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Abstract: Urinary tract infections (UTIs) represent a health problem of the first magnitude since
they affect large segments of the population, cause increased mortality and comorbidity, and have a
high incidence of relapse. Therefore, UTIs cause a major socioeconomic concern. Current antibiotic
treatments have various limitations such as the appearance of resistance to antibiotics, nephrotoxicity,
and side effects such as gastrointestinal problems including microbiota alterations that contribute to
increasing antibiotic resistance. In this context, Itxasol© has emerged, approved as an adjuvant for
the treatment of UTIs. Designed with biomimetic principles, it is composed of arbutin, umbelliferon,
and N-acetyl cysteine. In this work, we review the activities of these three compounds concerning
the changes they produce in the expression of bacterial genes and those related to inflammation as
well as assess how they are capable of affecting the DNA of bacteria and fungi.
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1. Introduction

There are around 150 million urinary tract infections (UTIs) annually with a very high
associated socioeconomic cost (in the USA alone, this is estimated to be in the order of
$3.5 billion [1,2]). These infections affect women more than men, a fact that is related to the
shorter length of the urethra in women than in men. Bacteria are capable of colonizing the
urinary tract and moving up through it to reach the kidneys [3]. The pathology they can
cause ranges from asymptomatic processes, to cystitis, and can become complicated even
leading to cases of pyelonephritis [4,5]. As mentioned, these infections are more frequent
in women and are associated with low socioeconomic levels related to poor hygiene in the
menstrual period [6], sexual intercourse-postcoital UTIs [7], use of barrier contraceptive
methods [8], and an increase with age related to alteration of hormone levels [9]. In the
case of men, these infections are recurrent and are associated with cases of prostatitis,
obstruction in the urethra, and benign hyperplasia [10]. Regardless of gender, the use of
catheters is closely linked to the appearance of UTIs [11]. Reinfections in the case of UTIs
are quite common although they vary according to age, with common occurrence of relapse
after the first diagnosis [12].

One of the major problems associated with the use of antibiotics for the treatment
of UTIs is the appearance of resistance to antibiotics that causes an increase in mortality,
morbidity, and high socioeconomic costs. In addition to resistance to antibiotics, there are
also collateral effects such as kidney damage, changes and alterations to the intestinal flora
that cause digestive problems, and alterations to the metabolism and immunity [13–16].

The main bacteria associated with UTIs are Escherichia coli and Pseudomonas auerogi-
nosa [17]. In the case of infections produced in hospitals, it has been shown that in addi-

Int. J. Mol. Sci. 2021, 22, 12655. https://doi.org/10.3390/ijms222312655 https://www.mdpi.com/journal/ijms

https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0002-8896-727X
https://doi.org/10.3390/ijms222312655
https://doi.org/10.3390/ijms222312655
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ijms222312655
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms222312655?type=check_update&version=2


Int. J. Mol. Sci. 2021, 22, 12655 2 of 11

tion to Escherichia coli and various enterobacteria, in this context, other bacteria such as
Klebsiella spp. and Enterococcus spp. have been isolated from patients [18].

On the other hand, the formation of a biofilm by different bacterial strains has been
related to an increase in resistance to antibiotics, as well as an increase in mortality and
morbidity of diseases associated with infections caused by them [19,20]. The biofilm is an
extracellular structure that is made up of sugars, lipid proteins, and molecules derived
from DNA, which helps to spread bacteria and make them more resistant to antibiotics [21].

The most common antibiotic treatments for the management of UTIs are fosfomycin,
nitrofurantoin, and quinolones to treat cystitis, and in the case of pyelonephritis, third-
generation cephalosporins. In addition, in the case of administration for prophylactic
purposes, trimethoprim + sulfamethoxazole, nitrofurantoin, cephalexin, and fosfomycin are
used, while in the case of complicated cystitis, ciprofloxacin, levofloxacin, cefpodoxime, and
ceftibuten are administered. In the case of having to administer a second line of treatments
for pyelonephritis, cefepime, piperacillin/tazobactam, gentamycin, and amikacin are
administered [22]. Table 1 describes the main antibiotics used against UTIs and their
mechanisms of action.

