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Abstract
Background: Bone sarcomas often present late with advanced stage at diagnosis and an according, varying short-term 
survival. In 2016, Nandra et al. generated a Bayesian belief network model for 1-year survival in patients with bone sarcomas. 
The purpose of this study is: (1) to externally validate the prior 1-year Bayesian belief network prediction model for survival 
in patients with bone sarcomas and (2) to develop a gradient boosting machine model using Nandra et al.’s cohort and 
evaluate whether the gradient boosting machine model outperforms the Bayesian belief network model when externally 
validated in an independent Danish population cohort.
Material and Methods: The training cohort comprised 3493 patients newly diagnosed with bone sarcoma from the 
institutional prospectively maintained database at the Royal Orthopaedic Hospital, Birmingham, UK. The validation cohort 
comprised 771 patients with newly diagnosed bone sarcoma included from the Danish Sarcoma Registry during January 1, 
2000–June 22, 2016. We performed area under receiver operator characteristic curve analysis, Brier score and decision 
curve analysis to evaluate the predictive performance of the models.
Results: External validation of the Bayesian belief network 1-year prediction model demonstrated an area under receiver 
operator characteristic curve of 68% (95% confidence interval, 62%-73%). Area under receiver operator characteristic 
curve of the gradient boosting machine model demonstrated: 75% (95% confidence interval: 70%-80%), overall model 
performance by the Brier score was 0.09 (95% confidence interval: 0.077–0.11) and decision curve analysis demonstrated 
a positive net benefit for threshold probabilities above 0.5. External validation of the developed gradient boosting machine 
model demonstrated an area under receiver operator characteristic curve of 63% (95% confidence interval: 57%-68%), and 
the Brier score was 0.14 (95% confidence interval: 0.12–0.16).
Conclusion: External validation of the 1-year Bayesian belief network survival model yielded a poor outcome based on 
a Danish population cohort validation. We successfully developed a gradient boosting machine 1-year survival model. The 
gradient boosting machine did not outperform the Bayesian belief network model based on external validation in a Danish 
population-based cohort.
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Background

Accurate survival prediction for patients with newly diag-
nosed bone sarcoma would greatly aid clinicians in deciding 
the most appropriate treatment. Bone sarcomas often pre-
sent late with an advanced stage at diagnosis; accordingly, 
short-term survival is varying.1 In some settings, the deci-
sion to perform surgery or, more commonly, deciding which 
surgical treatment to choose, relies partly on the prediction 
of estimated survival. Patients with expected short-term sur-
vival may sometimes be better served with only a minor 
operative procedure to relieve pain and maintain quality 
residual life or perhaps no surgery, rather than undergoing 
major surgery with amputation or bone resection and inser-
tion of a tumor prosthesis with the associated higher risk of 
complications and prolonged rehabilitation. Prognostic fac-
tors for survival in bone sarcomas have been suggested2 and 
management guidelines exist.3,4 However, deciding treat-
ment management is a case-by-case matter due to the broad 
heterogeneity among bone sarcoma patients. To the best of 
our knowledge, there have been few attempts to create evi-
dence-based prediction models for survival in bone sarcoma 
patients using machine-learning techniques.5,6 Bongers et 
al.5 developed and compared Bayes point machine and neu-
ral network models for 5-year survival in patients with 
chondrosarcoma. The multilayer perceptron neural net-
works used comprised a network of models mapping input 
features into desired outputs adjusted by backpropagation to 
compensate for errors found when training the model. The 
Bayes point machine is a kernel-based algorithm seeking to 
approximate the Bayes-optimal decision curve.7 Due to its 
slightly better performance, the Bayes point machine model 
was preferred to be deployed as a web-based clinical tool by 
Bongers et al.5

