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Aortic valve stenosis is a heart disease prevalent in the eld-

erly characterized by valvular calcification, fibrosis, and 

inflammation, but its exact pathogenesis remains unclear. 

Previously, aortic valve stenosis was thought to be caused 

by chronic passive and degenerative changes associated 

with aging. However, recent studies have demonstrated 

that atherosclerotic processes and inflammation can induce 

valvular calcification and bone deposition, leading to valv-

ular stenosis. In particular, the most abundant cell type in 

cardiac valves, valvular interstitial cells, can differentiate 

into myofibroblasts and osteoblast-like cells, leading to 

valvular calcification and stenosis. Differentiation of valv-

ular interstitial cells can be trigged by inflammatory stim-

uli from several immune cell types, including macro-

phages, dendritic cells, T cells, B cells, and mast cells. This 

review indicates that crosstalk between immune cells and 

valvular interstitial cells plays an important role in the de-

velopment of aortic valve stenosis.

[Immune Network 2016;16(1):26-32]
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INTRODUCTION

Aortic valve stenosis is a degenerative valvular heart dis-

ease characterized by narrowing of the aortic valve orifice 

by severe calcification, fibrosis, and lipid deposition, lead-

ing to valve sclerosis. Narrowing of the orifice increases 

the pressure burden on the left ventricle (1,2). This is a 

common disease in the elderly, with approximately 21 to 

26% of people over 65 years of age with degenerative 

valve disease, and around 2.8% of those over 75 years of 

age showing aortic valve stenosis (3,4). The most adverse 

aspect of aortic valve stenosis is the low survival rate with 

which it is associated. Without aortic valve replacement, 

patients with severe aortic stenosis demonstrate poor 

prognoses. For instance, following detection of symptoms, 

two- and five-year survival rates of 50 and 25%, re-

spectively, have been reported (5). Another important fac-

tor is the limited number of therapy options currently 

available for aortic valve stenosis patients. Some trials 

have indicated that statins are effective in slowing the pro-

gression of this disease (6,7), but more recently, larger 

randomized trials have reported negative statin therapy re-

sults (8,9). It is thought that inflammation initiates degen-

erative valve disease and valvular calcification (10,11). 
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Therefore, to develop a novel therapeutic drug, it is im-

portant to understand which immune cells are involved in 

aortic valve stenosis. In this review, we focus on immune 

and non-immune cells of the aortic valve and their func-

tions in the progression of this condition.

VALVULAR INTERSTITIAL CELLS (VICs)

VICs, the most numerous cell type in cardiac valve, are 

located under the valvular endothelium, and together with 

valvular endothelial cells (VECs) are important in maintain-

ing cardiac valve tissue homeostasis (12,13). VICs are high-

ly involved in the progression of aortic valve stenosis, being 

capable of differentiating into myofibroblasts and osteo-

blast-like cells, which cause fibrosis and valve calcification, 

respectively (14,15). Such differentiation is dependent on 

TGF-β (16-18). In aortic valve stenosis, myofibroblasts 

produce extracellular collagen and tenascin-C, causing 

changes to components of the extracellular matrix and tissue 

fibrosis (19). Osteoblast-like VICs induce calcification 

through a mechanism similar to osteogenesis (20). These 

cells produce bone morphogenetic protein 2 and osteo-

pontin, which are important for bone formation (21), and 

express runt-related transcription factor 2 and osterix—tran-

scription factors involved in osteoblast differentiation (22). 

VICs can also take up lipids, but not to the same extent 

as macrophages (23). A recent study by Syvaranta and col-

leagues showed that, in the stenotic state, myofibroblasts 

upregulate the scavenger receptors CD36 and lectin-like 

oxidized low density lipoprotein receptor-1, which are able 

to bind to oxidized low-density lipoprotein (LDL). In re-

sponse to oxidized LDL, myofibroblasts produce in-

flammatory cytokines and chemokines, including MCP-1, 

IL-6, IL-8, and M-CSF (24). These findings indicate that 

VIC-derived myofibroblasts are able to take up lipids, and 

that lipid accumulation is associated with pro-inflammatory 

processes in aortic valve stenosis. In 2008, Meng and col-

leagues showed that VICs express TLR2 and TLR4. 

Treatment with agonists of these TLRs induces NF-κB acti-

vation and upregulation of ICAM-1, bone morphogenetic 

protein 2, and runt-related transcription factor 2 in VICs 

(25). TLR2- and TLR4-stimulation in these cells also pro-

motes alkaline phosphatase activity and increases calcified 

nodule formation (26). These findings indicate that the 

TLR-activated pro-inflammatory process in VICs closely 

correlates with valvular calcification. In conclusion, VICs 

participate in various processes, including calcification, fib-

rosis, lipid uptake, and inflammation in aortic valve stenosis.

