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Distinct metabolic network states 
manifest in the gene expression 
profiles of pediatric inflammatory 
bowel disease patients and controls
Carolin Knecht1,*, Christoph Fretter2,*, Philip Rosenstiel3, Michael Krawczak1 & Marc-
Thorsten Hütt2

Information on biological networks can greatly facilitate the function-orientated interpretation 
of high-throughput molecular data. Genome-wide metabolic network models of human cells, in 
particular, can be employed to contextualize gene expression profiles of patients with the goal of both, 
a better understanding of individual etiologies and an educated reclassification of (clinically defined) 
phenotypes. We analyzed publicly available expression profiles of intestinal tissues from treatment-
naive pediatric inflammatory bowel disease (IBD) patients and age-matched control individuals, using 
a reaction-centric metabolic network derived from the Recon2 model. By way of defining a measure of 
‘coherence’, we quantified how well individual patterns of expression changes matched the metabolic 
network. We observed a bimodal distribution of metabolic network coherence in both patients and 
controls, albeit at notably different mixture probabilities. Multidimensional scaling analysis revealed 
a bisectional pattern as well that overlapped widely with the metabolic network-based results. 
Expression differences driving the observed bimodality were related to cellular transport of thiamine 
and bile acid metabolism, thereby highlighting the crosstalk between metabolism and other vital 
pathways. We demonstrated how classical data mining and network analysis can jointly identify 
biologically meaningful patterns in gene expression data.

Over the past decade, the advent and further development of the high-throughput molecular techniques of 
genomics, proteomics and metabolomics have rendered possible the generation of rich molecular data sets at ever 
increasing speed. Due to the mere size and complexity of these data, however, both hypothesis-driven analyses 
and agnostic data mining exercises are usually hampered by serious multiple comparison problems. In conse-
quence, molecular studies of human disease have rarely led to more than long lists of uninterpretable fold changes 
and p values, with little direct benefit to scientific scrutiny. Occasionally, selected experimental targets may also 
accrue from the expertise of individual research groups, but the evidence basis of such ‘good guesses’ is usually 
subjective or sparse, or both. Based upon previous experience in other areas of scientific research, it may thus 
be surmised that proper contextualization of molecular data by additional biological information would greatly 
facilitate their interpretation at different levels of cellular organization.

The term ‘network medicine’ has been coined to summarize attempts at gaining a systemic understanding 
of biological processes by mapping experimental data onto networks1. These networks serve as abstractions of 
the underlying biological processes and, in this way, render them more amenable to statistical and mathematical 
analysis. In fact, throughout the distinguished career of network-based science2, the question of how to use bio-
logical networks to interpret high-throughput molecular data has played an important role3,4. Yet, all strategies 
brought forth so far essentially follow the same principle: Data attributes are associated with vertices in a network 
of interest and are given statistical weight depending upon their bonding by network edges.
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Crohn disease (CD) and ulcerative colitis (UC) are inflammatory bowel diseases (IBD), characterized by 
relapsing-remitting episodes of intestinal inflammation. Both entities provide prime examples of a complex dis-
ease that is caused by a poorly understood interplay between environmental and genetic risk factors. Usually, 
both diseases first arise between the 2nd and 4th decade of life and have a strong effect upon the quality of life of 
patients. More specifically, CD and UC are associated with pain and bloody diarrhea, have debilitating inflamma-
tory extra-intestinal manifestations (e.g. arthritis, uveitis), and require strong and long-term immunosuppressive 
medication. Both diseases are associated with a Western lifestyle and have become dramatically more frequent in 
the second half of the 20th century5. Genetic studies identified a wealth of replicated disease associations to over 
160 genomic regions6, suggesting an important role of immune signaling, endoplasmic reticulum (ER) stress, 
autophagy and cytoskeletal organization in IBD etiology. Despite the large number of risk loci and the improved 
understanding of their functional role, however, the exact causes of IBD still remain to be elucidated. There is 
currently no cure for either CD or UC, and primary and secondary non-response to induction and maintenance 
therapy represent a major problem of IBD clinical care.