Using commercially available machine-learning software 
(FasterAnalyticsTM; DecisionQ, Washington, DC, USA), 
which was originally developed to analyze video cassette 
sales, Nandra et al.6 generated a Bayesian belief network 
(BBN) model for 1-year survival of patients with bone sar-
coma and demonstrated five factors with conditional depend-
encies for survival 1 year after surgery. BBN modeling has 
been used to develop decision support tools in numerous 
oncologic diagnoses including skeletal metastases and soft-
tissue sarcomas.6,8,9 However, as the present model has not 
been externally validated, its clinical use remains unknown. 
Many research communities are moving away from pro-
prietary modeling methods toward open-source software, 
including R (R Foundation, Vienna, Austria) or Python 
(Python Software Foundation, Wilmington, DE, USA), 
which are now widely used in the field of machine learning. 
Open-source software is advantageous not only because it is 
available at low or no cost but also because it is inherently 
transparent. Code may be published as a supplement to peer-
reviewed manuscripts. This allows independent validation 
as well as continuous development and optimization by the 

research community in the effort to refine and customize 
functions.10

Gradient boosting machines (GBMs) form a group of 
machine-learning techniques used to generate non-parametric 
regression or classification models.11 Gradient boosting uses 
the ensemble technique, which gradually and sequentially 
converts weak models to stronger ones. With each boost 
every new model is subsequently correlated to the negative 
gradient of the customized loss function from the previous 
model. The boosting technique has previously proven to 
outperform other machine-learning models in accuracy and 
generalizability10,12 and hence produces a model with con-
sistently higher accuracy than conventional single, strong 
machine-learning models.10

On that background, the purpose of this study was to 
externally validate Nandra et al.’s6 1-year BBN prediction 
model for survival in patients with bone sarcomas and to 
develop a GBM model using their training cohort and evalu-
ate whether the GBM model outperformed the suggested 
BBN model when externally validated in an independent 
Danish population cohort.

Material and methods

This is a retrospective study. Our training cohort was origi-
nally described by Nandra et al.6 Briefly, 3493 patients with 
newly diagnosed bone sarcomas treated between 1970 and 
2012 at the Royal Orthopedics Hospital, Birmingham UK 
were included from their institutional prospectively main-
tained database. The same cohort was used as the training 
cohort for the creation of the GBM model in this study. From 
the Danish Sarcoma Registry,13 a cohort of patients (n = 771) 
newly diagnosed with bone sarcomas during 2000–2016 was 
obtained and was used for the external validation cohort for 
the BBN model by Nandra et al.6 as well as for external vali-
dation of the GBM model proposed in this study. Approval 
for the study was obtained from the Danish Data Protection 
Agency (no. P-2019-54) and the Danish Patient Safety 
Authority (no. 3-3013-2866/1).

External validation of the BBN model

The validation cohort comprised 771 patients with newly 
diagnosed bone sarcoma included from the Danish Sarcoma 
Registry (DSR)13 during January 1, 2000–June 22, 2016. The 
Danish Sarcoma Registry is a national database prospec-
tively maintained since January 1, 2009. Patients from the 
year 2000 to 2008 were later included in the DSR by valida-
tion through the Danish Cancer Registry and the Danish 
National Pathology Registry.14 Patients were included from 
the only two tertiary referral centers for orthopaedic oncol-
ogy in Denmark. All patients were accounted for a minimum 
of 1-year follow-up due to the Danish Civil Registration 
System,15 where the exact date of death is known for all 
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Danish patients. Survival was defined as the time from the 
first contact to a tertiary referral center to the date of death or 
completed 1-year follow-up. Apart from three foreign citi-
zens, no patients were lost to follow-up. Of the 771 patients, 
113 (15%) died within the 1-year follow-up (Figure 1).

Nandra et al.’s6 BBN model included 11 candidate fea-
tures for final analysis: age, sex, tumor size at diagnosis, 
location, grade, alkaline phosphatase, metastasis at diagno-
sis, pathologic fracture at diagnosis, diagnosis, tumor site, 
status 1-year after diagnosis, and year of diagnosis. The 
Danish Sarcoma Registry contains patient characteristics, 
tumor characteristics, treatment data, and vital status 
death13—most of the required variables for this validation.

Alkaline phosphatase was not available from the Danish 
Sarcoma Registry and hence was not included for validation. 
In the validation cohort, tumor grade was defined by the 
Myhre-Jensen classification until 200416 and from 2004 and 
onward by the Fédération Nationale des Centers de Lutte 
Contre le Cancer (FNCLCC).17 Essential for validation is 
that features used in the training cohort and validation cohort 
are identical and hence tumor grades were converted as 
follows: Grade I = 1 = low, Grade II = 2 = intermediate, Grade 
IIIa and IIIb = 3 = high. No other variables were converted.

