells and B cells, alongside a progressive
decrease in Tregs [3]. As in adipose tissue, atherosclerotic plaques can contain both inflammatory and
resolving macrophages. The pro-inflammatory macrophages secrete cytokines, proteases, and other
factors that can cause plaque morphological changes and progression that can eventually trigger plaque
rupture, whereas resolving macrophages carry out functions that can suppress plaque progression and
promote plaque regression and/or stabilization [3].

1.2. Inflammation as a Link between Metabolic Disease and Neurodegenerative Disorders

Both human studies and animal models concur to suggest an interrelationship between metabolic
disease and neurodegenerative disorders (NDDs), such as Alzheimer’s disease, Huntington’s disease,
Parkinson’s disease, and multiple sclerosis [4–9]. Higher body mass index represents a risk factor for
the development of these NDDs [4–9]. Inflammation might be linking metabolic disease to NDDs,
since a growing body of observational and experimental data shows that inflammatory processes,
termed neuroinflammation, contribute to the onset and progression of neuronal degeneration [10].
Furthermore, this link between metabolic disease and neuroinflammation goes both ways, since
hypothalamic inflammation has been linked to the development and progression of obesity and its
sequelae [11,12]. Hypothalamic inflammation induced by obesogenic diets occurs before significant
body weight gain, and precedes inflammation in peripheral tissues. This results in the uncoupling
of caloric intake and energy expenditure, not only leading to overeating and weight gain, but also
contributes to obesity-associated insulin resistance via altered neurocircuit functions. For example,
hypothalamic inflammation modulates insulin secretion by pancreatic β cells, adipose tissue lipolysis,
and hepatic glucose production [13,14]. Microglia cells, the brain counterpart of macrophages, play a
major role in the neuroinflammation observed in both NDDs and the obesity-associated hypothalamic
inflammation [10,11]. The aggregates of amyloid β-peptide (Aβ) and α-synuclein, that respectively
characterize Alzheimer’s and Parkinson’s disease, have been shown to induce microglia activation,
which augments the level of neuroinflammatory mediators, that in turn worsen these NDDs [10].
Likewise, an obesogenic diet leads to an accumulation of activated microglia within the hypothalamus
that produce a variety of proinflammatory cytokines [11]. Furthermore, high fat feeding is associated
with the accumulation and activation of astrocytes in the hypothalamus, which also produce a variety
of inflammatory factors [11]. In Huntington’s disease, expression of mutant Huntingtin (HTT) protein
results in a cell-autonomous pro-inflammatory state of activation of microglia and, to a certain extent,
of astrocytes [15]. Multiple sclerosis is characterized by the progressive destruction of axon myelin
sheaths by the action of autoreactive immune cells (including T cells and macrophages) [10].

Taken together, both animal models and human studies strongly suggest that there is a
close interconnection between metabolism, inflammation, and neurodegeneration (see Figure 1).
With inflammation as a link between metabolic disease and NDDs, therapies targeting inflammation
might both re-establish metabolic homeostasis and have efficacy in counteracting cognitive decline.
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Figure 1. Interconnection between metabolism, inflammation, and neurodegeneration. An imbalance 
between caloric intake and energy expenditure has been linked to both metabolic disease (obesity 
and atherosclerosis) and neurodegenerative disorders. These pathologies all have a state of 
unresolved chronic inflammation in common. The link between neuroinflammation and obesity and 
associated sequelae is bidirectional, since hypothalamic inflammation leads to uncoupling of caloric 
intake and energy expenditure, leading to obesity, but also contributes to obesity-induced insulin 
resistance (and subsequent type 2 diabetes) via altered neurocircuit functions. 

2. The Role of Metabolism in Immune Cell Function 

Glycolysis, oxidative phosphorylation (OXPHOS), glutaminolysis, and/or fatty acid oxidation 
(FAO) are metabolic pathways that generate energy needed to satisfy basic cellular functions. 
Regarding immune cells, it was shown over the years that these cells can adapt their metabolism, 
from one pathway to another, to support the bioenergetically demanding processes of growth and 
effector function during an immune response. 

