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Hedgehog (Hh) signaling is a highly regulated molecular pathway implicated in
many developmental and homeostatic events. Mutations in genes encoding primary
components or regulators of the pathway cause an array of congenital malformations or
postnatal pathologies, the extent of which is not yet fully defined. Mosmo (Modulator of
Smoothened) is a modulator of the Hh pathway, which encodes a membrane tetraspan
protein. Studies in cell lines have shown that Mosmo promotes the internalization
and degradation of the Hh signaling transducer Smoothened (Smo), thereby down-
modulating pathway activation. Whether this modulation is essential for vertebrate
embryonic development remains poorly explored. Here, we have addressed this
question and show that in zebrafish embryos, the two mosmo paralogs, mosmoa and
mosmob, are expressed in the head mesenchyme and along the entire ventral neural
tube. At the cellular level, Mosmoa localizes at the plasma membrane, cytoplasmic
vesicles and primary cilium in both zebrafish and chick embryos. CRISPR/Cas9
mediated inactivation of both mosmoa and mosmob in zebrafish causes frontonasal
hypoplasia and craniofacial skeleton defects, which become evident in the adult fish.
We thus suggest that MOSMO is a candidate to explain uncharacterized forms of
human congenital craniofacial malformations, such as those present in the 16p12.1
chromosomal deletion syndrome encompassing the MOSMO locus.

Keywords: hedgehog signaling (Hh), Smoothened (Smo), tetraspan transmembrane protein, craniofacial
abnormalities, Mosmo

INTRODUCTION

Communication among cells is a fundamental mechanism for the development of multicellular
organisms. This communication is mostly mediated by elaborated signaling mechanisms, among
which the Hedgehog (Hh) pathway represents a prototypical example. This pathway is evolutionary
conserved and pleiotropically used among species (Ingham et al., 2011). Indeed, its function has
been involved in a wide variety of developmental events including cell specification, proliferation,
differentiation, migration, and axon guidance as well as in adult tissues’ homeostasis and
regeneration (Sánchez-Camacho and Bovolenta, 2009; Briscoe and Thérond, 2013; Petrova and
Joyner, 2014). These functions are exerted in different tissues and organs: among others, the central
nervous system (CNS), the limbs, the vascular system, and the craniofacial structures (Abramyan,
2019; Sasai et al., 2019).
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Hedgehog signaling relies on the widespread participation of
core components of the pathway such as the transmembrane
proteins Patched (Ptc) and Smoothened (Smo). By default, Ptc
blocks the function of Smo that remains localized in endosomes.
Upon Hh ligand binding, Ptc releases Smo inhibition, enabling
Smo localization at the primary cilium of the targeted cell,
thereby initiating the activation of specific intracellular cascades
(Murone et al., 1999). The diversification and specificity of
the signaling outputs is instead fostered by the participation
of other components that have more restricted spatio-temporal
distributions and/or can modify intracellular signaling in a
context dependent manner. These include, for example, the
ligands themselves [i.e., Sonic (Shh), Indian (Ihh), and Desert
(Dhh) hedgehog], a number of Hh binding proteins such as Boc,
Cdon, and Gas1 that can act both as positive (Cole and Krauss,
2003; Allen et al., 2007, 2011) or negative signaling regulators
(Bergeron et al., 2011; Cardozo et al., 2014; Echevarría-Andino
and Allen, 2020) and transcriptional or non-transcriptional
effectors of the pathway (e.g., Gli1, Gli2, Gli3, PKA, and
Src) (Jia et al., 2004; Sánchez-Camacho and Bovolenta, 2009;
Yam et al., 2009; Hui and Angers, 2011). This diversity
also explains the broad spectrum of congenital malformations
(e.g., holoprosencephaly, ciliopathies, skeletal, and craniofacial
defects) associated with mutations in gene encoding components
of the Hh pathway (Sasai et al., 2019) or its defective postnatal
function, which has been associated with a large number of cancer
types (Jeng et al., 2020).