Using the Danish validation set, we then determined the 
ability of accuracy and discrimination by receiver operating 
characteristic (ROC) analysis and area under the curve 
(AUC).18 Validation was considered successful if the AUC 
under the ROC curve was greater than 0.7 as the lowest 

acceptable threshold and was determined a priori. In 
essence, the area under the curve is interpreted as the prob-
ability that a person who experienced the outcome (death) 
had a higher predicted probability than the person who did 
not experience the outcome; accordingly, discrimination is a 
measure of how well the model can separate those who do 
and those who do not experience the outcome. A value of  
1 is perfect discrimination, and a value of 0.5 represents 
chance. Overall predictive model performance was evalu-
ated with the Brier score.19 The Brier score quantifies the 
compliance between the predicted probability and observed 
outcome. The reported value between 0 and 1 is the average 
squared differences between all the predicted and actual 
outcomes in the cohort, with 0 indicating perfect agreement 
and 1 indicating perfect disagreement. However, a score of 
0.25 reflects a 50% incidence of outcome, and hence, scores 
above 0.25 are also to be considered noninformative.20 The 
BBN model was used “as-is” by Nandra et al. without prior 
refitting or optimization and no other imputation of data 
was used. Validation of the BBN model was performed 
using commercially available software (FasterAnalyticsTM, 
DecisionQ Corp., Washington, DC, USA).

Development of GBM model

To mitigate overfitting, a 10-fold cross-validation of the 
training cohort was initially conducted. Using randomiza-
tion, data were split into 10 unique test and train sets with 
balanced events per variable. Each test and train set com-
prised 20% and 80% of data, respectively. A GBM model 
was trained on a training set (n = 2794) and subsequently 
tested on the corresponding test set (n = 699).

For correct comparison, it was decided not to exclude or 
include variables other than those used by Nandra et al.6 Due 
to missing data, alkaline phosphatase was excluded. Tumor 
sites were subcoded into five location categories as previ-
ously described by Nandra et al.6 (Table 1). Decision trees 
were chosen as base-learners. As the outcome variable was 
binary, the Bernoulli loss function10 was chosen. Missing data 
were imputed using missForest.21 For feature selection, we 
chose the Boruta train algorithm.22 By shuffling copies of all 
features, the Boruta algorithm trains a random forest23 on the 
overall data; consequently, features are either rejected or con-
firmed and further ranked with their relative influence in the 
model. Due to their customizability and efficiency, GBM 
models are prone to overfitting;10 selection, and hyper-tuning 
of parameters is therefore crucial to the outcome. A prelimi-
nary baseline model was created with various parameter 
selections for the hyper-tuning process. The final parameters 
selected were: shrinkage = 0.01, interaction depth = 3, bag 
fraction = 0.8, n.minobsinnode = 5. The optimum number of 
iterations with minimum loss was n = 536. The code is 
included as Supplementary Material. We performed internal 
validation using the test set comprising 699 cases not used for 

Figure 1. By shuffling copies of all features, the chosen 
Boruta algorithm trains a Random Forest on the overall data. 
Features are then rejected or confirmed. Confirmed features 
are ranked with their relative influence in the GBM model as 
demonstrated.
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development of the model. We performed external validation 
on the Danish validation set. For both assessments, we used 
the same metrics as used for external validation of the 

BBN model: discrimination by ROC analysis and AUC,18 
and overall performance using the Brier score. Discrimination 
and Brier score is one aspect of model performance but does 

Table 1. Distribution and comparison of baseline variables between training and validation cohort.

Variable Level Training cohort
1970–2012
n = 3493 (%)

Validation cohort
2000–2012
n = 771 (%)

Total
n = 4264
(%)

P value

Gender 0.22a

Female 1451 (42) 338 (44) 1789 (42)  
Male 2042 (59) 430 (56) 2472 (58)  
Missing 0 3 3  

Age <0.0001b

Median (IQR) 23 (14–51) 44 (22–62) 26 (15–53)  
Missing 0 3 3  

Tumor size (cm) <0.0001a

Median (IQR) 10 (7–13) 6(3–10) 8 (2–12)  
Missing 1796 0 1796  

Grade <0.0001a

High 2641 (76) 293 (49) 2934 (72)  
Intermediate 374 (11) 143 (24) 517 (13)  
Low 478 (14) 158 (27) 636 (16)  
Missing 0 177 177  