VALVULAR ENDOTHELIAL CELLS (VECs)

In the normal state, VECs and VICs are important for the 

maintenance of homeostasis in the cardiac valve (12,13). 

VECs can differentiate into VICs through endothelial-mes-

enchymal transition to preserve valve homeostasis (27). 

Mechanical shearing force or other types of stress can re-

duce the integrity of valvular endothelium, leading to accu-

mulation of lipoproteins in the subendothelial space. The 

accumulated LDL molecules are modified into oxidized 

LDL, and trigger inflammation of cardiac valves by upregu-

lating cell adhesion molecules, such as ICAM-1 and 

VCAM-1, which allow T cells and monocyte-derived mac-

rophages to infiltrate the tissue (28-31). These infiltrating 

T cells and macrophages release pro-inflammatory cyto-

kines, including IL-1β and TNF-α (1,32,33). Inflammatory 

cytokines such as IL-6 and TNF-α induce the differ-

entiation of VECs to VICs via endothelial-mesenchymal 

transition (34). These observations indicate that VECs play 

important roles in the initiation and progression of aortic 

valve disease. Interestingly, in hypercholesterolemia, the 

peroxisome proliferator-activated receptor gamma (PPARγ) 

pathway is activated, and related genes, including ATP- 

binding cassette subfamily A member 1 and fatty acid-bind-

ing protein 1, are upregulated in the aortic valve endothe-

lium (35). PPARγ activation in endothelial cells is known 

to inhibit inflammation of the endothelium (36,37). 

Therefore, PPARγ may constitute a drug target in valvular 

endothelium for the treatment of aortic valve stenosis.

MACROPHAGES

In cardiac valve disease, monocytes infiltrate valve tissues 

and differentiate into macrophages (38,39). Macrophages 

are the principal immune cell population in various valvular 

heart diseases. Endothelial damage to cardiac valves is 

known to upregulate endothelial cell adhesion molecules 

such as ICAM-1 and VCAM-1 that subsequently induce 

the recruitment of monocytes and other leukocytes (31,38). 

In addition, a gene expression profiling study by Bosse and 

colleagues showed that various chemokines and chemokine 

receptors are upregulated in aortic valve stenosis (40). This 

indicates that chemotaxis is also involved in the patho-
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Figure 1. Presence of dendritic cells (DCs) in mouse cardiac 
valve. Mitral valve from a CD11c-EYFP transgenic mouse was 
whole-mount immunostained with MHCII antibody. The CD11c

＋

MHCII
＋

 DCs were then visualized (green, CD11c; red, MHCII). 
CD11c

＋
MHCII

＋
 DCs are also present in other cardiac valves 

(aortic, tricuspid, and pulmonary; data not shown). Scale bars, 20 
μm.

genesis of this disease. After having infiltrated the tissue, 

macrophages release inflammatory cytokines such as TNF-

α, IL-1β, and TGF-β leading to cardiac valve inflam-

mation. Moreover, TNF-α and TGF-β promote VIC acti-

vation and induce alkaline phosphatase expression, even-

tually leading to valvular calcification (16,32,41-43). Mac-

rophages also release matrix metalloproteinases and cathe-

psins, which alter extracellular matrix components in valvu-

lar disease (38). Inflammatory macrophages promote VEC 

and VIC calcification in a cathepsin S-dependent manner 

in calcific aortic valve disease and aortic valve stenosis 

(44). In atherosclerosis, the uptake of LDLs by macro-

phages results in their becoming foam cells (45,46). Like-

wise, in hypercholesterolemia-induced valvular sclerosis, 

recruited macrophages engulf lipids and develop a foamy 

appearance (23). This suggests that macrophages play im-

portant roles in valvular disease, as well as in athero-

sclerosis. However, further studies are required for a more 

detailed understanding of macrophage functions and to vali-

date them as therapeutic targets in aortic valve stenosis.

DENDRITIC CELLS (DCs)

DCs, present in normal cardiac valves (Fig. 1), are another 

important immune cell type. In the aortic valve, DCs are 

particularly located beneath the aortic-side endothelium, a 

site exposed to turbulent flow (47). In a normal state, these 

cells are thought to be classical DCs; however, their role 

in cardiac valves remains unknown. Considering the athe-

roprotective role of FLT3-dependent DCs (48), valvular 

DCs may play regulatory functions in aortic valve stenosis, 

but additional investigation is needed. In hyperlipidemia, 

lipids accumulate in the aortic side of the aortic valve, 

where the majority of valvular DCs are located (47). It has 

been confirmed that a large number of monocyte-derived 

DCs amass during atherosclerosis (49), and these same 

cells have been proposed to accumulate in sclerotic cardiac 

valves, potentially playing a significant role in aortic valve 

stenosis progression. However, the relationship between 

lipid accumulation and DCs and their roles in aortic valve 

stenosis remains to be elucidated.