Whether we have unveiled the full extent of the Hh pathway
complexity and of the pathologies associated to its dysfunction
is still undetermined. Indeed, a recent genome-wide screen
aimed at identifying novel modulators of Hh signaling using
CRISPR/Cas9 technology in the NIH-3T3 mouse cell line,
uncovered the existence of new pathway regulators, including
an unannotated gene, now known as MOSMO (MOdulator of
SMOothened) (Pusapati et al., 2018). In the same study, Mosmo
was demonstrated to encode a membrane tetraspan protein,
which promoted the endocytosis of the Hh transducer Smo,
thereby lowering its levels at the cell plasma membrane (Pusapati
et al., 2018). To what extent Mosmo participates in Hh signaling
regulation in vivo, however, it is just beginning to be elucidated
(Lasser et al., 2020; Kong et al., 2021; Pizzo et al., 2021).

Here, we have addressed this question and report that in
zebrafish the two mosmo paralogs (mosmoa and mosmob)
have an overlapping distribution in embryonic ventral neural
tube and then in the larva head mesenchyme. Consistent
with the latter distribution genetic inactivation of both
paralogs causes frontonasal hypoplasia and craniofacial
skeleton defects, suggesting that MOSMO is a candidate
to explain uncharacterized forms of these type of human
congenital malformations.

METHODS

Fish Lines and Husbandry
AB/Tübingen (AB/Tue) zebrafish were maintained at 28◦C
on 14/10 h light/dark cycle. Embryos were raised at 28◦C,
collected and maintained in E3 medium (5 mM NaCl,

0.17 mM KCl, 0.33 mM CaCl, 0.33 mM MgSO4, 10−5%
Methylene Blue). All used procedures were approved by the
ethical committees for animal experimentation of the Consejo
Superior de Investigaciones Científicas (CSIC) and Comunidad
Autónoma de Madrid.

Chick Embryos Maintenance
Fertilized chick embryos (Santa Isabel Farm, Cordoba,
Spain) were incubated at 38◦C in a humidified incubator
until the desired stage, determined according to
Hamburger and Hamilton (1992).

Whole Mount in situ Hybridization
Total mRNA from AB/Tue zebrafish embryos was extracted
using RNeasy Mini kit (Qiagen) according to manufacturer
instructions. cDNA was synthesized using Super Script kit
(Roche) following manufacturer instructions. PCR products,
obtained from cDNA amplification using specific primers
(Supplementary Table 1), were cloned in PCSA plasmid (Agilent
Technologies), as described by the manufacturer. Plasmid
DNA preparations were obtained using Genopure Plasmid
Midi kit (Roche) following kit instructions. Digoxigenin-
UTP-labeled antisense probes for in situ hybridization
(ISH) were synthesized and purified using Super Script
kit (Roche) following the manufacturer instructions. ISH
was performed by standard procedures and visualized with
NBT/BCIP (dark blue).

Cloning Procedures
The PCSA-mosmoa_p1 plasmid was used as a template to
amplify by PCR mosmoa and further add an hemagglutinin
tag (HA) and restriction sites with the following primers: Fw
5′-aatCTCGAGCCTGAGATGGATAAACTC-3′. Rv 5′-ttaGAA
TTCTCAAGCGTAATCTGGAACATCGTATGGGTAGCCAGG
AAGACACACTTC-3′. The PCR product was cloned in
PCSA plasmid (Agilent Technologies) as described by the
manufacturer. The mosmoa-HA fragment was then excised with
restriction enzymes and cloned in the pCIG vector (Megason
and McMahon, 2002) for chick embryo electroporation and in
pCS2 for cell transfection and synthesis of mRNA to be injected
in zebrafish embryos.

Chick Embryo Electroporation
The pCIG Mosmoa-HA plasmid (1 µg/µl) was co-injected with
a pCAG-2A-Arl13b-tRFP [Arl13b-tRFP construct generated by
Schmitz et al. (2017)] (1 µg/µl) into the neural tube ventricle
of HH10 chick embryos followed by in ovo electroporation as
previously described (Cardozo et al., 2014).