Histology <0.0001a

Osteosarcoma 1572 (45) 174 (25) 1746 (41)  
Chondrosarcoma 793 (23) 326 (46) 1119 (26)  
Ewings 653 (19) 114 (16) 767 (18)  
Sarcoma 182 (5) 26 (3) 191 (4)  
Chordoma 70 (2) 34 (5) 104 (2)  
Other (19 histologic diagnoses) 223 (6) 36 (5) 259 (6)  
Missing 0 61 61  

Pathologic fracture 
at diagnosis

<0.0001a

No 3035 (87) 729 (95) 3764 (88)  
Yes 458 (13) 42 (5) 500 (12)  
Missing 0 0 0  

Anatomic location <0.0001a

Head and neck 20 (1) 50 (7) 70 (2)  
Lower extremity 2118 (61) 355 (47) 2473 (58)  
Pelvic girdle 642 (18) 117 (16) 759 (18)  
Spine 0 32 (4) 32 (1)  
Upper extremity 471 (14) 103 (14) 574 (14)  
Upper trunk 230 (7) 93 (12) 323 (8)  
Missing 12 21 33  

Metastasis at 
diagnosis

0.63a

No 3010 (86) 651 (87) 3661 (86)  
Yes 483 (14) 98 (13) 581 (14)  
Missing 0 22 22  

Status at 1 year 
after diagnosis

0.009a

Alive 3099 (89) 655 (85) 3754 (88)  
Dead 394 (11) 113 (15) 507 (12)  
Missing 0 3 3  

Year of diagnosis  
Missing 222 3 225 –

IQR: interquartile range.
aMann–Whitney U-test.
bChi-square test.
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not provide information of the utility of the model for clinical 
use. Decision curve analysis (DCA) overcomes this limita-
tion by quantifying the consequences of over- or undertreat-
ment and is increasingly being used to assess prediction 
models for clinical use. Prediction models generate a survival 
probability at a given time point after diagnosis. If the prob-
ability is 1 or near 1, the surgeon will presumably not be in 
doubt whether to treat; if the probability is near 0, the surgeon 
will probably decide against surgical intervention. When the 
probability of survival is between 0 and 1, decision-making 
might be more difficult for the clinician. The threshold 
probability is the point where the expected benefit of surgery 
is equal to the expected benefit of not treating and where 
surgeons may become indecisive.24 Assuming the decision 
to perform surgery is based solely on the outcome of the 
prediction model, a range of threshold possibilities between 
0 to 1 are plotted against net benefit on a decision curve. 
The broad range of threshold possibilities to evaluate the  
prediction model is essential since thresholds are patient- or 
clinician-dependent.25 We compared the net benefit of all 
thresholds and hence determined the clinical use of the model. 
A model is considered as clinically usable if it demonstrates 
net benefit across the range of thresholds, that is, it is superior 
to assuming that all patients or no patients would live longer 
than 1 year. As illuminated by Vickers et al.,25 net benefit is 
defined as a patient who will undergo appropriate treatment 
(surgery) or the opposite: will not undergo treatment based on 
the prediction model outcome.

Baseline distributions between the training cohort and 
the validation cohort were compared using nonparametric 
tests. Mann–Whitney U-test (for unpaired data) was used 
for continuous variables and chi-square test for categorical 
variables.

We used R studio (R Foundation, Vienna, Austria) for 
development and external validation of the GBM model and 
comparison of baseline distributions between the train and 
validation set.

Results

As intended, the demographic and clinical features of the 
test set and validation set differed (Table 1). The features 
that differed significantly were age at diagnosis, tumor size, 
grade, diagnosis, pathologic fracture at diagnosis, tumor 
location, and status 1 year after diagnosis. The non-signifi-
cant observations were sex (p = 0.63) and metastasis at diag-
nosis (p = 0.22). The proportion of missing values varied 
among features, but in the train set, the most notable was the 
tumor size (missing in 51%), and in the validation set, grade 
(missing in 23%; Table 1).

External validation of the BBN model

External validation of the BBN 1-year prediction model 
yielded poor discriminatory ability with an AUC ROC of 
68% (95% confidence interval [CI], 62%–73%; Figure 2), 
and hence the ability of the model to discriminate between 
survival and no survival is insufficient when based on this 
Danish population. The overall model performance evalu-
ated with the Brier score was 0.12 (95% CI: 0.102–0.141).