2.1. Adaptive Immune Cells 

The first metabolic change encountered by lymphocytes appears upon activation when shifting 
from quiescent cells with a relatively low metabolism to activated and proliferating cells, that have 
high metabolic needs. This shift is supported by a switch from an oxidative metabolism towards 
anaerobic glycolysis (Warburg effect) following antigen recognition by both T and B cells [16,17]. 
Indeed, lymphocyte activation is accompanied by an elevated glucose uptake through increased 
translocation of glucose transporter 1 (GLUT1) to the cellular membrane [18,19]. Increase in 
glutaminolysis in also observed in both cell types as glutamine is an essential substrate for the 
tricarboxylic acid cycle [20,21]. For B cells, activation is also accompanied by an increased OXPHOS, 
but data on the metabolic profile of distinct B cell subsets is still lacking [17]. As for T cells, activated 
CD4+ T cells will polarize into different subpopulations with their own inflammatory and metabolic 
phenotype (Th1, Th2, Th17, and Tregs). Anti-inflammatory Tregs are poorly proliferative, whereas 
pro-inflammatory T cell subsets can be highly proliferative. In this regard, studies showed that Th1, 
Th2, and Th17 cells use glycolysis to meet their energy demands, whereas Tregs have high lipid 
oxidation rates [22,23]. Furthermore, it was demonstrated that by directly manipulating cell 
metabolism one can regulate CD4+ T cell fate; for example, inhibition of glycolysis blocks Th17 
development and promotes T cell polarization towards Treg cells [23]. CD8+ memory T cells largely 

Figure 1. Interconnection between metabolism, inflammation, and neurodegeneration. An imbalance
between caloric intake and energy expenditure has been linked to both metabolic disease (obesity and
atherosclerosis) and neurodegenerative disorders. These pathologies all have a state of unresolved
chronic inflammation in common. The link between neuroinflammation and obesity and associated
sequelae is bidirectional, since hypothalamic inflammation leads to uncoupling of caloric intake and
energy expenditure, leading to obesity, but also contributes to obesity-induced insulin resistance
(and subsequent type 2 diabetes) via altered neurocircuit functions.

2. The Role of Metabolism in Immune Cell Function

Glycolysis, oxidative phosphorylation (OXPHOS), glutaminolysis, and/or fatty acid oxidation
(FAO) are metabolic pathways that generate energy needed to satisfy basic cellular functions.
Regarding immune cells, it was shown over the years that these cells can adapt their metabolism,
from one pathway to another, to support the bioenergetically demanding processes of growth and
effector function during an immune response.

2.1. Adaptive Immune Cells

The first metabolic change encountered by lymphocytes appears upon activation when shifting
from quiescent cells with a relatively low metabolism to activated and proliferating cells, that have high
metabolic needs. This shift is supported by a switch from an oxidative metabolism towards anaerobic
glycolysis (Warburg effect) following antigen recognition by both T and B cells [16,17]. Indeed,
lymphocyte activation is accompanied by an elevated glucose uptake through increased translocation
of glucose transporter 1 (GLUT1) to the cellular membrane [18,19]. Increase in glutaminolysis in also
observed in both cell types as glutamine is an essential substrate for the tricarboxylic acid cycle [20,21].
For B cells, activation is also accompanied by an increased OXPHOS, but data on the metabolic profile
of distinct B cell subsets is still lacking [17]. As for T cells, activated CD4+ T cells will polarize into
different subpopulations with their own inflammatory and metabolic phenotype (Th1, Th2, Th17,
and Tregs). Anti-inflammatory Tregs are poorly proliferative, whereas pro-inflammatory T cell subsets
can be highly proliferative. In this regard, studies showed that Th1, Th2, and Th17 cells use glycolysis
to meet their energy demands, whereas Tregs have high lipid oxidation rates [22,23]. Furthermore,
it was demonstrated that by directly manipulating cell metabolism one can regulate CD4+ T cell
fate; for example, inhibition of glycolysis blocks Th17 development and promotes T cell polarization
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towards Treg cells [23]. CD8+ memory T cells largely depend on FAO for their metabolic needs, and in
line with this, carnitine palmitoyltransferase Ia (CPT1a) expression (rate-limiting enzyme of FAO
pathway) was found to promote the differentiation into this subpopulation [24].