Cell Transfection, Tissue Processing,
and Immunochemistry
Human embryonic kidney (HEK) cells were cultured on
glass coverslips in DMEM supplemented with 10% fetal
calf serum and glutamine (2 mM). The pCS2-mosmoa-HA
construct was transfected using lipotransfectin (Solmeglas)
following the manufacture instructions. Cells were fixed with 4%
paraformaldehyde in 0.1 M phosphate buffer pH 7.2 (wt/vol)
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at 37◦C and then washed in PBS containing 0.5% Triton-X-
100. Chick embryos were fixed by immersion in 4% cold PFA
overnight at 4◦C, washed, incubated in a 15% sucrose-PBS
solution (wt/vol), embedded and frozen in a 7.5% gelatine in
15% sucrose solution (wt/vol). Cryostat sections, whole embryos
or cells samples were stained with Hoechst and α-HA antibody
produced in rabbit (1:250. Sigma, H-6908) and Donkey anti-
Rabbit Alexa Fluor 488 secondary antibody (Invitrogen, A-
21206), following standard procedures.

Zebrafish Mutant Generation
Single guide RNAs (sgRNAs) targeting coding regions of mosmoa
and mosmob for CRISPR/Cas9 deletion were designed using the
tools provided by CHOPCHOP online service1 searching for
potential disruption of restriction enzyme sites (Labun et al.,
2019). Oligos were designed as described in Varshney et al.
(2016) and their sequence is reported in Supplementary Table 1.
sgRNAs were transcribed and purified using Maxi Script T7
(NEB) following the manufacturer’s instructions. sgRNAs were
microinjected together with Cas9 protein (300 ng/µL; EnGen R©

Spy Cas9 NLS, New England Biolabs) in 1 to 2 cell stage AB/Tue
using a Narishige microinjector. F0 embryos were let grown and
outcrossed with wt AB/Tue fish. Genomic DNA from tail clips
of F1 zebrafish embryos was amplified by PCR and digested
to identify disruption of selected restriction sites. DNA from
potential mutants were sequenced, those with a disrupted and
truncated reading frame were selected to generate the fish lines.

Genotyping
DNA from embryos or adult fish was amplified by PCR using
the primers listed in Supplementary Table 1. PCR products
were digested with selected enzymes at 37◦C for 2 h to
distinguish among wt, heterozygous, and mutant mosmoa and/or
mosmob fish.

Bone and Cartilage Staining
Cartilage staining of zebrafish larvae and adult fish bones was
performed with Alcian Blue and Alizarin Red, as, respectively
described in Schilling et al. (1996), Sakata-Haga et al. (2018).

Imaging and Data Processing
Embryos were immersed in 75% glycerol and whole-body
images were obtained using a Leica CTR5000 stereomicroscope
connected to a Leica DFC500 digital camera operated by
Leica software. The adult fish stained with the Alizarin
Red chromogen, which also emits red fluorescence, were
photographed under fluorescent light stimulation using a Leica
CTR5000 stereomicroscope connected to a Leica DFC350 FX
digital camera operated by Leica software. The drawings in
Figure 4G were traced in Adobe Illustrator using representative
photographs of wt and mosmoa−/−;mosmob−/− adult mutants.
LSM710 confocal laser scanning coupled to an AxioObserver
inverted microscope (Zeiss) was used to obtain digital images of
cryostat sections or cells samples. ImageJ (Fiji) software was used
to process and analyze images.

1http://chopchop.cbu.uib.no

Statistical Analyses
The ImageJ (Fiji) software was employed to obtain
quantifications reported in Figure 3. Adult fish were anesthetized
with tricaine and photographed in lateral views and the distance
from the eye to the tip of the preorbital region was measured
and normalized to the eye size in each one of the analyzed
genotypes. Data were analyzed using GraphPad Prism 7
statistic software. One-way ANOVA test was used owing to the
parametric distribution of the data, followed by Tukey’s multiple
comparisons test to determine differences among groups.

RESULTS

Mosmo Paralogs Show a Largely
Overlapping Distribution in the
Developing Zebrafish
The zebrafish genome carries two different paralogs of the
mosmo gene:mosmoa andmosmob (ZFIN:ZDB-GENE-101203-6;
ZFIN:ZDB-GENE-060929-1030). To determine their expression
pattern during embryonic and larval development, we generated
two different specific ISH probes for each one of the two
paralogs (Figure 1A). Both mosmoa and mosmob were detected
at gastrulation and bud stages as well as during somitogenesis
(Figures 1H,I,O,P). At this stage shha, one of the ligands of
the pathway, is expressed along the midline of the entire ventral
neural tube (Figures 1B,C), from which it diffuses to pattern
the adjacent cells with a mechanism highly conserved across
vertebrates (Martí et al., 1995; Roelink et al., 1995). During
somitogenesis, mosmoa and mosmob were also found localized
along the length of the ventral neural tube (Figures 1J,Q) with
an overlapping distribution that, however, was more dorsally
extended than that of shha (Figures 1C–G). Specific expression
was also observed in the mesenchyme surrounding the neural
tube (Figures 1D–G) and in the optic vesicles (Figures 1K,R).
At 2 dpf and larval stages, mosmoa and mosmob were no longer
detected in the neural tube but strongly localized in the head
mesenchyme (Figures 1L,M,S,T), surrounding, among others,
the ethmoid plate (Figures 1N,N′,U,U′).