Internal validation of the GBM model

Internal validation by AUC ROC analysis yielded good 
discriminatory ability with 75% (95% CI: 70%–80%; 
Figure 3). The Brier score for overall model performance 
was 0.09 (95% CI: 0.077–0.11). DCA demonstrated a posi-
tive net benefit, that is, above the lines assuming none or 
all patients are alive 1 year after diagnosis, hence support-
ing that the model is suitable for clinical use for probabil-
ity thresholds above 0.5 (Figure 4). However, at threshold 
probabilities below 0.5, the surgeon gains more benefit 
assuming that all patients are alive. Nandra et al.6 demon-
strated similar findings when performing DCA analysis of 
the BBN model (0.5). Net benefit was capped at 85% 
(patients alive after 1 year), given the definition that net 
benefit is one patient being treated appropriately according 
to the output of the prediction model. Features that ranked 
highest in variable importance were diagnosis, tumor size, 
and age (Figure 1).

External validation of the GBM model

External validation of the GBM model yielded poor discrim-
inatory ability with an AUC of the ROC curve of 63% (95% 
CI: 57%-68%; Figure 5) and hence the GBM model did not 
outperform the BBN when externally validated in this Danish 

Figure 2. ROC curves of the external validation of the1-year 
survival BBN model. The discriminatory accuracy of the BBN 
model for survival yielded poor power (0.68).
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cohort. The Brier score was 0.14 (95% CI: 0.12–0.16). Since 
the model cannot be recommended for clinical use based on 
this external validation, DCA was not performed.

Discussion

The individual treatment strategy for patients with newly 
diagnosed bone sarcoma is primarily dependent on estimated 
short-term survival. To our knowledge, no 1-year prediction 
model for survival using the machine-learning technique has 
been successfully externally validated for clinical use. The 
aim of this study was to evaluate two prediction models for 
survival and potentially provide clinicians with a validated 
decision tool to support choice of treatment strategy for 
patients with bone sarcoma.

Owing to the variety and heterogeneity of bone sarcomas, 
management is based on individual decision-making. While 
several prediction models for short-term survival have been 
developed for patients with metastatic bone disease8,26 and 
soft tissue tumors,9 only separate prognostic factors for sur-
vival have been identified for patients with bone sarcoma.1,27 
The decision to perform surgery and which surgical inter-
vention to choose often relies on estimated survival based  
on the presence of the prognostic factors. The identification 
of prognostic or predictive factors is not straightforward. 
Although there is a lack of consensus on how to carry out 
clinical trials for identification of predictive factors, it is 
commonly considered that it is not possible to assess predic-
tive significance of a potential predictive factor without a 
clinical trial including a control group,28–30 a challenging 
task in the field of orthopaedic oncology due to low inci-
dence. Furthermore, as stated in a systematic review by 
Bramer et al.,2 strong unsuspected prognostic factors may 
not become significant when attempting to evaluate prog-
nostic factors in small, underpowered sample sizes, as is 
often the case with bone sarcomas.

Figure 3. ROC curves of the internal validation of the 1-year 
survival GBM model. The discriminatory accuracy of the GBM 
model for survival was classified as good (0.75).

Figure 4. Net benefit plotted on the decision curve analysis 
graph against threshold probabilities demonstrating the benefit of 
intervention based on decision to treat from model output. The 
curve demonstrates a net benefit if using the model at thresholds 
above 0.50 compared to assuming all patients survive. For 
thresholds below 0.50, the model is no better or no worse that 
assuming all patients will survive.

Figure 5. ROC curves of the external validation of the 1-year 
survival BBN model. The discriminatory accuracy of the GBM 
model for survival yielded poor power (AUC: 0.63.)
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A prognostic factor is defined as a factor with proven 
independent impact of a given outcome (e.g. death) regard-
less of any given treatment. As such, independent prognostic 
factors are able to identify subgroups with differing risks 
(e.g. tumor size) and hence they guide decision-making.28 
However, prognostic factors are not powerful enough to 
guide choice of treatment on an individual level as opposed 
to validated predictive factors.31 A predictive factor is a fac-
tor that identifies differential benefit from a certain treatment 
depending on the status of the predictive factor.29,31 A prog-
nostic factor can also be a predictive factor but not necessar-
ily; most prognostic factors are not predictive.32,33 Current 
literature indicates that at diagnosis, metastasis, tumor size, 
and age are the most commonly suggested prognostic factors 
for survival.2,34,35 There is a broad consensus that the pres-
ence of metastases at diagnosis is the factor with the greatest 
impact on prognosis.2,27,35 Other suggested factors, such as 
alkaline phosphatase, tumor site, histologic subtype, and sex, 
have consistently been reported as prognostic factors for 
survival.36–38

