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Abstract

Background: Macrophage migration inhibitory factor (MIF) is a pro-inflammatory cytokine involved in cystitis and a non-
cognate ligand of the chemokine receptor CXCR4 in vitro. We studied whether CXCR4-MIF associations occur in rat bladder
and the effect of experimental cystitis.

Methods and Findings: Twenty male rats received saline or cyclophosphamide (40 mg/kg; i.p.; every 3rd day) to induce
persistent cystitis. After eight days, urine was collected and bladders excised under anesthesia. Bladder CXCR4 and CXCR4-
MIF co-localization were examined with immunhistochemistry. ELISA determined MIF and stromal derived factor-1 (SDF-1;
cognate ligand for CXCR4) levels. Bladder CXCR4 expression (real-time RTC-PCR) and protein levels (Western blotting) were
examined. Co-immunoprecipitations studied MIF-CXCR4 associations.Urothelial basal and intermediate (but not superficial)
cells in saline-treated rats contained CXCR4, co-localized with MIF. Cyclophosphamide treatment caused: 1) significant
redistribution of CXCR4 immunostaining to all urothelial layers (especially apical surface of superficial cells) and increased
bladder CXCR4 expression; 2) increased urine MIF with decreased bladder MIF; 3) increased bladder SDF-1; 4) increased
CXCR4-MIF associations.

Conclusions: These data demonstrate CXCR4-MIF associations occur in vivo in rat bladder and increase in experimental
cystitis. Thus, CXCR4 represents an alternative pathway for MIF-mediated signal transduction during bladder inflammation.
In the bladder, MIF may compete with SDF-1 (cognate ligand) to activate signal transduction mediated by CXCR4.
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Introduction

Macrophage migration inhibitory factor (MIF) is an ubiquitous

pleiotropic cytokine involved in cell proliferation and inflamma-

tion [1,2]. MIF plays an important and unique role in

inflammation since MIF stands upstream of other pro-inflamma-

tory mediators and it can counter-regulate the anti-inflammatory

effects of glucocorticoids [2]. MIF is implicated in animal models

of inflammatory diseases, including arthritis, glomerulonephritis,

acute lung injury and sepsis (for recent review [3]).

Our recent experimental evidence indicates that MIF partici-

pates in bladder inflammation since: (1) MIF is constitutively

expressed in the urothelium [4,5]; (2) bladder MIF expression is

upregulated in different models of experimental cystitis in animals

[6,7]; (3) MIF is released from the bladder during experimental

cystitis [6,8,9] and urinary tract infections in humans [10] and

finally, (4) neutralizing MIF with intravesical antibodies decreased

experimental bladder inflammation [7]. Thus, based on our

experimental observations, our hypothesis of a pro-inflammatory

role for MIF during bladder inflammation agrees well with MIF’s

pro-inflammatory role in several disease models (e.g. arthritis,

Crohn’s disease) where treatment with neutralizing MIF antibod-

ies results in decreased inflammation [11,12].

The mechanism for MIF’s action is not completely defined and

remains an active area of investigation. MIF may exert autocrine

effects through binding to intracellular JAB1 [13] and also

paracrine effects by binding to cell-surface receptors [14]. Until

recently, complex formation between MIF and cell-surface CD74

was the only described mechanism for MIF-receptor interaction

[15] . CD74 is part of the major histocompatibility class-II (MHC-

II) complex; however, a small amount of CD74 can be found on

the cell-surface not associated with MHC-II [16]. MIF binds to

cell-surface CD74 [15] and the MIF-CD74 complex then activates

signal transduction by binding to another cell-surface receptor,

CD44 [14]. We showed that MIF, CD44 and CD74 are all

upregulated in the urothelium after experimental inflammation in
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rats [6,17]. Therefore, all of the components are in place during

bladder inflammation for MIF-activated signal transduction to

occur.

Recently, however, a novel functional association between MIF

and chemokine receptors CXCR2 and CXCR4 was described in

T cells in vitro [18]. Chemokines are small proteins that direct

leukocyte traffic to sites of inflammation or injury [19]. CXCR4 is

a G-protein coupled receptor for stromal cell-derived factor-1

(SDF-1/CXCL12). Although chemokines typically display a high

degree of receptor promiscuity, CXCR4 was (until recently)

thought to bind only to SDF-1 [19]. MIF, however, competed with

the recognized ligand for CXCR4 (SDF-1/CXCL12) for binding

to CXCR4 [18].