The reported patterns were consistently observed with both
of the probes generated for each one of the paralogs (Figure 1),
validating the reported distribution.

Mosmoa Localizes at the Plasma
Membrane, Endosomes, and Primary
Cilia
Attempts to determine the subcellular localization of the protein
showed that, at least in NIH-3T3 cells, Mosmo localizes at the
plasma membrane and endosome (Pusapati et al., 2018). To
verify if this is the subcellular distribution in the developing
embryo, we generated a human influenza hemagglutinin (HA)
tagged version of mosmoa (mosmoa-HA). We focused on this
paralog because its amino acid (aa) sequence is 100% identical
to that of its human ortholog, whereas mosmob aa sequence
has a lower homology (89.8% identity). We first verified the
efficiency of our construct by transfecting HEK cells with the
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FIGURE 1 | Mosmo paralogs show a largely overlapping distribution in zebrafish. (A) Schematic representation of mosmoa and mosmob mRNAs and probes used
for in situ hybridization (ISH). p1, probe #1. p2, probe #2. (B) Schematic representation of a frontal section of a zebrafish embryo at 20 hpf at the level of the optic
cup. Expression pattern of shha (C), mosmoa (D,E) and mosmob (F,G) at 20 hpf. Note that the two probes for mosmoa and mosmob show an identical distribution.
Note also that both paralogs have an overlapping distribution in the ventral neural tube but more dorsally extended than that of shha. (H,U) Expression pattern of
embryos hybridized with mosmoa and mosmob at 60% epiboly (H,O), bud (I,P) and 15 ss stage (J,K,Q,R), 2 dpf (L,S) as well as at 6 dpf (M,T). Note that at 60%
epiboly and bud stage the expression of both genes is localized along the ventral anterior-posterior axis of the embryos. At 15 ss, a low level expression of both
mosmoa and mosmob is detected in the optic vesicles (K,R, dashed line) and along the ventral neural tube from the diencephalon to the tail bud (J,Q). At 2 and
6 dpf, the expression of both genes localizes to the head region. The eyes were removed in panels (M,T). Frontal sections of 6 dpf embryos hybridized in toto for
mosmoa (N) or mosmob (U) and counterstained with Hoechst (N′,U′). ISH signal for both paralogs localizes around the ethmoid cartilage (N,N′,U,U′ white arrows).
D, dorsal; V, ventral; oc, optic cup; nt, neural tube; and y, yolk. Scale bars: 200 µM.

mosmoa-HA containing plasmid followed by immunostaining
for HA. As reported for NIH-3T3 cells (Pusapati et al., 2018),
the tagged protein was detected at the plasma membrane and
endosomes (Figure 2A). When mosmoa-HA mRNA was injected
in zebrafish, HA immunosignal was similarly localized at the
blastomers’ plasma membrane and endosomes (Figure 2B).

When Hh signaling is active, Smo localizes at the primary
cilium of the targeted cells. Notably, Mosmo was also observed
in the primary cilia of NIH-3T3 cells (Pusapati et al., 2018). We
thus asked if this localization could be observed also in vivo.
The primary cilium can be easily detected in the chick neural
tube as this organelle protrudes in the rather wide ventricle
of chicken embryos. We thus co-electroporated two plasmids
carrying mosmoa-HA and arl13b-RFP, respectively. The latter is
a primary cilium specific protein, widely used to visualize this
structure (Schmitz et al., 2017). Indeed, 24 h after electroporation,

at HH14, HA, and RFP fluorescent signals co-localized in the
cilium of a subset of the electroporated cells (Figures 2C–D′).