The developed GBM model demonstrated five features 
appearing with the highest rank of relative influence on out-
come of interest: diagnosis, tumor size, age, metastasis at 
diagnosis, and year of diagnosis (Figure 1), consistent with 
previous findings in the literature. Nandra et al.6 also identi-
fied tumor size, age, and metastasis at diagnosis as having 
the largest prognostic effect on short-term survival, indicat-
ing the relative importance of these features for any future 
model predicting survival in patients with bone sarcoma. 
Nevertheless, to strengthen the model and circumvent obser-
vational bias, the use of objective variables, such as bio-
chemical markers, should be considered. Several biochemical 
markers have proven well suited as features for prediction 
models in patients with bone metastasis;26 serum lactate 
dehydrogenase and molecular markers, such as p-53 and 
p-glycoprotein, have been reported to have prognostic value 
for patients with osteosarcoma.39 Thorn et al.40 found a posi-
tive correlation between high YKL-40 protein expression in 
tumor tissue and longer overall survival in osteosarcoma 
patients. To the best of our knowledge, no biochemical or 
molecular marker has been used as a feature for development 
of prediction models for patients with bone sarcoma using 
machine-learning techniques. The demonstrated relative 
importance of year of diagnosis (Figure 1) is doubtless a 
reflection of the incremental improved overall survival from 
1970 to present. However, year of diagnosis is not a repro-
ducibly variable; consequently, this time variable is not rec-
ommended for prediction as it may add to overfitting of the 
model and in the present models also to underestimating 
mortality and, ultimately, the risk of under-treating patients. 
Identification and inclusion of solid variables is undoubtedly 
warranted. Other solutions could be to improve the variety of 
data, as suggested by Chen et al.;41 we suggest objective 
variables such as biochemical markers. In addition, predic-
tion models for each main subtype of bone sarcoma would 

increase homogeneity and generalizability, as demonstrated 
by Quirina et al.42

The machine-learning technique is based on algorithms 
that find patterns in preferably large, irregular, and complex 
sample sizes. Few attempts have been made to overcome the 
lack of knowledge in identifying an adequate sample size 
for machine-learning prediction models.43,44 Large sample 
sizes have previously been recognized as the single biggest 
influence on design and performance of models together 
with the rule of thumb with 10 events per predictor param-
eter of interest.43–45 This was contradicted by Riley et al.43 
who proposed three criteria for identifying the minimum 
sample size. Furthermore, Chen et al.46 demonstrated that 
modern data in small sample sizes used to train prediction 
models have greater impact for accurate prediction than do 
larger historical sample sizes. This is supported by Park and 
Han,47 suggesting that robust validation of a model depends 
on an adequate target population, preferably prospective. 
Given our results, it is questionable whether the Danish 
population cohort used for validation of both models was 
adequate for validation in terms of sample size and events 
per variable despite the cohort being modern with limited 
missing data.

One of the main risks of model overfitting is too many 
features compared with the number of observations. The 
demonstrated overfitting of the BBN model by Nandra et al.6 
and present GBM model could partly be explained by the 
significantly improved overall survival from 1970 to 2016;2 
hence, decreasing the outcome of interest (events). We sug-
gest that the considerably improved treatment for patients 
with bone sarcoma in general and the resulting better overall 
survival during the present period affect the outcome of 
interest variable and hence also the generalizability of both 
models when being validated in a modern cohort.

We chose to create a GBM model for several reasons. 
GBM models are capable of handling large non-parametric 
sample sizes with complex interactions and substantial miss-
ing or outlying data.10 Furthermore, GBM models have 
proven to provide higher and more accurate prediction than 
other conventional single machine-learning methods and  
in some studies also when compared with other ensemble 
methods, such as bagging.10,48 Some obvious advantages of 
the GBM technique are the customizability and full transpar-
ency. Nevertheless, another common cause of overfitting is 
the models being too powerful, and since GBM models tend 
to continuously mitigate any errors during process, they are 
prone to overfitting if not duly regulated by model hyperpa-
rameter tuning.10 One could be tempted to train the model 
with a high number of base-learners with many splits and 
subsequently boost the model with numerous iterations to 
obtain high accuracy. However, beyond any given optimal 
number of iterations, the model will predict the training 
cohort with a consequent increased loss and decreased  
generalizability. Hyper-tuning of parameters is therefore a 
crucial balance. We speculate that the capability of the GBM 
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model combined with the use of a historical train set partly 
explains why the present model was not successfully vali-
dated in this Danish cohort despite significant differences in 
patient demographics between the training and validation 
cohort.