CXCR4 is expressed by normal urothelium and may be

associated with bladder cancer [20,21]. Therefore, we hypothe-

sized that CXCR4-MIF complex formation may also occur in the

bladder (as described occurring in vitro [18]). Such associations, if

present, would indicate another possible receptor target for MIF

during cystitis, aside from the already described MIF-CD74

association [15].

The object of the present study was to determine if there was an

association between MIF and CXCR4 receptors in the bladder.

Therefore, we examined: 1) location of cytokine receptor CXCR4

in the rat bladder; 2) baseline bladder levels of SDF-1 (cognate

ligand for CXCR4) and changes in response to a chemically-

induced (cyclophosphamide; CYP) model of bladder inflamma-

tion; 3) CXCR4 expression changes after CYP-induced cystitis

and 4) association between CXCR4 and MIF in the bladder

before and after CYP-induced cystitis.

Our results show that both CXCR4 and SDF-1 are constitu-

tively expressed in normal rat bladder and upregulated during

CYP-induced cystitis. Using dual immunohistochemistry we show

that MIF and CXCR4 are colocalized within the same cells in the

urothelium and co-immunoprecipitation studies demonstrate

MIF-CXCR4 associations in the bladder. These MIF-CXCR4

associations are increased during CYP-induced cystitis.

Results

Cyclophosphamide-induced bladder inflammation
Repeated measures ANOVA showed differences between

saline- and CYP-treated rats in body weight, with significant

decreases observed in CYP-treated rats as early as day 3 and

continuing throughout the experiment (day 8; Table 1) but

remaining below a 10% weight-loss threshold established as a

protocol endpoint.

In agreement with our previous findings in male Sprague-

Dawley rats [6] , multiple CYP injections (40 mg/kg every third

day for 8 days, a lower dose than reported effective for female

Wistar rats; 75 mg/kg [22]) induced bladder inflammation.

Hemorrhagic cystitis, however, was not observed in any of the

CYP treated rats. Gross examination of the bladder under the

dissecting microscope revealed lesions on the ventral luminal

surface in all CYP-treated rats, but none of the saline-treated rats.

H&E sections from saline treated rats showed normal bladder

morphology (Figure 1A;B). CYP-treated rats, on the other hand,

showed clear signs of inflammation, including, submucosal edema,

disruption of urothelium, cellular infiltrates, hemorrhage and

fibroblast proliferation (Figure 1C). While the urothelium in saline-

treated rats showed the typical three-layer appearance (Fig 1B),

CYP-treated rats showed hyperplasia (Fig. 1D).

Compared to saline treatment, CYP treatment increased urinary

MIF levels (as measured by ELISA; Figure 1E; 22.262.8 vs.

57.3620.5 in saline vs CYP, respectively; p,0.0464) while

decreasing bladder MIF levels (Fig 1F; 244.1639.7 vs

136.0638.1 ng MIF/mg protein in saline vs CYP treatment

respectively; p = .002), confirming our recent observations [6].

Circulating MIF represents a considerable source of MIF [9] and

presents a possible confound when examining organ levels of MIF.

The MIF ELISA developed in this study was not able to detect

serum MIF. Therefore, our present results represent changes in

tissue levels (or release) of MIF without the confounding presence of

blood/serum MIF in the bladder or urine.

CXCR4 immunostaining in urothelium: co-localization
with MIF and effect of treatment with cyclophosphamide

Using standard immunoperoxidase protocols, moderate to

strong CXCR4 immunostaining was observed in the urothelium

of saline-treated rats, located in basal and intermediate layers, but

not in superficial cells (Fig 2A,B). Following CYP-treatment,

however, there was focal redistribution of CXCR4 immunostain-

ing with superficial cells (and especially at their apical ends)

showing moderate patchy staining (Fig 2C,D), while basal and

intermediate cells appear to decrease in staining intensity. Overall

urothelial staining intensity scores (as rated by blind observer)

showed that cyclophosphamide-treated rats had a lower median

score (1+0.75) compared to saline-treated rats (3+1; p = .0172;

Wilcoxon rank sum test). Computerized analysis of immunostain-

ing intensity showed that basal and intermediate cell staining

decreased after CYP treatment (saline = 127.4+8.57; cyclophos-

phamide = 77.2+12.08; p = 0.0011), thus confirming redistribution

of CXCR4 immunostaining.