Unsupervised gene expression analysis of patient samples aims at a better understanding of those gene regula-
tory processes that are critical for disease etiology, progression and treatment response. However, despite several 
fruitful attempts to follow this paradigm in the case of IBD7–10, ways and means to infer different functional states 
of patient tissue from gene expression profiles, and to relate these states to the disease phenotype of interest, are 
still missing. Here, we follow an archetypical ‘network medicine’ approach to infer hitherto unrecognized patterns 
in gene expression data from IBD and control mucosal samples. We hypothesized that one or more deregulated 
states of a biological network may exist in the patients and that this variation can be identified from gene expres-
sion profiles taking the natural variation between patients properly into account.

Metabolic networks seem to suggest themselves as plausible candidates for network medicine in the IBD con-
text because the human body makes many metabolic adjustments in response to, and in order to compensate for, 
inflammatory processes. The relevance of metabolic organization in IBD pathophysiology has been recognized 
early on11 but systematic studies of IBD-related metabolic gene activity are still lacking. Therefore, extracting 
effective metabolic networks from gene expression changes in IBD patients may be an ideal test case for such a 
systems-based approach and, at the same time, may reveal new hints at the biological mechanisms underlying the 
disease. Moreover, distinct metabolic states may be associated with differences in disease progression and may 
therefore point towards a meaningful stratification of patients with a view on treatment and surveillance. Finally, 
complementing networks with standard enrichment analysis may allow metabolism-related states to be linked to 
the utterance of other biological functions.

Results and Discussion
In the present study, we focused upon the utility of metabolic networks to contextualize molecular data. More 
specifically, we used the Recon2 metabolic model12 as a template to interpret publicly available gene expres-
sion profiles13 of intestinal tissue from control individuals and treatment-naive pediatric patients diagnosed with 
either Crohn disease (CD) or ulcerative colitis (UC). This age group may be rather untypical for IBD. However, 
we surmise that the analysis of pediatric patients may shed some extra light on the etiological link between gene 
expression and disease manifestation because, around the incidence peak of 20 to 40 years, this relationship may 
already be confounded to a considerable extend by past or present environmental influences. Our study involved 
multiple data processing and analysis steps (Fig. 1) that combine a metabolic network-based approach to data 
analysis with classical data mining, jointly facilitating a more function-orientated interpretation of the expression 
profiles.

Quantification of metabolic coherence. The concept of metabolic network coherence employed here14,15 
is based upon genome-wide metabolic networks that are subjected to flux-balance analysis (FBA), a variant of 
constraint-based modeling16. FBA starts from the solution space of a linear system, N∙v =  0, with stoichiometric 
matrix N and metabolic flux vector v. After the inclusion of necessary constraints (e.g., maximal nutrient uptake 
rates or reversibility of biochemical reactions), an objective function (e.g., biomass maximization) is defined and 
the optimal flux is found by linear programming17,18. FBA has been applied successfully in microbiology before, 
for example, to predict gene essentiality with high accuracy for Escherichia coli19 and Saccharomyces cerevisiae20.  
With the publication of the first metabolic models of human cells21,22 and their multiple refinements12,23, an 
application of the concept of metabolic network coherence in human medical research has become feasible. 
Our analysis strategy15 was first applied to gene expression profiles from patients with aldosterone-producing 
adenomas of the adrenal gland, where it revealed several distinct metabolism-related states in the data. Similar 
approaches combining flux prediction with gene expression profiling have been used, for example, to establish 
cell type-specific metabolic models23–25.