Taken together these data indicate that in vivo Mosmoa
localizes at the plasma membrane, endosomes, and the primary
cilia, suggesting that it may favors Smo translocation to this
organelle, thus influencing signaling activation.

Mosmo Paralogs Are Required for
Zebrafish Craniofacial Formation
To explore the possible roles of mosmoa and mosmob, we
inactivated the two genes using CRISPR-Cas9 technology. We
selected founders at the F1 generation that carried frameshift
mutations in either mosmoa or mosmob gene and generated
stable mosmoa−/− and mosmob−/− mutant lines (Figure 3A).
Mosmoa−/− and mosmob−/− mutant embryos show no gross
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FIGURE 2 | Mosmoa localizes at the plasma membrane, endosomes, and
primary cilia. (A) Example of human embryonic kidney (HEK) cells transfected
with mosmoa-HA, immunostained for α-HA (green), and counterstained with
Hoechst (white). (B) Dorsal view of a zebrafish gastrula (7 hpf) injected with
mosmoa-HA mRNA and immunostained for α-HA (green). (C–D′) Transversal
sections of chick embryo neural tubes co-electroporated with mosmoa-HA
and the cilia marker arl13b-RFP. In both HEK cells and zebrafish EVL cells
Mosmoa-HA signal localizes at the plasma membrane and in endo-vesicles. In
HH14 chick embryos, neural tube Mosmoa-HA is also observed in the in the
Arl13b-positive cilia (white arrows) (D,D′). Yellow asterisk marks the neural
tube ventricle (C–D′). Scale bars: 5 µm.

morphological defects and grew to adulthood without evident
defects. This was perhaps not surprising given that both
genes share expression pattern and their respective proteins
present a high degree of sequence homology, suggesting that
the two paralogs may compensate each other activity. To
overcome this possible compensatory effect, we intercrossed
the mosmoa−/− and mosmob−/− mutant lines obtaining a
mosmoa−/−;mosmob−/− double mutant fish. At first glance,
double mutant embryos showed no major gross alterations or
histological defects along the neural tube and their size was
similar to that of their sibling (not shown).

Other than in the neural tube, the two mosmo paralogs are
expressed with a largely overlapping pattern also in different
regions of the larva head. We thus used Alcian blue staining
to label the cranio-facial cartilage of the larva. There were
no obvious differences in the cartilaginous elements when
wt,mosmoa−/−;mosmob−/+ andmosmoa−/−;mosmob−/− were
compared (Figures 3B–G), although the rostral tip of the head
appeared flatter at least in part of the double mutants (Figure 3F,
arrowhead). To determine if this abnormality was only transient,
we analyzed the morphology of the head in the adult fish.
Mosmoa−/−;mosmob−/− double mutants consistently exhibited
a significantly shorter frontonasal region (Figures 3H,I), which
was not observed in their sibling of other genotypes (Figure 3J).
Furthermore, the operculum was reduced in size, leaving the gills
exposed (Figure 3I).

Hedgehog signaling is essential for the development of the
anterior neurocranium (Wada et al., 2005) and disruption of smo
activity in zebrafish affects the craniofacial skeleton (Eberhart
et al., 2006; Swartz et al., 2012). Thus, the frontonasal hypoplasia
observed in the double mutants could be the consequence
of alterations in the osseous components of the craniofacial
skeleton. To determine this possibility, we stained the skeleton
of wt, mosmoa±;mosmob± and mosmoa−/−;mosmob−/− adult
fish with Alizarin red (Figures 4A–F). The bones of the
frontonasal region, especially the maxillary and premaxillary
bones of mosmoa−/−;mosmob−/− double mutants were altered
as compared to those of wt or heterozygous fish (Figures 4A–
F) as highlighted in the schematic drawings reporting the
phenotypes (Figure 4G).

Taken together these data indicate that mosmoa and mosmob
have an overlapping function, which is required for the
acquisition of a proper craniofacial structure in zebrafish.

DISCUSSION

Modulators of Hh signaling play crucial roles in diversifying
the output of Hh signaling (Gallardo and Bovolenta, 2018).
The present study reinforces this idea and shows that in
zebrafish the combined activity of the two mosmo paralogs,
mosmoa and mosmob, are required for the proper craniofacial
formation in zebrafish.