We examined the co-localization of CXCR4 and MIF in the

urothelium using dual-immunofluorescence. Figure 3 shows

representative bladder sections from each group immunostained

for MIF (FITC color), CXCR4 (TRITC color) and an overlay of

those two panels (co-localization indicated by orange color;

nuclear staining by DAPI shown in blue). In saline-treated rats,

both MIF and CXCR4 could be localized in the basal and

intermediate layers of the urothelium (but not in superficial cells)

(Fig 4A–C). After CYP-treatment, MIF and CXCR4 are readily

localized throughout the urothelium (Fig 4D–I), even on

superficial cells previously devoid of MIF or CXCR4 (arrows in

Fig 4F,I).

Cyclosphosphamide increased bladder SDF-1 levels
We measured bladder levels of SDF-1, the cognate ligand for

CXCR4, using ELISA. There was a significant difference between

saline (4.461.0) and CYP-treated bladders (7.660.7 ng SDF-1/

mg protein; p,0.05) in the levels of SDF-1. Spleen and skin were

assayed as positive controls and showed the amount of SDF-1 in

spleen is comparable to that found in the bladder (7.94 ng SDF-1/

mg protein). Skin, on the other hand, had greater amounts of

SDF-1 (16.04 ng SDF-1/mg protein) corresponding to approxi-

mately four and two times the amount of SDF-1 in saline and

CYP-treated bladders, respectively.

Table 1. Effect of cyclophosphamide on body weight (g)

Treatment Day 0 Day 3 Day 6 Day 8

Saline (N = 10) 32162.6 g 32262.8 32663.5 32663.6

CYP (N = 10) 32063.6 30362.5*** 30063.0*** 29563.0***

Mean6S.E.M. Comparisons were made between Saline and CYP groups at each
time point using post-hoc Bonferroni t-tests.
*** = p,0.001
doi:10.1371/journal.pone.0003898.t001

CXCR4-MIF in Cystitis
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Figure 1. Effect of cyclophosphamide (CYP) treatment on bladder histology, bladder and urine MIF levels. Bladder paraffin sections
stained with H&E showed normal morphology, as represented in A,B. CYP treatment however, caused significant edema and chronic inflammation
(C,D), and some bladders had acute inflammatory cells. Asterisks in C,D mark areas of edema and high numbers of cellular infiltrates. Urothelial
hyperplasia was also observed. In addition, urinary MIF levels were increased by CYP treatment (E; * = p,0.05), while bladder MIF levels were
increased by CYP treatment (F; ** = p,0.01). Calibration bar: 1A,1C = 500 mm; 1B,1D = 100 mm.
doi:10.1371/journal.pone.0003898.g001

CXCR4-MIF in Cystitis
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SDF-1 immunofluorescence was readily seen SDF-1 in skin

keratinocytes and in endothelial cells in skin blood vessels (Fig 4A)

as has been reported before [23]. However, SDF-1 immunostain-

ing was not detected in bladder (Fig. 4C) or spleen (not shown).

Cyclophosphamide upregulated bladder CXCR4
expression: MIF-CXCR4 associations in the bladder

Real-time PCR showed that CXCR4 mRNA was significantly

upregulated in the bladder following CYP treatment (Figure 5A; <
9-fold increase) when compared to saline. Western-blotting, on the

other hand, showed equivalent levels of CXCR4 protein in the

bladders of saline treated versus CYP-treated rats (Figure 5B).

Co-immunoprecipitation studies with CXCR4 antisera to ‘‘pull-

down’’ CXCR4 protein complexes in bladder homogenates were

followed by MIF Western-blotting in order to detect CXCR4-MIF

complexes in bladder homogenates. Figure 5C shows a represen-

tative experiment where MIF western-blotting of fractions from

bladders of saline and CYP-treated rats were collected from the

CXCR4 antibody column. ‘‘Flow through’’ refers to fractions that

did not adhere to the CXCR4 antibody column (and thus do not

contain CXCR4-complexes), whereas ‘‘Anti-CXCR4’’ refers to

fractions eluted from the CXCR4 antibody column (thus containing

CXCR4 complexes). Note that most of the bladder MIF did not

stick to the CXCR4 antibody column (‘‘Flow-through’’) and is not

associated with CXCR4. However, a small amount was found co-

immunoprecipitated with CXCR4 in the saline-treated rats and

these CXCR4-MIF complexes increased after CYP treatment.

Densitometric analysis showed an increase of 3.5 fold in CXCR4-

MIF complexes in CYP treated rats compared to saline controls.