The metabolic network derived from the Recon2 model is a bipartite graph with metabolite nodes and reac-
tion nodes. A projection of this bipartite graph onto the reaction nodes (i.e. the reaction-centric metabolic net-
work) and the evaluation of the gene-reaction associations contained in Recon2 lead to a (gene-centric) metabolic 
network with vertices representing genes and edges representing paths of length 2 between the gene-associated 
reactions in the original bipartite graph. We analyzed effective metabolic networks that were obtained by map-
ping significantly altered gene expression levels onto the gene-centric metabolic network. Here, ‘significantly 
altered’ gene expression was defined by way of calling a gene ‘saliently expressed’ in a given profile when the 
normalized expression (DESeq; see below) value for that gene exceeded ±  3. Note that ±  3 is an appropriate 
threshold for z scores like the normalized DESeq values because ±  3 roughly demarcates the 1% quantile of the 
standard Gaussian distribution. The general principle of metabolic network coherence analysis is depicted in 
Supplementary Figure S1.
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A central problem of metabolic network coherence analysis in its original form15 has been the choice of an 
appropriate objective function and of suitable input to the metabolic system (i.e., a suitable cellular environment). 
We circumvented this problem by using a static network rather than a network comprising predicted active fluxes 
obtained via FBA. Statistically, the main effect of FBA in network coherence analysis is meaningful pruning of the 
original (usually dense) reaction-centric metabolic network. We achieved a similar effect by eliminating currency 
metabolites (ATP, H2O, etc.) from the bipartite metabolic network before projecting the set of reaction nodes onto 
the network (see Methods section for additional information). Examples of both high and low coherence effective 
networks generated in the course of our study are shown in Fig. 2.

Network analysis yielded a single global quantity per individual, called the ‘metabolic network coherence’ of 
the corresponding gene expression profile. Formal assessment by means of a Kruskall-Wallis test revealed a highly 
significant difference in metabolic network coherence between the three diagnostic groups (χ 2 =  9.305, 2 d.f., 
p =  0.0095). The observed heterogeneity was entirely due to a lower level of coherence prevailing in the expression 
profiles of controls (median: − 0.195) compared to CD (0.596) and UC (0.723) patients. No significant difference 
was observed between CD and UC (p >  0.2).

Multi-modality of metabolic network coherence. Visual inspection further revealed that the distri-
bution of metabolic coherence values was characterized by prominent multi-modality (Fig. 3). The significance 
and precise stochastic nature of this finding were formally evaluated by mixture analysis as implemented in SAS 
procedure FMM (version 9.5; SAS Institute Inc., Cary, NC, USA). Since FMM is unsuitable for the analysis of 
heavily skewed distributions, we applied a standardized extreme deviation criterion26,27 to define outliers as values 
more than 5.2 median absolute deviations away from the median (equivalent to a metabolic network coherence 
value >  3.578). Applying this threshold highlighted seven IBD samples and four control samples as outliers. Upon 
the exclusion of these values, use of a Bayes Information Criterion (BIC) yielded the best fit to the data for a 
mixture of two Gaussian distributions with mixing probabilities 0.267 (A) and 0.733 (B) (see Fig. 4A). Mean and 
variance were estimated as − 0.272 and 0.017, respectively, for distribution A, and 1.029 and 1.206, respectively, 
for distribution B. Mixture analysis of individual patient subgroups yielded similar results for CD and UC, with 
nearly identical means but somewhat different variances (Supplementary Figure S2; Supplementary Table S1). 
Statistically significant substructure, as judged by a BIC, was also detected in the control profiles. Again, the best 
fit to the data was obtained with a mixture of two Gaussian distributions, and the respective mean and variance 
estimates were − 0.278 and 0.080 for distribution A, and 1.618 and 0.403 for distribution B. Whilst these param-
eters were strikingly similar to those characterizing the metabolic network coherence distributions in patients, 
however, the mixing probabilities were reversed at 0.777 for distribution A, and 0.223 for distribution B (Fig. 4B).