T CELLS

T cells also play a role in cardiac valve disease, gathering 

in valvular tissue during the progression of conditions such 

as aortic valve stenosis (50). Infiltrating T cells secrete 

various pro-inflammatory cytokines, including TNF-α, 

IL-1β, and TGF-β (1,33). In a previous study, multiple 

oligoclonal CD4
＋

 and CD8
＋

 T cells were observed to ac-

cumulate in stenotic aortic valves, suggesting that clonally 

expanded T cells are highly involved in the pathogenesis 

of aortic valve stenosis (51). Moreover, the number of T 

cells, especially of the CD8
＋

 and CD8
＋

CD28
null

 memo-

ry-effector subsets, is increased in the stenotic aortic valve 

and peripheral blood of calcific aortic valve stenosis pa-

tients (52). T cell proliferation may occur not only in the 

lymphoid organs but also in the stenotic aortic valve itself, 

although more investigations are needed. To conclude, the 

T cell-mediated adaptive immune system is involved in 

aortic valve stenosis. Considering their abundancy, valvu-

lar DCs, powerful antigen-presenting cells that can actively 

interact with T cells (47), may have an important role in 

regulating valvular T cell activation and proliferation.
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B CELLS

In the normal state, B cells are not present in cardiac 

valves, while in the stenotic aortic valve tissue, CD20
＋

 B 

cells and CD138
＋

 plasma cells accumulate (50). A recent 

study by Natorska and colleagues showed that B cells in-

filtrate the aortic side of human stenotic aortic valve (53). 

It has been demonstrated that B cells can be activated by 

TLR signaling (54) or macrophage-secreted cytokines, 

such as B cell-activating factor belonging to the TNF fam-

ily (BAFF). The binding of BAFF to its receptor on B 

cells results in signaling that promotes their survival, matu-

ration, and proliferation (55-57). Importantly, B cells in the 

stenotic valve also express BAFF receptors, and a positive 

correlation is evident between the number of these cells 

and the degree of valve calcification. In addition, correla-

tions exist between the number of B cells and macro-

phages, and between the number of BAFF receptor-pos-

itive B cells and macrophages (53). These findings indicate 

that, in collaboration with macrophages, B cells also con-

tribute to the progression of aortic valve stenosis via 

BAFF/BAFF receptor signaling. Monocyte-derived DCs 

are also known to secrete BAFF (55,58). Therefore, it is 

plausible that these cells may play a role in B cell activa-

tion in aortic valve stenosis.

MAST CELLS

Mast cells also participate in the progression of aortic 

valve stenosis. Under normal conditions, a small number 

of mast cells are located in the aortic valve. However, their 

numbers are markedly increased in the subendothelial 

space of the aortic side of stenotic valve, in the vicinity 

of valvular macrophages (59,60). During disease, mast 

cells are activated and they produce cathepsin G, which 

causes elastin degradation in the stenotic valve (59). These 

cells appear to induce angiogenesis during the aortic valve 

stenosis process, and a positive correlation between mast 

cell and neovessel density has been documented in this 

condition. Mast cells can produce vascular endothelial 

growth factor (VEGF) and they are closely localized to ne-

ovessels in the stenotic valve (61). Tryptase, which is re-

leased by activated mast cells, negatively regulates levels 

of the endogenous angiogenesis inhibitor endostatin 

(61,62). Thus, these cells promote angiogenesis in aortic 

valve stenosis by VEGF secretion and downregulation of 

endostatin. In contrast, mast cells play a regulatory func-

tion in lymphangiogenesis by suppressing VEGF-C se-

creted by valvular myofibroblasts (63). These dual func-

tions of mast cells indicate their versatility in regulating 

neovascularization in aortic valve disease.

CONCLUSION

Various cellular components participate in the progression 

of aortic valve stenosis. Damage to VECs triggers the on-

set of disease and upregulates cell adhesion molecules, 

promoting inflammatory immune cell infiltration of the 

aortic valve. Infiltrating inflammatory cells secrete cyto-

kines, and induce endothelial-mesenchymal transition of 

VECs to VICs. These events trigger the differentiation of 

VICs into myofibroblasts and osteoblast-like cells, causing 

fibrosis and calcification. Macrophages and mast cells di-

rectly affect the disease progression and cause lipid accu-

mulation, angiogenesis, and extracellular matrix remo-

deling. The adaptive immune response effected by T cells 

and B cells also affects the progress of this disease. In ad-

dition, DCs may participate in aortic valve stenosis by reg-

ulating T cell immunity. However, the pathogenesis of this 

condition remains largely unknown. Additional studies are 

required to understand valvular immune cell networks and 

their crosstalk with VICs and VECs, which will provide 

new therapeutic options for aortic valve stenosis.
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