2.2. Innate Immune Cells

Granulocytes, dendritic cells (DC), and M1 type macrophages rely on glucose metabolism upon
activation, while M2 macrophages depend on FAO. Unlike lymphocytes, activated myeloid cells tend
to be non-proliferative, but still mostly exhibit an increased glycolytic metabolism upon activation,
which is essential to acquire their effector function.

Indeed, neutrophil effector functions, such as neutrophil extracellular trap formation, tissue
infiltration and phagocytosis, were decreased in the presence of the 2-deoxy-glucose, an inhibitor of
glycolysis [25,26]. In a recent study on mast cells, seahorse experiment results showed an increase of
glycolysis, as well as OXPHOS, following their activation. The latter was particularly implicated in
the degranulation process and cytokine production [27]. As for eosinophil and basophil metabolism,
evidence suggests a glycolytic metabolism after their activation, but this needs to be investigated
further [28]. DCs shift from naïve DCs, using mainly FAO and OXPHOS metabolism, to glycolysis,
upon activation. Increase of glucose metabolism is then mainly implicated in the increase in de
novo fatty acid synthesis that seems to correlate with the immunogenic phenotype of DCs [29].
Similar to T cells, macrophage activation can give rise to the polarization into pro-inflammatory M1
or anti-inflammatory M2 macrophages that exhibit metabolic differences. While M1 macrophages
preferentially use glycolysis to support the production of inflammatory cytokines, such as IL-1β
and TNF-α via the activation of nuclear factor-κB (NF-κB) and activator protein-1 (AP-1) signaling,
M2 macrophages use lipid oxidation as energy source [30]. In this case, lipid oxidation is supported by
an increase in the expression of fatty acid translocase (FAT)/CD36 and CPT1a, that favors lipid import
into cells and mitochondria, respectively [30,31].

It is clear from these findings that metabolism plays an important role in the immune cell fate
and inflammatory phenotype. Overall, a distinction can be made between pro-inflammatory cells,
that require a rapid burst of energy and macromolecule synthesis via glycolysis to produce cytokines,
and quiescent or anti-inflammatory cells, that use mostly oxidation (FAO and OXPHOS) for their
survival and longevity. As a consequence, manipulating immune cell metabolism has become an
interesting approach to control the immune response.

3. Role of PPARs in Immune Cell Function

3.1. PPARs and Their Mode of Action

The peroxisome proliferator-activated receptor (PPAR) subfamily of nuclear hormone receptors
consist of three different isoforms; PPARα, PPARβ, and PPARγ, that are each expressed in various
tissues and cell types, and regulate the transcription of a large variety of genes implicated in
metabolism, cell proliferation/differentiation, and inflammation [32]. These different PPAR members
have a conserved structure that includes an N-terminal ligand-independent transactivation domain,
a DNA binding domain, and a C-terminal ligand-binding domain and ligand-dependent activation
domain [33]. This C-terminal region is implicated in receptor heterodimerization with the obligatory
transcriptional partner, the retinoid X receptor (RXR). These heterodimers bind to specific DNA
sequence elements called peroxisome proliferator response elements (PPREs) in the regulatory region
of their target genes. Binding of synthetic or endogenous ligands (fatty acids and their derivatives)
induces a conformational switch in the receptors, leading to dissociation of co-repressor proteins
and recruitment of co-activator proteins to enhance the transcription of target genes [33]. This direct
transcriptional regulation of PPARs through binding to PPREs largely concerns target genes involved
in transport, synthesis, storage, mobilization, activation, and oxidation of fatty acids. However,
the regulation of immune cell function by PPARs, the topic of this review, is thought to mostly
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implicate transcription regulation of target genes through indirect mechanisms. The best-known
mechanism by which PPARs regulate inflammation is through transrepression [34]. This activity
involves indirect association (tethering) of the PPARs with target genes. There are many mechanisms
by which PPARs can transrepress inflammatory responses, including competition for a limiting pool of
coactivators, direct interaction with the p65 subunit of NF-κB and c-Jun subunit of AP-1, modulation
of p38 mitogen-activated protein kinase (MAPK) activity, and partitioning the corepressor B-cell
lymphoma 6 (BCL-6) [34].