Table 1. Mechanisms of action of the various antibiotics.

Antibiotic Mechanism of Action Reference

Nitrofurantoin Destroys bacterial RNA and DNA [23]
Fosfomycin Inhibits Gram positive and negative cell wall synthesis [23]

Ciprofloxacin
A fluoroquinolone used against Gram negative bacteria that

impairs DNA’s bacterial synthesis and inhibits
topoisomorases’ actions

[24]

Trimethoprim Inhibits bacterial folic acid synthesis [23]
Levofloxacin Inhibits topoisomerase IV and bacterial gyrase [25]
Cephalexin Beta lactam that inhibits cell wall synthesis [26]

Cefpodoxime Cephalosporin that inhibits cell wall synthesis [27]
Ceftibuten Beta lactam that inhibits cell wall synthesis [27]
Piperacillin Beta lactam that inhibits cell wall synthesis [27]

Among the different causes generating resistance are their overuse, which enhances
a favorable selective pressure when resistant strains spread and the ease with which
resistance factors to treatments are transmitted between them. In addition, another aspect
to take into account is bacterial resistance, understood as the ability of the system to
return to the initial conditions after having suffered a disturbance to its state; in the case
of bacteria, this implies temporary resistance to antibiotics that establishes a series of
bacterial subpopulations. This concept is linked to genetic and non-genetic aspects that are
manifested in three concepts: tolerance, resistance, and hetero-tolerance [28].

In particular, bacterial resistance can be associated, in the case of pathogens that cause
UTIs, with the formation of biofilms. Biofilms are heterogeneous structures composed of
bacteria and surrounded by a matrix [28]. These biofilms are related to the development
of resistance to antibiotics, and it has been shown that the bacteria that produce these
structures have a resistance to antibiotics that is 100 to 1000 times higher than that of
bacteria that do not generate them.

Other causes of the appearance of resistance are to do with the characteristics of the
host. It has been shown in an animal model that reinfections of UTIs are capable of altering
the host cells, causing changes at the transcriptional level that affect the maturation of
epithelial cells and that can remodel the composition of the epithelium, together with
changes in inflammatory processes dependent on cyclooxygenase 2 [24].

The fact that certain pathogens can relatively easily infect the urinary tract is often
related to their ability to adhere to the urinary epithelium through the presence of fimbriae
or pilum, or to the capability of bacteria to adhere to each other by expressing adhesins, form
biofilms, or generate molecules that can mask the natural response to lipopolysaccharide
(LPS) [29,30]. Thus, the expression of certain genes by bacteria related to the production
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of fimbriae, biofilms, toxins, and adherence factors is related to the appearance of UTIs
and to recurrent infections [31–34]. In addition, part of the damage produced by these
bacteria is related to the inflammation processes caused in these infections, as in the case
of pyelonephritis, a major complication of UTIs [35,36]. As we will demonstrate in this
article, the mechanisms of action of the components of Itxasol© are directly related to these
two important aspects: modulation of the expression of virulence genes, and regulation
of inflammation.

Our objective with this work was to compile published evidence to relate each of the
components of Itxasol© with modifications in the expression levels of genes in different cell
lines and animal models related to the inflammation process, and changes in the bacterial
genomics of pathogens related to UTIs.