This apparently restricted effect is somewhat surprising as
both mosmoa and mosmob are expressed with an overlapping
pattern not only in the craniofacial mesenchyme of the larvae
but also along the ventral region of the embryonic neural tube.
The latter distribution overlaps with that of a number of Hh
signaling components, including the ligand shha, shhb (Ekker
et al., 1995), or the receptor ptch2 (Concordet et al., 1996), and
the transducer smo (Varga et al., 2001). In line with the idea
that Mosmo acts on Smo promoting its endocytosis (Pusapati
et al., 2018), we found Mosmoa localized in endocytic vesicles
and the plasma membrane as well as the primary cilium, where
Smo translocate when Hh signaling is activated. Thus and
as previously proposed (Pusapati et al., 2018), the combined
activity of the two mosmo paralogs could modulate Hh signaling
activation in different contexts during development. However,
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FIGURE 3 | mosmoa–/–;mosmob–/– double mutants display facial abnormalities. (A) Schematic representation of the strategy used to inactivate mosmoa and
mosmob zebrafish genes using CRISPR-Cas9 technology and sequence of the selected mutants. (B–G) Lateral and ventral views of 5 dpf wild type (B,C),
mosmoa–/–;mosmob± (D,E) and mosmoa–/–;mosmob–/– (F,G) zebrafish larvae stained with Alcian Blue to detect cartilage head organization. The rostral tip of the
head appeared flatter in some of the double mutants (F, arrowhead). Eyes were removed for better staining visualization. The number of animals analyzed for each
genotype is indicated in the right bottom corner in panels (C,E,G). Scale bar 150 µm. (H,I) Lateral view of adult mosmoa–/–;mosmob± (H) and
mosmoa–/–;mosmob–/– double mutants (I). Note that in double mutants the head is flatter and shorter (I, red brackets) than in mosmoa–/–;mosmob± fish and the
operculum is abnormal exposing the gills (I, red arrow). (J) Quantification of the distance from the eye to the tip of the preorbital region (x) in relation to the eye size (y)
in adult fish of different genotypes. mosmoa–/–;mosmob–/– double mutants show a shorter fronto-nasal length than their siblings. One-way ANOVA followed by
Tukey’s multiple comparison tests to analyze differences among groups. **P < 0.01, ***P < 0.001, and ****P < 0.0001. Scale bar 20 mm.

loss of mosmo function in zebrafish seems to be mostly linked
to the formation of the cranio-facial skeleton, with an evident
head hypoplasia in the adult mutant fish but no other obvious
defects. Indeed, Mosmo double mutants grow to adulthood and
do not seem to have obvious behavioral problems, supporting
a non-essential role of mosmo paralogs for zebrafish growth,
survival, and reproduction. Consistent with this idea, we have
not observed neural tube defects or gross abnormalities in
other organs of the mutants at least upon histological analysis.
Nevertheless, we cannot rule out the possibility that subtle defects
may be found with a more in-depth analysis. Indeed, a recent
study shows that, in mouse, Mosmo contributes to embryonic
development and its loss of function causes skeletal, heart, and
lung anomalies leading to embryonic lethality (Kong et al.,
2021). However, coinciding with our observations, no defects in
neural tube patterning were, however, found (Kong et al., 2021).
Knock-down of mosmo in Xenopus instead shows a craniofacial
phenotype in which both craniofacial and cartilage development
appears affected, in association with alteration of neural crest cell
proliferation and migration (Lasser et al., 2020). Interestingly,

the coexistence of neurodevelopmental and craniofacial defects
were observed in experiments performed in both Drosophila
and Xenopus aimed at testing the importance of “a two-hit
model” as trigger of neurodevelopmental disorders (Pizzo et al.,
2021). Notably the study demonstrated a synergistic interaction
between mutated mosmo and setd5 (Pizzo et al., 2021), a gene
encoding a histone methyltransferase, which has been associated
with intellectual disability (Grozeva et al., 2014). This functional
interaction observed in both Drosophila and Xenopus seems to
be present also in humans (Pizzo et al., 2021). In this respect the
mosmoa−/−;mosmob−/− double mutants, could be an additional
model in which to explore how setd5 and mosmo synergize
causing more severe congenital malformations.