Discussion

The results from the present study demonstrate that CXCR4, a

chemokine cell-surface receptor, is constitutively expressed in

normal rat urothelium localized to basal and intermediate cells.

CYP treatment (aside from producing bladder inflammation and

urothelial hyperplasia, well-described effects of cyclophosphamide

in the bladder [24,25]) also resulted in up-regulation of bladder

CXCR4 mRNA and redistribution of CXCR4 to the entire

urothelial area (including apical area of superficial cells previously

devoid of CXCR4; Fig. 2D). Our findings of apical CXCR4

staining in superficial urothelial cells are in agreement with

observations in colonic epithelial cells [26].

CYP treatment although producing CXCR4 mRNA upregula-

tion (a novel finding) did not result in increased CXCR4 protein

levels, and scoring of CXCR4 immunostaining actually showed a

decrease in staining intensity following CYP treatment. A similar

discrepancy between CXCR4 mRNA expression and protein

levels has been reported in the rat neurons and shown to reflect

activation, increased internalization and degradation of CXCR4

receptors [27] . Such activation, internalization and degradation of

CXCR4 receptors may also account for the patchy CXCR4

immunostaining in the urothelium (especially with immunostain-

ing in the apical surface of superficial cells) and may represent

focal areas of CYP-induced CXCR4 response.

CXCR4 mRNA expression in normal human urothelium,

bladder cancer and also bladder cancer cell lines (J82 and T24)

was previously reported [20] . Addition of SDF-1 (presumably

activating CXCR4 receptors) increased Matrigel invasion and cell

Figure 2. Representative CXCR4 immunostaining in urothelium of saline-treated (A;B) and CYP-treated (C,D) rats. Moderate to strong
CXCR4 immunostaining was seen in basal and intermediate cells in the urothelium of saline treated rats (A;B), with little or no staining in superficial
cells (B; arrows). In CYP-treated rats, there is a significant redistribution of CXCR4 immunostaining with decreased basal and intermediate cell staining
(C;D) while superficial cells appeared stained and moderate staining in apical areas (D; arrowheads). Calibration bar: 2A,2C = 200 mm; 2B;2D = 50 mm.
doi:10.1371/journal.pone.0003898.g002

CXCR4-MIF in Cystitis
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growth but was not effective in increasing intracellular calcium in

these particular urothelial cancer cells [20]. However, other

investigators using a different bladder cell line (RT-4) did report an

increase in intracellular calcium upon stimulation with SDF-1 [21].

Taken together these results suggest that CXCR4 receptors are

functional in the urothelium. There is also evidence of CXCR4

mRNA expression in other areas of the human urogenital system

(e.g. urethra, cervix) [28].

We examined protein levels of SDF-1 in the bladders of both

saline-treated and CYP-treated rats using ELISA. We report

constitutive levels of SDF-1 in saline-treated bladders which

increase after CYP treatment. Although SDF-1 immunofluores-

cence was readily detectable in skin keratinocytes, we were

unsuccessful in detecting SDF-1 by immunohistochemistry in the

bladder (or the spleen). Since the levels of SDF-1 in the skin

(measured by ELISA) are approximately twice the levels found in

bladder or spleen, we consider it likely that the levels in these

organs were below the detection level for immunohistochemistry.

Recently, down-regulation of SDF-1 mRNA expression in the

bladder (and other pelvic viscera) was reported afer vaginal

distension [29]. To our knowledge, our findings represent the first

demonstration of SDF-1 protein levels in the bladder. Thus our

findings indicate that bladder injury produced by CYP-treatment

results in mRNA upregulation of the chemokine receptor CXCR4

and increased protein levels of its cognate ligand, SDF-1. In

addition to several cytokines reported upregulated in the bladder

after CYP treatment [30], changes in another chemokine

(CX3CL1) and its receptor (CXC3R1) were described as a result

of cyclophosphamide treatment [22]. Therefore, chemokines (in

addition to cytokines) likely represent important mediators of

bladder injury and possible targets for ameliorating bladder

inflammation.