3.2. Role of PPARs in Immune Cells

There is a vast amount of literature (including many excellent reviews) on the anti-inflammatory
roles of the different PPARs in a multitude of inflammatory diseases (for selection of reviews,
see [32,35–49]). Many of these studies were performed in global knockout models and/or PPAR
agonists/antagonists were administered systemically. The global/systemic nature of these latter
studies often does not allow for the interpretation of the role of PPARs in specific immune cells,
since the effects observed could be due to numerous PPAR actions unrelated to their function in
immune cells. Furthermore, several studies treated immune cells with endogenous PPAR ligands that
are also known to have PPAR-independent effects, so again, this complicates the interpretation of the
results obtained. As a consequence, we limit this review to studies that (1) use mouse models that are
deficient for, or overexpress, PPARs specifically in certain immune cells, (2) performed in vitro studies
on immune cells deficient for, or overexpressing PPARs, and/or (3) used PPAR-specific (ant)agonists
directly on (mouse or human) immune cells. In particular, we focus on studies concerning PPAR
actions in macrophages and T cells, and how that impacts inflammatory disease (with a focus on
metabolic and neurodegenerative diseases).

3.2.1. Role of PPARs in Macrophages

All three PPAR family members have been shown to play a role in mouse macrophage polarization.
PPARα, β, or γ activation was demonstrated to potentiate the polarization of mouse macrophages
towards the anti-inflammatory M2 phenotype, while M2-type responses are compromised in the
absence of PPARγ or β expression (effect of PPARα absence has not been studied) [50–66]. In human
macrophages results are less clear-cut; while PPARγ activation has been shown to stimulate M2
polarization, PPARα or β activation did not seem to have any effect [67–71]. These anti-inflammatory
actions of PPARs in macrophages have often been described to involve transrepression mechanisms
involving NF-κB and AP-1 [51,53,60,61]. However, in line with the importance of metabolism in
macrophage polarization (see Section 2.2 above), deletion of PPARγ in macrophages leads to reduced
rates of β-oxidation of fatty acids, and consequently, these PPARγ-deficient macrophages are unable
to clear the metabolic checkpoint required for full conversion to the alternative phenotype [50].
One mechanism through which PPARβ activation was proposed to exert its anti-inflammatory actions
in macrophages involves the repressor BCL-6; unliganded PPARβ binds and sequesters BCL-6,
and upon ligand binding, BCL-6 is released, and can repress transcription of pro-inflammatory target
genes, including IL-1β, MCP-1, and matrix metalloproteinase 9 (MMP9) [72]. Based on this mechanism,
PPARβ-deficient macrophages should exhibit an anti-inflammatory phenotype (BCL-6 would be free
to repress pro-inflammatory genes). However, this is contradicted by two different studies that show
that absence of PPARβ does not suppress pro-inflammatory responses during alternative activation of
macrophages [66,73].

3.2.2. Role of PPARs in T Cells

In T cells, PPARs have been shown to regulate survival, activation, and CD4+ T cell differentiation
into the Th1, Th2, Th17, and Treg lineages [39]. PPARβ activation was shown to inhibit Th1 and
Th17 polarization, and augment Th2 polarization, and the opposite was seen when PPARβ was
deleted [74–76]. We have recently shown that activation or overexpression of PPARβ increases
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FAO in T cells [77]. Furthermore, using both in vivo and in vitro models, we demonstrated that
PPARβ activation/overexpression inhibits thymic T cell development by decreasing proliferation of
CD4−CD8− double-negative stage 4 (DN4) thymocytes [77]. These results support a model where
PPARβ activation/overexpression favors oxidation of fatty acids, instead of glucose, in developing
T cells, thereby hampering the proliferative burst normally occurring at the DN4 stage of T cell
development. As a consequence, the αβ T cells that are derived from DN4 thymocytes were
dramatically decreased in peripheral lymphoid tissues, while the γδ T cell population remained
untouched [77].