High metabolic network coherence is obtained when expression level differences between different genes fit 
to the topology of the metabolic network, i.e. when expression levels tend to be more similar for genes that are 
connected in the network than would be expected by chance alone. This kind of coherence can be interpreted as 
meaning that the expression profile is partially ‘explicable’ by the network. For individuals with low metabolic 
network coherence, by contrast, other functional characteristics (beyond the metabolism-related state) would 
have to be invoked to ‘explain’ their gene expression profile.

The above results suggest that the intestinal gene expression profiles of children can be subdivided into two 
groups, one with metabolic network coherence of high average level and large variance, and one with notably lower 

Figure 1. Flow chart depicting the different data processing and analysis steps of the study. 
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average and smaller variance. These two subgroups are present at relative frequencies of approximately 1:3 in pedi-
atric treatment-naive IBD patients, and 3:1 in same-aged controls, i.e. IBD is strongly associated with intestinal  

Figure 2. Examples of effective networks. Top row: effective networks of high metabolic coherence; bottom 
row: effective networks of low metabolic coherence. Standard gene names from the Recon2 metabolic model 
were used. For example, ALPL denotes the gene encoding alkaline phosphatase, liver/bone/kidney. C: metabolic 
network coherence.

Figure 3. Distribution of metabolic network coherence in all intestinal samples. 
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gene expression of high metabolic coherence. In principle, there are two basic explanations for this observation. 
Either high metabolic coherence or the biological causes thereof represent a risk factor for IBD at young age 
per se. In this case, our results potentially point towards novel disease mechanisms worth further exploration. 
Alternatively, the development or presence of pediatric IBD may cause a shift of gene expression from low to high 
coherence in some patients, but not in others. Even although our results would then lack immediate etiological 
relevance they may nevertheless lead to new insights into the mechanisms of disease progression, with potential 
benefits in terms of therapy and disease management.

Data mining. Classical data mining aims at discerning patterns in data without invoking additional contex-
tual information. We applied multi-dimensional scaling (MDS) analysis to the original expression profile data of 
the pediatric IBD patients and controls. When the Euclidean distances between the original DESeq values were 
subjected to MDS, no particular pattern became apparent (Fig. 5A). However, a different result was obtained 
when the DESeq values were dichotomized according to whether or not they exceeded ±  3, in which case the 
respective gene was termed ‘saliently expressed’. Note that ±  3 is an appropriate threshold for z scores like the 
normalized DESeq values because ±  3 roughly demarcates the 1% quantile of the standard Gaussian distribution. 
With the dichotomous data, MDS revealed two clusters of expression profiles that could be distinguished well in 
the first dimension (Fig. 5C,D).

MDS analysis did not reveal any relationship between disease type or case-control status and cluster affiliation 
(Fig. 5A,C). However, virtually all expression profiles from the low coherence group, assigned to distribution 
(A) with >  80% certainty, were found to fall into only one of the two binary-distance based MDS clusters. The 
high coherence group (B) predominated the other cluster (Fig. 5D). Although less well-structured, the Euclidean 
distance-based MDS plots exhibited a bipartite partition as well (Fig. 5B). Similar results were obtained for IBD 
patients alone (Supplementary Figure S3).

The fact that MDS of the binary distance data yielded a more clear-cut result than MDS of the original DESeq 
values may appear surprising at first glance because, from a statistical point of view, dichotomization usually 
entails a loss of information. However, in the present situation, focusing the analysis upon saliently (i.e., par-
ticularly highly or lowly) expressed genes may have been equivalent to highlighting the relevant links between 
gene activity and metabolism and, at the same time, filtering out the noise that is likely to constitute intermediate 
expression levels.

In order to assess the possible role of known biological determinants of both gene expression and metabolism, 
we stratified the distribution of metabolic network coherence values by both age and sex. However, no influence 
of these two covariates became apparent (Fig. 6).