Until recently, CXCR4 was considered to bind exclusively to

SDF-1 [19]. However, recent in vitro evidence showed that

CXCR4 is also capable of binding MIF [18]. In this study we

confirm these in vitro finding since we demonstrate 1) co-

localization of CXCR4 and MIF in the urothelium, both in saline

treated rats and after CYP treatment; 2) CXCR4-MIF associations

are present in saline-treated bladder and increase after CYP

treatment. Therefore, although, not directly tested in this study,

our results suggest that MIF in the bladder may participate in

bladder inflammation either through binding to CXCR4 in the

urothelium (formerly thought to only bind SDF-1 but recently

shown to also bind MIF [18]) or to CD74 (recognized binding

protein for MIF which is upregulated in bladder inflammation [6])

to activate signal transduction pathways that result in the

production of other inflammatory cytokines. Given that bladder

MIF concentrations are approximately 30-fold greater than

bladder SDF-1 concentrations, it is possible that MIF may be

the primary ligand at the CXCR4 receptor in the urothelium.

Moreover, CYP-treatment induced immunostaining of CXCR4 in

superficial urothelial cells previously devoid of CXCR4 (or MIF)

immunostaining. This raises the possibility that these cells will be

activated by MIF present in the urine and in fact, CYP (present

study) and other inflammatory stimuli [8–10] increase luminal

MIF release. We cannot rule out a contribution of renal or ureteral

MIF release to increased urine MIF levels observed in this study

after CYP-treatment, Yet our current findings of increased urine

Figure 3. Co-localization of CXCR4 and MIF in urothelium. Representative sections from rats treated with saline (A–C) or CYP (D–I) are shown.
The figure shows MIF immunostaining (green immunofluorescence), CXCR4 immunostaining (red immunofluorescence) and an overlay panel
combining both immunostaining and a DAPI nuclear stain. MIF immunostaining is seen in basal and intermediate cells and in fibroblasts in the lamina
propria of saline treated rats (A), while superficial cells do not stain for MIF. Arrows show luminal edge of urothelium. CXCR4 is restricted to basal and
intermediate cells of urothelium (B) and lamina propria is not stained. Overlay of these panels (C) demonstrate co-localization of MIF and CXCR4 as
orange coloring of cells. CYP treatment resulted in superficial cell staining for MIF (D,G) and CXCR4 (E,H) and overlay panels (F,I) demonstrate co-
localization as orange color in urothelial cells. Arrows point to superficial cells showing MIF-CXCR4 co-localization. Calibration bar = 50 mm.
doi:10.1371/journal.pone.0003898.g003

CXCR4-MIF in Cystitis
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MIF with concomitant decrease in bladder MIF protein levels are

consistent with earlier findings where, in animals with bladders

isolated from the kidneys (thus removing potential renal and

ureteral contributions), we observed similar results [7,9]). Thus,

based on our experimental evidence we consider likely that MIF is

released into the lumen from pre-formed stores in the bladder

during inflammation. Therefore, luminal MIF may contribute to

bladder inflammation through binding to at least these two

urothelial cell-surface receptors and suggests that blocking MIF or

cell-surface receptors associated with MIF may prevent or

ameliorate bladder inflammation.

The exact role of CXCR4 and MIF-CXCR4 associations in the

bladder was not addressed in the present study and remains to be

investigated. However, recent evidence from other models

suggests, at least, two interesting and important possibilities for

the involvement of CXCR4 in bladder inflammation and repair

from injury. First, CXCR4 may be mediating urothelial cell

proliferation and repair. CXCR4 and SDF-1 are also expressed in

human intestinal epithelial cells where recent evidence indicates it

participates in epithelial repair following injury and maintaining

mucosal barrier integrity [31,32]. In this model then, chemokines

and chemokine receptors (and particularly CXCR4/SDF-1) may

represent an autocrine/paracrine loop that helps maintain

mucosal barrier integrity and repair as well as regulating mucosal

pathogenesis (including chronic inflammation as seen inflamma-

Figure 4. SDF-1 immunostaining. A) SDF-1 immunostaining was
observed in keratinocytes (arrows) and endothelial cells in blood vessels
(short arrows) in skin. B) Omission of primary antisera eliminated
immunostaining. C) Bladder sections did not show SDF-1 immuno-
staining. Calibration bar = 50 mm.
doi:10.1371/journal.pone.0003898.g004