The Hh ligands Shh and Ihh are osteogenic regulators and
both are expressed in craniofacial elements (Chiang et al., 1996;
Pan et al., 2013). In both mouse and zebrafish, Ihh secreted
by chondrocytes stimulates the ossification of the perichondrial
cell layer that surrounds the developing cartilage (St-Jacques
et al., 1999; Hammond and Schulte-Merker, 2009). In mice,
conditional inactivation of ihh in cranial neural crest cells
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FIGURE 4 | Mosmo paralogs are required for head bone formation in zebrafish. (A–F) Lateral (A,C,E) and dorsal (B,D,F) views of the head of wt (A,B),
mosmoa±;mosmob± (C,D) and mosmoa–/–;mosmob–/– (E,F) adult zebrafish stained with alizarin red to label bone tissue. Note the bone malformation in the
frontonasal region of mosmoa–/–;mosmob–/– double mutants (E, arrow) in comparison to heterozygous and wt fish (A,C). (G) Cartoons of the craniofacial
appearance of wt and mosmoa–/–;mosmob–/– adult mutants, from lateral and dorsal views, highlighting the maxillary (yellow) and premaxillary (red) bones. The
number of animals analyzed for each genotype is indicated in the left bottom corner in panels (A,C,E). d, dentary; e, ethmoid; f, frontal; ia, infraorbital; k, kinethmoid;
le, lateral ethmoid; mx, maxillary; n, nasal; pe, pre-ethmoid; pm, premaxillary; q, quadrate; se, supraethmoid; and so, supraorbital. Scale bar, 2 mm.

causes skeletal malformations, including a markedly hypoplastic
nasomaxillary complex (Amano et al., 2020). Furthermore,
zebrafish mutants lacking enzymes involved in proteoglycans
synthesis (fam20b−/− and xylt1−/−) exhibit an accelerated ihh
expression and premature bone formation, resulting in an adult
fish with midface hypoplasia among other malformations (Eames
et al., 2011). These features resemble those we observe in the
mosmoa−/−; mosmob−/− double mutants. Thus, it is tempting
to speculate that mosmo paralogs may participate in signaling
response triggered by ihh during osteogenesis, perhaps with an
accelerated bone formation in the absence of Mosmo activity.

Intraflagellar proteins (IFTs) in the primary cilia, such as
IFT80, affect Hh signaling and are required for osteoblast
differentiation (Yuan et al., 2016). The craniofacial/skeletal
abnormalities linked to Mosmo function in Xenopus (Lasser
et al., 2020; Pizzo et al., 2021), mouse (Kong et al., 2021), and
zebrafish (this study) together with MOSMO protein subcellular
localization, suggest that MOSMO homologs could be key
controllers of SMO translocation to the primary cilia during
osteogenesis, thereby modulating signal transduction. Although
worthwhile testing, this possibility remains at the moment a
speculation, given the lack appropriate genetic tools that enable
following protein movements within the cilium.

Independently of the precise pathway components with which
Mosmo may function, the coincidence of some phenotypic

features observed upon inactivation of Mosmo in Xenopus (Lasser
et al., 2020; Pizzo et al., 2021), mouse (Kong et al., 2021), and
zebrafish (this study) suggests that defective function of the
human MOSMO may have similar consequences. Notably, a
deletion in chromosome 16, encompassing the human MOSMO
among others genes, causes a rare disease known as recurrent
16p12.1 deletion syndrome. Patients present developmental
delay, intellectual disability, and other anomalies which may
vary from individual to individual. Among these anomalies,
craniofacial and skeletal are among the most frequently
found defects (Girirajan et al., 2010), including microcephaly
and flat face (Ballif et al., 2007; Girirajan et al., 2010),
resembling, at some point, the phenotype observed in adult
mosmoa−/−;mosmob−/− mutants.

CONCLUSION

In conclusion, our study shows a restricted and overlapping
distribution of mosmo genes in zebrafish revealing the subcellular
localization of the Mosmoa protein during development
in endosomes, plasma membrane, and primary cilia. More
importantly, the generation of mosmoa−/−;mosmob−/−

zebrafish mutants provides support for the idea that the human
MOSMO might be a candidate gene underlying uncharacterized
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forms of rare congenital craniofacial malformations. The
double mutants further provide the opportunity to dissect the
contribution of MOSMO to the phenotype associated with the
human 16p12.1 deletion syndrome.
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