Saliently expressed genes. For each gene and each coherence group, we determined the proportion of 
profiles in which the gene was saliently expressed (I,e, DESeq >  +  3 or DESeq <  − 3). When the two proportions 
were assessed for a statistically significant difference among IBD patients using a Fisher or chi-squared test as 
appropriate, and allowing for multiple testing, seven genes were found to be saliently expressed more often in one 
of the two coherence groups (Fig. 7, Table 1).

Figure 4. Distribution of metabolic network coherence in intestinal samples, stratified by IBD status. 
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Figure 5. Multidimensional scaling (MDS) analysis of gene expression data (each dot represents an 
individual sample). (A) Euclidean distance, colored according to diagnosis, (B) Euclidean distance, colored 
according to metabolic network coherence, (C) binary distance, colored according to diagnosis, (D) binary 
distance, colored according to metabolic network coherence.

Figure 6. Metabolic network coherence values of all gene expression profiles, arranged by individual age 
and gender. 
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A change in metabolism has been hypothesized for long to play a role in the etiology of IBD. Early work, 
focused upon energy homeostasis in intestinal epithelial cells11, revealed diminished butyrate oxidation to CO2 
and ketones as well as a shift to increased glucose and glutamine oxidation in UC patients in a process that poten-
tially compensates for the concurrent decrease in fatty acid oxidation. The importance of fatty acid metabolism in 
IBD was further highlighted by the observation that the expression of fatty acid synthase and long chain acyl-CoA 
synthetases (ACSL) 1 and 4 genes is altered in IBD patients, and that this change probably reflects impaired 
sensing of bile acids via the LXR receptor28. Intriguingly, we found two UDP glucuronosyltransferase genes to 
be saliently expressed more often in the high than the low coherence group of pediatric IBD patients (Table 1). 
For decades, the UDP glucuronosyltransferases of the intestinal mucosa have been known to contribute to the 
extrahepatic metabolism of bile acids29,30, even though the precise role of this process in inflammatory responses 
is still poorly understood.

IL6 is a cytokine, known to promote intestinal inflammation, that has a clear role in fatty acid metabolism, for 
example, by stimulating apolipoprotein (a) expression and lipoprotein (a) synthesis in hepatocytes31. Along the 
same vein, the TM4SF4 gene encodes a transmembrane protein that stimulates thiamine resorption in intestinal 
epithelial cells32. Thiamine, in turn, is an essential component of several co-enzyme complexes, including pyru-
vate dehydrogenase that catalyzes the formation of Acetyl CoA as a first step in fatty acid synthesis. Interestingly, 
a variant in TM4SF4 was recently found to increase the risk for gallstone formation33, a disease that involves 
impaired enterohepatic circulation of bile acids.

In summary, we may surmise that a functional link exists between fatty acid metabolism and inflammation 
that partly explains why high metabolic network coherence was more prevalent in IBD patients than controls in 
our study.

Figure 7. Gene-wise analysis of salient expression in the two coherences groups (each dot represents a gene).  
Vertical axis: proportion of pediatric IBD patients in the low coherence group for which the respective gene 
was saliently expressed (i.e. for which the DESeq value exceeded ±  3); horizontal axis: same as vertical axis, but 
for high coherence group. Genes with statistically significant proportions in the two groups are marked by blue 
coloring.

Gene Gene product P value

Number of expression profiles

low coherence 
(n = 52)

high coherence 
(n = 167)