PPARγ activation was shown to impair T cell proliferation through an IL-2 dependent mechanism
involving repression of nuclear factor of activated T cells (NFAT) [78,79]. Deletion of PPARγ in
CD4+ T cells resulted in increased antigen-specific proliferation and overproduction of IFN-γ in
response to IL-12, highlighting the importance of PPARγ expression in downregulating excessive
Th1 responses [80]. Furthermore, PPARγ is highly expressed in both mouse and human Th2 cells, as
opposed to other Th subsets, and although having a minor direct role in regulating Th2 differentiation,
controls Th2 sensitivity to IL-33 and thus, has an impact on Th2 effector function [81]. However,
PPARγ activation was reported to downregulate IL-4 production in T cells (through downregulation
of NFAT) and expression of other Th2 cytokines (IL-5 and IL-13) was also reported to be decreased,
as well as c-Maf, a Th2-specific transcription factor [82,83]. Together, these studies indicate that the
effect of PPARγ activation on Th2 differentiation remains unclear.

Loss of PPARγ in Tregs has been shown to impair their ability to control effector CD4+ T
cell responses while PPARγ activation in naïve CD4+ T cells enhanced induction of forkhead
box P3 (FoxP3)+ inducible regulatory T cells [80,84,85]. Moreover, a recent study demonstrated
that T cell-specific deletion of PPARγ leads to a specific reduction in GATA binding protein 3
(GATA3)-expressing Tregs [81]. In addition, a population of Tregs that highly expresses PPARγ has
been identified in visceral adipose tissue, and Treg-specific deletion of PPARγ prevents accumulation
of Tregs in visceral adipose tissue [86]. Furthermore, phosphorylation of serine 273 of PPARγ in Tregs
changes the characteristic transcriptional signature of these Tregs [87]. Together, these studies suggest
that PPARγ may contribute to the quality and quantity of Tregs.

In regard to Th17 differentiation, PPARγ activation was shown to have inhibitory effects while
PPARγ deficiency led to increased Th17 differentiation [88]. Th17 differentiation depends on the
transcription factor retinoic acid receptor (RAR)-related orphan receptor (ROR) γt, and the latter study
by Klotz et al. demonstrated that under physiological conditions, the co-repressor silencing mediator
of retinoid and thyroid hormone receptors (SMRT) is bound to the RORγt promoter and inhibits
its transcription, and that PPARγ activation prevents removal of this corepressor complex, thereby
suppressing RORγt expression and Th17 differentiation. It should also be mentioned that Klotz et al.
did not observe an effect of PPARγ activation on Th1, Th2, or Treg T cell subsets, contradicting the
above-mentioned studies.

3.2.3. Gender-Specific Differences in the Role of PPARs in T Cells

One explanation for these contradicting results could be sex-specific roles of PPARs in T cells [89].
One of the first observations of gender differences in the role of PPARs in T cells was that T cells from
male mice have increased expression of PPARα, compared to their female counterparts, and that the
male sex hormone androgen has been suggested to regulate PPARα expression [90,91]. In the same
study it was shown that PPARα-deficient T cells were predisposed to a Th1 response at the expense of
Th2 function, and this was mediated by PPARα modulation of NF-κB and c-Jun activity. These results
were recently confirmed by using a PPARα antagonist [92]. While PPARα expression is high in male
T cells, PPARγ expression is high in female T cells [91], and the female sex hormone estrogen seems
to influence expression of PPARγ [93]. As a result, the inhibitory role of PPARγ in T cell activation
(see Section 3.2.2 above) is observed in female PPARγ-deficient T cells, but not in male T cells [94].
Similarly, PPARγ activation inhibits the differentiation of female Th1, Th2, and Th17 cells, whereas
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it specifically reduces only Th17-cell differentiation in males [95]. This provides a strong argument
that, indeed, gender-specific differences in PPARγ expression in T cells could explain the contradictory
results regarding the role of PPARγ in Th differentiation. PPARβ expression did not differ much when
comparing male and female naïve and activated T cells [90].

Taken together, these studies demonstrate that the differential regulation of PPAR expression by
sex hormones has an impact on the roles these receptors play in T cell biology. Furthermore, it cannot be
excluded that contradictions in studies on the role of PPARs in macrophages, specifically the differences
between mice and humans, could also potentially be the consequence of gender differences. Based
on the importance of metabolism in immune cells (see Section 2 above), and the fact that most of the
directly regulated PPAR target genes are involved in different aspects of fatty acid metabolism, it would
seem obvious that the observed effects of PPARs on macrophage and T cell polarization/proliferation
can be mechanistically explained by PPAR-induced changes in metabolism. However, this possibility
was only rarely explored in the studies described above (and below).