2. Itxasol© and Its Formulation

Given the high recurrence of UTIs and problems associated with the use of antibiotics,
it is necessary to explore new tools to combat the pathogens that cause these infections. In
this context, the recently approved Itxasol© emerges as a new therapeutic option for UTIs′

treatment. Itxasol© has been designed following biomimetic principles and it is an effective
compound against these infections that do not present side effects and do not generate
microbial resistance. Biomimetics is defined as a science that studies nature as a source
of inspiration for innovative technologies to solve human problems, through models of
systems (mechanics) or processes (chemistry), or elements that imitate or are inspired by
nature [37]. Itxasol© has been recently authorized as a food supplement with authorization
number C.N. 203621.5 in Spain and can be used alone or in combination with the current
antibiotics to treat complicated UTIs.

Itxasol© is composed of three molecules: β-Arbutin, umbelliferon (Umb), and N-acetyl
cysteine (NAC) (Figure 1). Itxasol© is orally administered in capsules each containing
300 mg of Umb, 150 mg of β-arbutin, and 150 mg of NAC. Umbelliferon (or 7-hodroxi-2h-1-
benzopiran-2-ona or 7-hidroxicumarina) comes from extracts plants of the Apiaceae family
(umbeliferas), such as carrot, coriander, and garden angelica, and the family Asteraceae
or the hydrangea leaf. It is also found in the Justicia pectoralis (acathaceae) plant. We ob-
tained it from Artemisia capillaris. β-Arbutin (or hydroquinone O-beta-D-glucopyranoside)
comes from extracts of Ursi uva (gayuba). N-acetyl-L-cysteine is obtained by chemical
synthesis. The most important aspect of the Itxasol© formulation is its multimodal action
mechanism. It is not only a bactericidal and bacteriostatic antibiotic, but also an antibiofilm,
anti-inflammatory, antioxidant, and nephroprotective protector of the microbiota and the
environment. Of note, in its use, no antibiotic residues are delivered to the environment.
Other molecules such as D-mannose and curcumin from cranberry extracts have been
proposed as alternatives for the treatment of UTIs. Both molecules present as a mechanism
of action to prevent the adhesion of bacteria to the urinary epithelium. However, these
molecules lack antibacterial activity, their dose of use is not well established, and in the
case of D-mannose, it presents side effects such as diarrhea [38–40]. Here, we will briefly
review the characteristics of each of the molecules that form Itxasol© related to their action
against UTIs.

2.1. β-Arbutine

Arbutin is a glycoside that has been used in different areas of Europe, America, and
Asia as a traditional treatment for urinary infections and that is extracted from the genera
Bergenia, Ainsliaea, and Calluna. This molecule, once metabolized by the body, becomes
hydroquinone; one of its greatest advantages is that approximately 65% of the arbutin
is converted into HQ. The mechanism of action of HQ is largely related to destroying
the bacterial wall and causing the death of the bacteria [41,42]. The antimicrobial activity
of arbutin has been tested in different bacteria, both Gram-positive and -negative, and
even fungi. Bacteria and fungi that have been shown to be affected by arbutin′s action are
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Bacillus subtilis, Candida albicans, Enterococcus faecalis, Escherichia coli, Pseudomonas aeruginosa,
and Staphylococcus aureus [38,41,43,44].
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In addition, it has recently been shown that this molecule is capable of impairing the
formation of the biofilm produced by Streptococcus mutans, thus inhibiting the production
of glucosyltransferases, which are responsible for producing the polysaccharides of the
bacterial cell wall, which are related to adhesion among the bacteria [43].

2.2. Umbelliferon (Umb)

Umbelliferon, or 7-hydroxycoumarin, is a molecule derived from coumarins that is
present in different fruits and plants, with protection functions of the pancreas and nervous
system. As well as this, it has demonstrated anti-arthritic and antitumor activities [44–47].
The antibiotic activity of Umb was described in 1978; however, since then, little progress has
been made in understanding its mechanism of action [48]. In addition to its antimicrobial
activity, umbelliferon has been described as a very potent antifungal agent [46,49]. Some of
these actions have been related to the increase of oxidative stress and subsequent apoptosis,
as we explain in a further section.