UGT1A8 UDP glucuronosyltransferase 1 family, polypeptide A8 4.8 ×  10−7 0 49

UGT1A6 UDP glucuronosyltransferase 1 family, polypeptide A6 3.0 ×  10−6 4 68

TM4SF4 transmembrane 4 L six family member 4 8.0 ×  10−7 1 55

IL6 interleukin 6 8.4 ×  10−7 1 54

C9orf71 (TMEM252) transmembrane protein 252 1.7 ×  10−6 8 91

LAMC3 laminin subunit gamma 3 3.8 ×  10−8 3 75

TFAP2C transcription factor AP-2 gamma 6.2 ×  10−8 4 79

Table 1.  Genes expressed saliently at significantly different proportions in low and high coherence 
expression profiles (IBD patients only). P values refer to a Fisher or chi-squared test, as appropriate, 
comparing the number of profiles in which a given gene was saliently expressed between the low and high 
coherence group.
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Conclusions
The pronounced heterogeneity of disease progression and therapy response observed among patients with 
inflammatory bowel diseases (IBD) calls for a more refined classification of cases to benefit both medical 
research and clinical care34. Therefore, a careful assessment of the functional state of patient tissues as captured by 
high-throughput molecular data appears well warranted.

We used a network approach to analyze gene expression data from pediatric IBD patients and controls, not 
only to resolve otherwise indiscernible patterns in these data, but also to improve our understanding of the 
underlying disease mechanisms. The latter was facilitated by our drawing upon more general insights into a par-
ticular type of biological system, namely metabolic networks. Two distinct subgroups of expression profiles were 
identified on the basis of these considerations: one where the metabolic network coherence was high on average 
and varied substantially between individuals, and one where metabolic network coherence was distinctly lower 
and less variable. Whilst the latter group dominated the control group, the former was most prevalent in IBD 
patients. Whether this discrepancy reflects causes or consequences of disease manifestation remains unclear but 
warrants further exploration.

The metabolic network coherence-based classification of transcriptome profiles showcased here also bears 
potential for translation into clinical practice in that it opens an additional perspective for the biology-driven 
stratification of IBD patients. Since the success prospects of pharmacological therapies in IBD or in any other 
inflammatory disease are likely to be influenced by the peculiarities of the individual metabolism, metabolic net-
work coherence may represent a suitable biomarker to distinguish between responder and non-responders, or to 
predict side effects, for certain treatments. In addition, as was evidenced by the different prevalence of high and 
low coherence in patients and controls, metabolic network coherence may also serve as a diagnostic marker, for 
example, to allow differentiation between IBD and non-IBD intestinal health problems.

Classical data mining was capable of identifying substructure in the gene expression data as well that mir-
rored the results of the metabolic network coherence analysis. The fact that the two coherence groups could be 
discerned without invoking the metabolic network itself suggests that the differences between the two patient 
groups reside at a more comprehensively systemic level, and that metabolism only served as a marker for these 
differences.

We employed publicly available transcriptome data from intestinal biopsies of mostly therapy-naive pediatric 
IBD patients. Even though some of the clinical characteristics (no previous immunosuppressive medication, 
sampling close to first diagnosis, narrow age range) render this group ideal for metabolism-centered analyses, it 
must be emphasized that pediatric IBD differs from adult IBD in several ways35. Moreover, the controls employed 
in our study were considered “non-IBD” by the treating physicians, but still presented with intestinal health prob-
lems. Therefore, it cannot be excluded that presence of the high metabolic network coherence state in this group 
reflected particular non-inflammatory factors such as, for example, a specific infection. Therefore, it must be ver-
ified explicitly whether metabolic network coherence is also bimodal in adult IBD patients or in adults in general.

The present study also highlighted two synergistic aspects of the combination of network analysis and classi-
cal data mining. On the one hand, network analysis provides a means to use external contextual information to 
facilitate a better understanding of the results of classical data mining. On the other hand, classical data mining 
can lend statistical support to the qualitative results of network analysis. Nevertheless, experimental studies are 
now required to link the two distinct states of gene expression inferred by our combined in silico approach to 
etiological pathways. Such linkage would represent yet another critical step towards network medicine fulfilling 
its ultimate claim, namely to benefit patients by way of clinically actionable results.