4. Consequences of PPAR Actions in Immune Cells for Metabolic and
Neurodegenerative Diseases

4.1. Metabolic Diseases

We focus here on the role of PPARs in immune cells in the context of atherosclerosis and
obesity-associated inflammation and insulin resistance. Again, for reasons mentioned above
(Section 3.2), studies using global knockouts or systemic treatments with agonists will not be discussed.
Transplantation of PPARβ−/− bone marrow into atherogenic diet-fed low-density lipoprotein receptor
(LDLR)-deficient mice resulted in a reduction of aortic valve lesion surface compared to mice
transplanted with wild type bone marrow [72]. Similarly, transplantation of bone marrow cells
infected with lentivirus expressing selective microRNA (miRNA) targeting PPARβ into recipient
LDLR−/− mice resulted in reduction of atherosclerotic lesions, accompanied by a reduced presence of
macrophages and expression of MCP-1 and MMP9 in the plaque [96]. This reduction of inflammation
in absence of PPARβ in bone marrow cells is in line with the BCL-6 mechanistic model of PPARβ
regulation of macrophage function. By contrast, transplantation of PPARγ−/− bone marrow cells or
conditional knockout of macrophage PPARγ increases atherosclerosis in both wild type and LDLR−/−

mice fed an atherogenic diet [97,98].
Two studies showed that macrophage-specific deletion of PPARγ predisposes mice to

development of diet-induced obesity and insulin resistance [50,99]. Similar results were obtained
when the effect of PPARβ-deficient bone marrow or macrophage-specific PPARβ−/− on HFD-induced
obesity and insulin resistance was studied [65,66]. However, one study found preserved glucose
tolerance in mice transplanted with PPARγ−/− or PPARβ−/− bone marrow [100]. Since bone
marrow-derived cells include T cells, some of the results outlined above could also be due to PPAR
actions in T cells, even though the cited studies often interpreted them as macrophage specific.
T cell-specific actions of PPARs, in the context of atherosclerosis or obesity-associated inflammation
and insulin resistance, have largely been unexplored, with the exception of the role of PPARγ in
adipose tissue Tregs in the latter. As mentioned already above (Section 3.2.2), PPARγ has been
shown to be a crucial molecular orchestrator of visceral adipose tissue Treg accumulation, phenotype,
and function [86,87]. Another area of PPAR research that deserves further exploration, not counting
global knockout studies and systemic agonist treatment, is the specific role of PPARα in immune cells
in the context of atherosclerosis and obesity-associated inflammation and insulin resistance.

4.2. Neurodegenerative Diseases

Even though neuroinflammation plays an important role in NDDs (outlined above in Section 1.2),
and numerous studies have demonstrated beneficial effects of treatment with PPAR agonists in those
pathologies, few studies have investigated how much PPAR actions in immune cells contribute
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to these positive effects observed [101,102]. In the context of Alzheimer’s disease, in vitro studies
demonstrated that PPARγ agonists stimulated Aβ phagocytosis by rat primary microglia through
induction of CD36 expression [103]. A similar study showed that PPARγ activation stimulated Aβ

degradation by both primary mouse microglia and astrocytes, and that this involved a M1 to M2 shift
for microglia [104]. Other in vitro studies revealed that pharmacological activation of PPARα attenuates
the inflammatory responses of both primary mouse astrocytes and microglia [105,106]. The same group
showed that PPARα activation in lipopolysaccharide (LPS)-treated microglia suppressed secretion of
IL-12 family cytokines that are known to stimulate Th1 and Th17 differentiation [107]. Furthermore,
they showed a similar decrease in IL-12 family cytokines in both microglia and astrocytes treated
with PPARγ agonists [108,109], and PPARγ agonist inhibited the inflammatory response of those
central nervous system (CNS) cells [110,111]. PPARγ activation in neuron–microglia co-cultures
protected the neurons from damage induced by LPS-induced insults, by inhibiting microglia activation
through interference with the NF-κB and AP-1 pathways [112]. In addition, PPARβ activation was
shown to reduce LPS-stimulated nitric oxide (NO) production in enriched microglia and astrocyte
cultures [113]. Likewise, PPARβ activation can also modulate radiation-induced oxidative stress
and pro-inflammatory responses in microglia [114]. The latter was shown to occur through PPARβ
interaction with the p65 subunit NF-κB.