2.3. NAC

NAC is a molecule known for being a powerful mucolytic and for regulating cellular
oxidative stress levels, which makes it a molecule with a multitude of potential applica-
tions [50]. The antibiotic action of NAC is related to different mechanisms and not only
those related to its antioxidant capacity but also to its interaction with gene expression
and even its ability to degrade DNA. Although its exact mechanism is not known, NAC is
capable of destroying biofilms formed by bacteria and fungi. In addition, its role as a renal
protector has been demonstrated in a study in a model of renal ischemia in rats, where
its administration produced an improvement in the renal biochemical parameters of rats
treated with NAC after ischemia establishment [51,52].

3. Influence of Itxasol© in the Expression of Genes Related to Inflammation and
Changes in Bacterial Genomics
3.1. β-Arbutin

Besides the described antimicrobial action, arbutin is also known for its anti-inflammatory
action that modulates the genetic expression of different genes involved in this process.
Table 2 summarizes the main actions of β-arbutin in this context.
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Table 2. Actions of β-arbutin.

Action/Finding References

Reduces iNOS expression in B2 microglia cells and IL-1β, TNF-α,
MCP-1, and IL-6 [53]

Reduces oxidative stress levels in fibroblast and increases apoptosis of
tumor cell line [54]

Increases expression of collagen I [55]
Decreases osteoclast activity [56]

No DNA damage in lymphocytes [57,58]

It has been demonstrated that in microglia cells, the administration of β-arbutin to
b2 microglia cells also treated with lipopolysaccharide (LPS) led to a reduction in the
expression of inducible NO synthase (iNOS) and the molecule involved in cell adhesion
such as ninjurin 1 (Ninj1). In addition to reducing the gene expression of the aforemen-
tioned genes, arbutin reduced the production of inflammatory molecules and cytokines
such as IL-1β, TNF-α, MCP-1, and IL-6 [53] Besides this, β-arbutin is useful to reduce
oxidative stress. Thus, in prostate cancer cell line LnCAP and fibroblasts treated with
tert-butyl hydroperoxide to increase their oxidative stress, arbutin was also able to reduce
the expression levels of p53 in the fibroblast and increase the BAX/BCL-2 ratio, changes
that were related to increased apoptosis in LnCAP cells [54]. The authors of the study
concluded that while β-arbutin has a protector action against oxidative stress in fibroblasts,
it has a proapoptotic action in a tumoral cell line such as LnCAP.

Apart from inflammatory processes, it has been shown that β-arbutin is capable of
promoting the proliferation and differentiation of MC3T3 osteoblasts. In this context,
the administration of arbutin promotes an increase in the expression of type I collagen
and genes related to differentiation such as one γ-carboxyglutamate protein (BGLAP),
Sp7 transcription factor (SP7), and runt-related transcription factor 2 (RUNX2) [55]. In
addition, arbutin in combination with rosmarinic acid reduces the expression of osteoclast
precursor cells such as RAW 264.7 of the genes related to osteoclast differentiation genes,
nuclear factor of activated T cells cytoplasmic 1 (NFACTc1), and the following markers of
osteoclast differentiation: matrix metalloproteinase-9, tartrate-resistant acid phosphatase,
and cathepsin-K. This reduction resulted in a decrease in the osteoclast activity [56].

One of the concerns when using arbutin is that it can be considered nephrotoxic. It is
noteworthy that the antibiotic activity of this molecule respects the integrity of the DNA
of epithelial cells in a rat model, and in the case of humans, in isolated peripheral blood
lymphocytes [57,58].

3.2. Umbelliferon (Umb)

In this section, we describe the main changes related to gene expression that Umb
produces in bacteria and inflammation. Table 3 summarizes the major findings.