Limitations

Machine learning makes minimal assumptions about data, 
and the models are solely evaluated by their ability of accu-
rate prediction.30 In machine learning, no hypotheses are 
being tested, as in classic statistics, and hence power analy-
sis was not performed. Nevertheless, certain study limita-
tions in the validation cohort need to be addressed. First, 
although data were drawn from a prospectively maintained 
database, all data are to be considered retrospective. Second, 
the data comprise only patients from a Danish population 
and origins from two tertiary referral centers with the same 
treatment strategy and hence may not represent the desired 
heterogeneity used to test the model for generalizability. 
However, data were chosen due to the no loss to follow-up 
and limited missing data. Furthermore, the patients included 
were not selected for surgery but comprised all patients with 
newly diagnosed bone sarcoma. Nevertheless, the selection 
bias may cause the model to be less robust. Third, we did 
not explore the cause of death, and death from causes other 
than the cancer diagnosis might have added inaccuracy to 
the model toward underestimation of survival. Next, the 
requirement of equal features for validation is essential and 
although GBM and BBN techniques are particularly feasi-
ble with missing data, we acknowledge the missing data for 
alkaline phosphatase in the validation cohort, although they 
were excluded in the training cohort as described by Nandra 
et al.6 Alkaline phosphatase has previously proven to be 
prognostic for patients with osteosarcoma,49 and it is possi-
ble that the inclusion of alkaline phosphatase would have 
improved prediction accuracy of the GBM model. Moreover, 
by converting the histologic grade variable for the purpose 
of equality, we might have added further observation bias to 
the final model. Finally, the external validation on both 
models was performed on a smaller cohort compared with 
the train set and with significant differences in baseline 
characteristics apart from sex and metastasis at diagnosis 
(Table 1). These differences could partly be explained by 
the large sample size where even small differences were 
detected as well as by the different time periods when 
patients were included. Clearly, the 1-year survival changed 
from 1970 to 2012 due to considerable improvements in 
diagnostics techniques and treatment modalities,2 as also 
seen by the significant difference in 1-year survival between 
train and validation cohort (Table 1).

Estimating 1-year survival in patients with bone sarcoma 
is challenging. We believe our study proves the power and 
potential of the GBM algorithm. However, the predictive 
power of a model is not in itself a product of a given 

algorithm more than the variables used train them. Our 
results necessitate reflection on the feasibility of machine-
learning models as a tool for prediction in this patient popu-
lation. Machine-learning models were originally designed to 
serve purposes other than medical decisions. The unconven-
tional construct of cohorts without any assumptions is 
appealing, given the complexity and heterogeneity of 
patients with bone sarcoma but may result in unrecognized 
inadvertent biases conflicting with clinical practice. Although 
the aim should never be to replace clinical assessment but 
rather to assist clinical decision-making, we may need to 
reconsider the background for creating prediction for mortal-
ity, bearing in mind the statement by Moons et al.50 Just 
because a model is good to predict does not mean it is useful 
clinically.

Conclusion

External validation of the 1-year BBN survival model yielded 
poor outcome, and the model is not recommended for clinical 
use based on a Danish population cohort validation.

We successfully generated a GBM model for 1-year 
survival. With internal validation, the resulting model 
demonstrated good accuracy and model performance when 
predicting 1-year mortality in patients with newly diag-
nosed bone sarcoma.

The GBM model did not outperform the BBN model 
when externally validated in a Danish population cohort. We 
encourage other institutions to validate the present model in 
a non-Scandinavian population.

The study reinforces the need for external validation of 
prediction models prior to clinical use. We are committed to 
continuing the ongoing work with development and improve-
ment of prediction models for patients with bone sarcoma. 
We encourage further insight into and discussion of machine-
learning techniques as a method of prediction in a clinical 
setting.
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