Figure 5. A) Real-time RT-PCR showed significant upregulation of
bladder CXCR4 by CYP treatment (p = 0.004) compared to saline. B)
CXCR4 Western-blotting showed no difference in CXCR4 amounts
between saline and CYP-treated rats. GAPDH was used a loading
control. C) Co-immunoprecipitation studies showed CXCR4-MIF associ-
ations in the bladder. A representative experiment is shown where MIF
western-blotting of fractions from bladders of saline and CYP-treated
rats were collected from the CXCR4 antibody column. CXCR4 antisera
was used to ‘‘pull-down’’ CXCR4 complexes in bladder homogenates
followed by MIF Western-blotting to detect CXCR4-MIF complexes.
‘‘Flow through’’ refers to fractions that did not adhere to the CXCR4
antibody column (and thus do not contain CXCR4-complexes), whereas
‘‘Anti-CXCR4’’ refers to fractions eluted from the CXCR4 antibody
column (thus containing CXCR4 complexes). Most of the bladder MIF
did not stick to the CXCR4 antibody column (‘‘Flow-through’’) and is not
associated with CXCR4. However, a small amount was found co-
immunoprecipitated with CXCR4 in saline-treated rats and these
CXCR4-MIF complexes increased after CYP treatment (arrow). Densito-
metric analysis showed an increase of 3.5 fold in CXCR4-MIF complexes
in CYP treated rats compared to saline controls.
doi:10.1371/journal.pone.0003898.g005

CXCR4-MIF in Cystitis
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tory bowel disease and progression to colon cancer) [33] . The

results from the present study indicate that MIF, by associating

with CXCR4 receptors in the bladder (presumably urothelial in

origin), may be competing with SDF-1 at CXCR4 receptors to

participate in epithelial repair following injury. Second, CXCR4

activation may mediate pain hypersensitivity in the bladder.

Recent evidence has clearly shown expression of CXCR4 (and

other chemokine receptors) on dorsal root ganglion (DRG)

neurons [34]. In addition, activation of these receptors produced

excitatory effects on DRG neurons and stimulated release of

Substance P [34]. Also, CXCR4 (and other chemokine receptors

and chemokines) expression was reported in DRG neurons

following a rodent model of persistent neuropathy [35,36]. These

receptors were functional since intracellular calcium was increased

following administration of SDF-1 in vitro [35]. Therefore, based

on their findings, these authors suggest that chemokines and

chemokines receptors may be important targets in the treatment of

chronic pain. In CYP-induced cystitis, then, activation of CXCR4

receptors, either by its recognized ligand SDF-1 (upregulated as a

result of CYP) or due to interaction with MIF (also upregulated as

a result of CYP and present in greater quantities than SDF-1) may

in fact be contributing to pain hypersensitivity. A similar

suggestion has already been made for another chemokine,

CX3CL1, and its receptor during CYP-induced cystitis [22].

Our results contribute to such a hypothesis and expand it to a

different chemokine/receptor system.

In summary, the chemokine receptor CXCR4 is constitutively

expressed in rat urothelium (in basal and intermediate cells) while

CYP-induced bladder inflammation resulted in upregulation of

CXCR4 and immunostaining of superficial cells (previously devoid

of CXCR4). Its cognate chemokine ligand, SDF-1 is also

upregulated by CYP-treatment. CXCR4 and MIF are co-localized

in cells in the urothelium and CYP induced co-localization of

CXCR4 and MIF to superficial cells of the urothelium.

Immunoprecipitation demonstrated an association between

CXCR4 and MIF in the bladder. Therefore, our results suggest

that CXCR4, as a receptor for MIF in urothelial cells, may

contribute to MIF-mediated bladder inflammation. Examining the

differences between MIF activation of CXCR4 receptors versus

MIF activation of CD74 receptors then might provide insights into

the actual mechanism for MIF-mediated effects in the bladder and

possibly other sites.

Methods

All experiments were conducted after obtaining full institutional

animal care and use committee approval and conformed to NIH

Guide for animal experimentation. Bladder inflammation was

produced using a recently published protocol whereby a reduced

dose of cyclophosphamide (CYP) is administered to male Sprague-

Dawley rats in order to avoid profound weight loss and mortality [6].

Cyclophosphamide-induced cystitis
Male Sprague-Dawley rats (N = 20; 250–300 g; Harlan, IN,

USA) were anesthetized with halothane and received either saline

(vehicle control group; 0.1 ml/100 g body weight; i.p.; N = 10) or

cyclophosphamide (CYP; Sigma, St Louis, MO, USA; in saline;

40 mg/kg; 0.1 ml/100 g body weight; i.p.; N = 10) every third day

to induce cystitis [6]. Buprenorphine hydrochloride (0.03 mg/kg;

s.c.; Reckitt Benckiser Pharmaceuticals Inc., Richmond, VA,

USA) was also administered to each rat on the day of injection.