Taken together, these in vitro cell culture studies demonstrate that PPAR activation reduces
inflammation in both microglia and astrocytes and it is therefore likely that some (or most) of the
beneficial effects observed with PPAR activation in NDDs are the consequence of anti-inflammatory
PPAR actions in these cells. However, to study the specific role of microglial and astrocyte PPARs
in NDDs in an in vivo context, it would be of great interest to overexpress or knockout PPARs in
a cell-type specific fashion using CX3C chemokine receptor 1 (CX3CR1)-Cre or glial fibrillary acid
protein (GFAP)-Cre mice, respectively. Even though the CX3CR1-Cre approach will also affect other
CX3CR1-expressing myeloid cell populations, these types of studies would still be very informative.

5. Conclusions

In summary, inflammation has been shown to be a common denominator in both metabolic
syndrome and NDDs, and targeting this inflammation from a therapeutic standpoint could potentially
have beneficial consequences for both pathologies. Based on the anti-inflammatory effects that have
been attributed to PPARs, and the roles that have been described for these receptors in regard to
immune cell functions, activating these receptors, specifically in immune cells, could be considered
as such a therapeutic approach (see Figure 2). This immune cell-specific approach could circumvent
certain adverse effects that have been observed in the past with systemic treatments with PPAR
agonists. However, before pursuing such an ambitious goal, several insufficiently explored questions
in PPAR research should be further addressed. While many studies strongly suggest that beneficial
effects of PPAR activation in the context of metabolic syndrome and NDDs can be explained by
anti-inflammatory effects, direct proof of an important role for PPAR-induced changes in immune cell
function is often lacking. This missing proof could be supplied by studying the effects of immune
cell-specific deficiency or overexpression of PPARs in the context of metabolic disease and NDD mouse
models. It is important that potential gender-specific differences should be taken into account while
conducting these types of studies. Lastly, PPAR-induced metabolic changes should be more often
considered/explored as a mechanistic explanation of the regulatory functions that are attributed to
these nuclear receptors in immune cells.
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Figure 2. Effects of peroxisome proliferator-activated receptor (PPAR) deficiency or activation on 
immune cell properties and metabolic and neurodegenerative disease states. Despite some 
contradictory results (perhaps due to gender differences), the overall impression we deduce from the 
literature is that PPAR activation has anti-inflammatory effects on immune cells by stimulating the 
polarization of these cells towards more anti-inflammatory subsets. Perhaps the switch towards 
FAO/OXPHOS (fatty acid oxidation /oxidative phosphorylation) metabolism induced by PPAR 
activation plays an important role in this shift towards anti-inflammatory immune cell subsets. By 
contrast, PPAR deficiency has often been shown to have the opposite effects. Together, these 
PPAR-regulated properties of immune cells might contribute to the severity of the disease state both 
in metabolic diseases (e.g., obesity-induced insulin resistance) and neurodegenerative disorders 
NDDs. 
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Figure 2. Effects of peroxisome proliferator-activated receptor (PPAR) deficiency or activation
on immune cell properties and metabolic and neurodegenerative disease states. Despite some
contradictory results (perhaps due to gender differences), the overall impression we deduce from the
literature is that PPAR activation has anti-inflammatory effects on immune cells by stimulating the
polarization of these cells towards more anti-inflammatory subsets. Perhaps the switch towards
FAO/OXPHOS (fatty acid oxidation/oxidative phosphorylation) metabolism induced by PPAR
activation plays an important role in this shift towards anti-inflammatory immune cell subsets.
By contrast, PPAR deficiency has often been shown to have the opposite effects. Together, these
PPAR-regulated properties of immune cells might contribute to the severity of the disease state both in
metabolic diseases (e.g., obesity-induced insulin resistance) and neurodegenerative disorders NDDs.
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