Methods
Data. In this study, we used RNA-seq data of the RISK cohort13 comprising 321 intestinal tissue samples from 
treatment-naive pediatric patients with a confirmed diagnosis of Crohn disease (CD) or ulcerative colitis (UC), 
and from age-matched controls. The proband age ranged from 2 to 17 years, 40% of individuals were female. The 
CD group comprised 218 patients, 61 individuals were diagnosed with UC and 42 were controls. Ileal biopsies 
were taken from all individuals and gene expression was measured by RNA-seq. The original data were processed 
further using the DESeq algorithm for RPKM normalization. Recruitment procedure, data quality measures and 
data processing are described in detail in the original report13. Our analyses employed data publicly available at 
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc= GSE57945. The original DESeq data consisted of one con-
tinuous score per gene (or transcript). Since metabolic network coherence analysis requires a binary score per 
gene, however, we had to dichotomize the data, labeling genes with a DESeq value <  − 3 or >  +  3 as ‘saliently 
expressed’ (Fig. 8). The choice of this threshold was motivated by the fact that DESeq values are z scores, and 
that ±  3 roughly demarcates the 1% and 99% quantile, respectively, of the standard Gaussian distribution.

Metabolic network coherence. For metabolic network coherence analysis, we mapped the expression 
profiles of patients onto reaction-centric metabolic networks and studied the ensuing effective metabolic 
networks (i.e. subnetworks spanned by the saliently expressed genes e). For an effective network Ge(V,E) 
with a set of vertices (reactions) V =  {r1, r2, …, rK} and edges E, metabolic coherence C is computed as fol-
lows: Let ki denote the degree of vertex ri in the effective network and let Kc be the number of vertices ri for 
which ki >  0. The connectivity of the effective network (i.e., the number of reactions with non-zero degree 
divided by the size K of the effective network, R =  Kc/K) reveals how ‘meaningful’ the gene-gene correlation 
in different expression state is from a metabolic perspective. An observed ratio R can be tested for statistical 
significance by means of comparing it to the null distribution. Here, the null distribution was simulated by 
randomly drawing the same number of saliently expressed metabolic genes from the set of all metabolic 
genes, leading to a set of ratios {R1

(r), R2
(r), …  RN

(r)} for random data with mean < R(r)>  and standard devia-
tion σ(R(r)). The metabolic coherence C(e) of a gene expression profile e is then defined as the z-score with 

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE57945
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respect to the null distribution, i.e. C(e) =  (R−< R(r)> )/σ(R(r)). In cases, where the effective network comprised 
less than two nodes (19 CD, 7 UC, 4 controls), no metabolic coherence value could sensibly be computed.

Statistical analysis. The distribution of metabolic network coherence in different sub-groups was subjected 
to mixture analysis as implemented in SAS procedure FMM (version 9.5; SAS Institute Inc., Cary, NC, USA). In 
each case, the best fit was observed for two Gaussian distribution, albeit mixed at different proportions. Then, the 
posterior probability of being sampled from one of the two distributions was calculated of each individual profile. 
If one of the two posterior probabilities exceeded 0.8, the profile was classified as ‘highly’ or ‘lowly’ coherent, 
depending upon the respective distribution; otherwise, the profile was classified as ‘undetermined’ (Table 2). 
Differences between the metabolic network coherence distributions in different groups of profiles were assessed 
for statistical significance using a Kruskal-Wallis as implemented in SAS procedure NPAR1WAY.

Data mining. Multidimensional scaling (MDS) analysis was performed with R v.3.1.336. As continuous input, 
we used Euclidean distances between gene-specific DESeq values. In addition, binary distances between dichot-
omized expression levels were calculated as implemented in R-command mds.

Graphs. Metabolic gene networks were generated from Recon 2 v.3 by connecting any two genes that shared 
a gene-enzyme-reaction-enzyme-gene relationship while excluding metabolites belonging to a list of ‘currency 
metabolites’ (e.g., ATP, H2O). Currency metabolites were eliminated by removing the top 5% of metabolites after 
sorting them by their node degree in the gene-centric metabolic network. This way, 1009 of the 1101 original 
nodes remained in the network.
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