Eight days after the first injection, ten rats (5 = saline; 5 = CYP)

were anesthetized with sodium pentobarbital (60 mg/kg; i.p.;

Ovation Pharmaceuticals, Deerfield, IL, USA) and perfused with

saline followed by 4% paraformaldehyde and the bladders

collected for histology. Alternatively, rats were re-anesthetized

with halothane (N = 10; 5 = saline; 5 = CYP-treated), bladders

were exposed through an abdominal incision and urine collected

(using a syringe with a 32 gauge needle). Bladders were excised

and quickly frozen (280uC) for protein or mRNA extraction and

the rats were euthanatized.

Histology and Immunohistochemistry
Formaldehyde-fixed bladders were cut coronally through the

mid-detrusor region and embedded in paraffin. Paraffin sections

(4 mm) were stained with hematoxylin and eosin or processed for

CXCR4 immunohistochemistry as follows: Slides were deparaffi-

nized and subjected to antigen retrieval using citrate buffer

(pH 6.0; 95uC for 30 min). Endogenous peroxide was blocked by

incubating the slides in 3% H2O2 for 3 min. The section were

exposed to CXCR4 antisera (1:2000; rabbit-polyclonal; Sigma;

#C3116) overnight at 4uC and then processed using a standard

ABC reaction according to the manufacturer’s protocol (IHC

Select; Chemicon, Temecula, CA, USA). Sections were lightly

counterstained with hematoxylin, coverslipped and examined

using a Leica inverted microscope. Immunostaining intensity was

rated by a pathologist (KAI) blind to experimental conditions from

0 (no staining) to 4 (strong immunostaining). In addition, digital

images were analyzed for CXCR4 immunostaning intensity using

Image J (NIH; Bethesda, MD) and proprietary custom written

plug-ins (University of Colorado-Denver; Prostate Diagnostic

Laboratories, Denver, Aurora).

Frozen (coronal) bladder sections (12 mm) of mid-detrusor were

exposed simultaneously to both MIF (1:200; goat-polyclonal;

Novus Biological, Littleton, CO, USA; #NB100-1789) and

CXCR4 antisera (1:200; rabbit-polyclonal; Sigma; #C3116).

The ability of this MIF antibody to recognize MIF was verified

by preliminary western-blots using rat recombinant MIF (gift from

Torrey Pines) and rat tissue homogenates (data not shown).

Primary antisera were visualized using appropriate secondary

antisera conjugated to fluorescein isothiocyanate (FITC; Jackson

Immunochemicals; West Grove, PA, USA; #705-095-147) or

tetramethylrhodamine isothiocyanate (TRITC; Jackson Immuno-

chemicals; #711-025-152). Sections were coverslipped with fade-

retardant medium (Prolong Gold with DAPI; Invitrogen; Carls-

bad, CA, USA) and examined using a Leica (Leica microsystems,

Wetzlar, Germany) inverted microscope, equipped with a Leica

digital camera. Overlay pictures showing MIF (green; FITC),

CXCR4 (red; TRITC) and DAPI nuclear counterstaining were

obtained with Leica software. Control sections included omission

of either or both primariy antisera, or omission of either or both

secondary antisera.

For SDF-1 immunohistochemistry, frozen bladder sections were

exposed to SDF-1 antisera (rabbit polyclonal; Torrey Pines

Biolabs, Houston, TX, USA; TP201;1:200; overnight 4uC) and

visualized with TRITC. Spleen and skin sections were used as

positive controls.

MIF and SDF-1 ELISA
Urine and bladders from saline and CYP-treated rats were

assayed for levels of MIF and SDF-1 (bladders only) using enzyme-

linked immunoabsorbent assay (ELISA). MIF ELISA was also

tested for its ability to detect serum MIF. Briefly, high binding

ELISA plates (Microlite 2, ThermoScientific, Waltham, MA,

USA) were coated with 100 ml of primary antibody (1 mg/ml; anti-

MIF; Abcam; Cambridge, MA, USA; #ab7207 or anti-SDF-1;

Torrey Pines Biolabs; TP201) at room temperature overnight. The

ability of this MIF antibody to recognize MIF was verified by
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preliminary western-blots using rat recombinant MIF (gift from