Umb has been described as capable of preventing the formation of biofilms in strains
of Staphylococcus epidermidis resistant to methicillin. This action is carried out by reducing
the expression of genes that code for factors involved in the formation of the bacterial
biofilm, others that favor bacterial invasion such as agrA, those related to the production of
hydrolases, and those of bacterial adhesion such as icaD, atlE, aap, bhp, ebh, sdrG, and sdr.
Specifically, Umb is capable of reducing the expression of genes encoding exopolysaccha-
ride (PIA) synthesis icaD, virulence and biofilm formation (agrA), intercellular adhesion and
accumulation (aap and bhp), autolysin/adhesin (atlE), and ECM-binding protein (ebh, sdrG,
and sdrF) [59]. It is noteworthy that coumarins have an antifungal activity against Candida
albicans. This activity is related to the production of apoptotic effects such as the migration
of phosphatyl serine to the external face of the plasma membrane, DNA fragmentation,
and nuclear condensation [60]. Umb has shown that it is capable of reducing the virulence
of the Escherichia. coli O157:H7 strain that is the main cause of hemorrhagic colitis. The use
of Umb produced a reduction in the expression of genes related to bacterial motility and
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the creation of the extracellular matrix (Curli genes). This decrease in expression resulted
in a reduction in the number of fibers and bacterial motility [61].

Table 3. Actions of Umb.

Action/Finding Reference

Downregulation of genes involved in biofilm production and adhesion [60]
Downregulation of genes related to production of extracellular matrix and motility [61]

Attenuation of DNA damage for oxidative stress [62]
Reduction of inflammasome [63]

Reduction of apoptosis of kidney cells [64]
Produces DNA fragmentation in oral carcinoma cells [65]

Cell cycle arrest in G1 apoptosis of adenocarcinoma cells [66]

Umb has also demonstrated anti-tumor and anti-arthritic activities due to its antiox-
idant and anti-inflammatory properties, as shown by multiple studies supporting these
characteristics [46,47,64,65]. Related to its anti-inflammatory activity, Umb has shown in
an in vivo study with lead-treated rats that it is capable of attenuating the damage to DNA
due to oxidative stress and that it is capable of reducing the gene expression of genes such
as BAX, while increasing that of BCL-2 [62]. All of this led to a reduction of lead-mediated
testicular damage in this animal model. Concerning the beneficial effects of Umb in relation
to kidney inflammation produced by antibiotics, it has been shown that Umb is capable of
attenuating this inflammation through the inhibition of the TLR-4/NF-κB-p65/NLRP-3 and
JAK1/STAT-3 signaling pathways. In particular, Umb is capable of reducing the expression
of the ERK1/ERK2, TLR-4, and p38MAP genes, as well as increasing the expression of
IkBα, which leads to a reduction of the inflammasome [63]. Similar results were obtained
after treatment with Umb in other models of kidney damage, with methotrexate that led to
the reduction of apoptosis of kidney cells [64], and in another model of kidney damage
with cisplatin, where an increase in the expression of genes such as CREB, SIRT1, FOXO-3,
PPAR-γ, and NRF2 was associated with protection against nephrotoxicity [64].

Umb has been shown to be capable of causing oral carcinoma cell death through
apoptosis. In experiments carried out in KB cells, it has been shown that the administration
of Umb produces an increase in oxidative stress in these cells that induces cycle arrest
in cells between G1 and G0, depolarization of the mitochondria, and DNA fragmenta-
tion leading to cell apoptosis [65]. In relation to abnormal cell growths, it has also been
shown that treatment with Umb produces a reduction in the proliferation of a cell line
of benign prostatic hyperplasia. This activity is due to the regulation of the STAT3/E2F1
axis. Furthermore, in an animal model (in rat) of benign prostate hyperplasia, Umb is
capable of reducing the size of the prostate, related to reduction of the expression of cell
nuclear antigen and p-STAT3 genes [65]. It has also been described how coumarins can
be effective against lung carcinoma cells through the induction of apoptosis of these cells.
Thus, the actions of coumarin and Umb in non-small lung carcinoma cells produced the
arrest of the cell cycle in G1, and with high doses of these compounds, produced apoptosis
in adenocarcinoma cells [66].

3.3. N-acetyl-L-cysteine (NAC)

NAC can act against pathogens such as Escherichia coli and Enterococcus faecalis, pre-
venting them from invading epithelial cells of the bladder [67]. This fact has been related
to how the administration of NAC to cells can alter the synthesis of membrane proteins
related to the recognition of bacteria in their first step, which is that of adhesion [68]. In
addition, in other studies, NAC has shown to be capable of degrading various polysaccha-
rides secreted by bacteria that bind to the matrix that forms in biofilms of pathogens such
as S. aureus MSSA and MRSA, Pseudomonas aeruginosa, and Helicobacter pylori [69–71]. The
mechanism of action seems to be linked to the possibility that weak acids can enter the
bacteria and directly destroy the DNA of the bacteria [72]. In addition, bacterial biofilms
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are composed of various molecules such as sugar lipids, protein, and even nucleic acids
derived from DNA such as phenazines [73]. The right connection of these molecules is
essential for the maintenance of the biofilm. Although there are no studies carried out to
date, it is important to know whether NAC is capable of interfering with these actions.

Regarding the actions of NAC concerning inflammation of the urinary tract, it should
be noted that NAC has been shown to be effective in LPS-induced bladder fibrosis. In this
context, the administration of NAC inhibited an increase in the expression of genes related
to fibrotic processes such as Tgfb2, Tgfb3, Smad2, Smad3, Cxcl10, and Card10. This was
related to a decrease in hemorrhagic processes and the presence of lymphocytic infiltrates
in the renal tissue [74]. NAC has also been shown to be effective as a kidney protector in
sepsis. In a rat model, NAC treatment resulted in reduced expression of genes related to
inflammation, tumor necrosis factor α, interleukin (IL)-1β, IL-6, and IL-8. In addition, there
was a decrease in the expression of genes related to apoptosis such as caspase-3, caspase-9,
and cytochrome c, and as a consequence, the number of apoptotic cells in the kidneys of
these rats [23]. The actions of NAC in this context are summarized in Table 4.

Table 4. Actions of NAC.

Action/Finding References

Impairs adhesion of bacteria [68]
Inhibits biofilm formation [69–71]

DNA bacteria and biofilm components are derived from DNA destruction [72,75]
Inhibits expression of genes related to fibrotic process [74]

Reduces expression of genes related to apoptosis [23]

4. Conclusions and Future Directions

Given that UTIs have a high socioeconomic cost for society, there is a need to provide
new ways to combat these infections. Itxasol© is a biomimetic compound that has antimi-
crobial, anti-biofilm, and anti-inflammatory characteristics that are very useful to fight this
type of infection.

As has been shown, these actions are carried out at least in part through the regulation
of bacterial genes related to the expression of virulence factors and the formation of the
biofilm, with modification of the expression patterns of genes related to inflammatory pro-
cesses in different cell types, and with the modification of DNA cells to produce apoptosis
(Figure 2). Considering the components of Itxasol©, Umb shows a clear capacity to interfere
with the expression of genes related to adhesion and biofilm formation, β-arbutin′s main
action is related to the regulation of inflammatory mechanisms, and NAC is able to destroy
bacterial DNA and to control the inflammation produced by bacterial LPS.

At this point, it is necessary to carry out further studies to determine the genetic
changes that both bacteria and host cells, including microbiota, have in the presence of
the components of Itxasol©, both separately and in conjunction, i.e., resulting from this
innovative formulation. As a result of these studies, it will be possible to improve the
administration dose and guidelines for this alternative treatment adjuvant and perhaps to
master a single administration where there is no need for antibiotics. In this way, it will be
possible to improve the treatment of UTIs, reducing the possible adverse effects derived
from traditional antibiotics in patients while simultaneously protecting the kidneys.
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antimicrobial actions can effectively combat UTIs.
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