Torrey Pines) and rat tissue homogenates (data not shown). Plates

were blocked with 200 ml reagent diluent (1% BSA in PBS pH 7.4)

for 1 h at room temperature. Recombinant rat MIF (a gift from

Torrey Pines) or recombinant SDF-1 (Preprotech Inc; Rocky Hill,

NJ, USA) was used to generate a standard curve from 1.6 to

100 ng/ml in reagent diluent. Samples were diluted to the

appropriate concentration in reagent diluent and applied in

duplicate wells. Plates were covered with adhesive tape and

incubated 2 h at room temperature. Individual wells were then

washed three times with wash buffer (PBS containing 0.05%

Tween-20, pH 7.4) using an automated plate washer (Thermo-

Scientific). Detection antibody (biotinylated-goat anti-MIF,

BAF289, R&D Systems, Minneapolis, MN, USA or biotinylated

goat anti-SDF-1, R&D Systems) was added at a final concentra-

tion of 200 ng/ml, the plates recovered with adhesive and

incubated 2 h at room temperature. The wells were washed as

described above, 100 ml streptavidin-horseradish peroxidase

(1:200 dilution in reagent diluent, DY998, R&D Systems) added

to each well and the covered plate was incubated for 20 minutes at

room temperature. The wells were washed as described above,

100 ml peroxidase substrate (R&D; DY999) was added and each

well read using a plate reader (Biotek, Winooski, VT, USA). A

standard curve was created using linear regression and sample

concentrations calculated by interpolation (PRISM 4.02, Graph-

Pad Software, La Jolla, CA, USA). Assays had an inter- and intra-

plate coefficient of variation of 15.3% and 18%, respectively for

MIF and 7.2% (both for inter- and intraplate) for SDF-1. Bladder

MIF and SDF-1 levels are expressed normalized to protein

amount (BCA, Thermo Scientific) present in the samples. Urine

creatinine was determined using a commercially available assay

(Exocell, Philadelphia, PA, USA) and performed according to the

manufacturer’s protocol. Urine MIF levels are normalized to urine

creatinine levels in the samples.

Bladder CXCR4 mRNA expression, Western blotting and
CXCR4-MIF co-immunoprecipitation

Total RNA was isolated from bladder tissues using Trizol

(Invitrogen) and CXCR4 (SuperArray primer; PPR06440A;

SABiosciences, Frederick, MD, USA) and 18S rRNA (control;

SuperArray: PPR57734E) gene expression was determined by

Real-time RT-PCR (Opticon, Bio-Rad, Hercula, CA, USA) using

SYBR Green incorporation and the DDCT method of analysis.

Differences in bladder CXCR4 mRNA expression between saline-

treated and cyclosphamide-treated rats were determined using a

Student’s t-test. p,0.05 was considered significant.

Western-blotting of bladder homogenates was performed under

non-reducing conditions following the manufacturer’s protocols

(NuPAGE Bis-Tris gels, Invitrogen) as described previously [8].

Briefly, 20 ml of bladder homogenates were loaded onto NuPAGE

Bis-Tris gels (4–12%; Invitrogen). After electrophoresis, separated

proteins were transferred to a polyvinylidene fluoride membrane.

CXCR4 protein bands were detected using a polyclonal antibody

to CXCR4 (Sigma; C3116) and chemiluminescent substrate

(Sigma 1:1000). Glyceraldehyde-3-phosphate dehydrogenase

(GAPDH) was used as a loading control. Band intensities were

quantified using Kodak Image Station (Kodak, Rochester, NY,

USA) and expressed as a ratio of the saline group.

In order to detect MIF binding to CXCR4 in the bladder, we

used CXCR4 co-immunoprecipitation followed by MIF western

blotting. CXCR4 was precipitated from frozen bladder tissue

homogenates (200 mg of total protein) using CXCR4 antibody

(5 mg, Sigma; #C3116). CXCR4 containing protein complexes

were isolated using Protein G agarose beads and then separated by

denaturing, reducing SDS electrophoresis. MIF containing bands

were identified by Western blotting using biotinylated anti-MIF

antibody (1:1000 dilution, R&D Systems).

Statistical Analysis
Generally, data are presented as Mean6S.E.M and group

differences were determined with t-tests. Visual scoring of CXCR4

immunostaining is presented as Median6Interquartile range and

differences between the two groups were assessed using a

Wilcoxon rank sum test, whereas digitized CXCR4 immunostain-

ing are presented as Mean6S.E.M of arbitrary intensity scores

and differerences are analyzed using t-tests. Body weight loss as a

function of cyclophosphamide treatment was tested using two-way

(Treatment x Time) repeated-measures analysis of variance

(ANOVA). Bonferroni post-hoc t-tests examined body weight

differences between saline and cyclophosphamide groups at

specific time points.. Analyses were conducted using statistical

software (R; http://www.r-project.org/).
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