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  In mammals and invertebrates, the activities of neuro- and immuno-competent cells, e.g., glia, which are pres-
ent in nervous tissues, are deemed of critical importance to normative neuronal function. The responsiveness 
of invertebrate and vertebrate immuno-competent glia to a common set of signal molecules, such as nitric ox-
ide and endogenous morphine, is functionally linked to physiologically driven innate immunological and neu-
ronal activities. Importantly, the presence of a common, evolutionarily conserved, set of signal molecules in 
comparative animal groups strongly suggests an expansive intermediate metabolic profile dependent on high 
output mitochondrial ATP production and utilization. Normative bidirectional neural-immune communication 
across invertebrate and vertebrate species requires common anatomical and biochemical substrates and path-
ways involved in energy production and mitochondrial integrity. Within this closed-loop system, abnormal per-
turbation of the respective tissue functions will have profound ramifications in functionally altering associated 
nervous and vascular systems and it is highly likely that the initial trigger to the induction of a physiologically 
debilitating pro-inflammatory state is a micro-environmental hypoxic event. This is surmised by the need for 
an unwavering constant oxygen supply. In this case, temporal perturbations of normative oxygen tension may 
be tolerated for short, but not extended, periods and ischemic/hypoxic perturbations in oxygen delivery repre-
sent significant physiological challenges to overall cellular and multiple organ system viability. Hence, hypoxic 
triggering of multiple pro-inflammatory events, if not corrected, will promote pathophysiological amplification 
leading to a deleterious cascade of bio-senescent cellular and molecular signaling pathways, which converge 
to markedly impair mitochondrial energy utilization and ATP production.
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Background

In mammals and invertebrates, the activities of immuno-com-
petent glial cells, which are present in nervous tissues, are 
deemed of critical importance to normative neuronal and im-
mune function in the brain [1]. In earlier reports, invertebrate 
immuno-competent glial cells have been demonstrated to pos-
sess similar properties as previously described for mammali-
an microglia and central nervous system (CNS) directed acti-
vated macrophages [1–4]. These morphological and functional 
similarities suggest that their presence in invertebrate ganglia 
demonstrates an evolutionary driven functional convergence 
of function of immuno-competent glial cells. In this regard, 
our group and others have demonstrated many similarities 
between invertebrate immunocytes/microglia and mammali-
an monocyte/macrophage lineages, including utilization of a 
shared set of chemical messengers [5–18].

The responsiveness of invertebrate and vertebrate immuno-
competent glia to a common set of signal molecules, such as 
NO and endogenous morphine, is functionally linked to physio-
logically driven innate cellular activities [2,3,12,19]. Accordingly, 
immuno-competent glia represent a cell-type intimately linked 
to optimal mitochondrial metabolic rate, as is the case for neu-
rons in their physiological responses to diverse stimuli [2,20]. 
This phenomenon is visualized by stationary microglia becom-
ing amoeboid, macrophage-like and mobile following traumat-
ic stimuli, which can alter metabolic rate [2–4,21]. Given these 
commonalities in evolutionarily divergent animals, it would 
not be surprising to find the same similarities in regulating 
mitochondrial energy processes in the order that these events 
occur. Because mammalian microglia and astrocytes are in-
volved in a wide variety of immunological activities as well as 
the growth and maintenance of neurons, a strong functional 
coupling to mitochondrial energy processes is required [22]. 
A recent report demonstrates that within a cell, e.g., neurons, 
mitochondria can be found in all processes and under low ox-
ygen and ATP supply can withdraw, allowing that portion of 
the cell to deteriorate [23]. This clearly demonstrates a micro 
intracellular environmental response to a low energy supply, 
suggesting if allowed to continue will destroy the respective 
cells and later multiple cells [9,24–32]. In sum, the presence 
of a common set of signal molecules in comparative animal 
groups, their innate immunological stimulating activity func-
tionally linked to the induction of significant morphological 
cellular changes, strongly suggests an expansive intermedi-
ate metabolic profile dependent on high output mitochondri-
al ATP production and utilization.

In mammals, interestingly, immuno-competent microglia may 
play a possible role in the onset of certain neurological dis-
eases and/or the etiology of particular psychiatric states [28] 
e.g., HIV dementia, psychoses, schizophrenia, etc. [33–35]. In 

sum, a commonality exists in cell-types and chemical messen-
gers involved in intra- and inter-cellular communication with-
in CNS structures with accelerated mitochondrial energy pro-
cesses required to achieve this complex level of integration.

Common Signal Molecules and Their 
Interactions

The above evolutionary conserved processes are only possible 
if other systems are conserved as well. An extensive biomed-
ical literature demonstrates both conservation and enhance-
ment of function of common sets of chemical messenger com-
pounds engendered by evolutionary pressure. Retention of 
primordial signaling molecules, such as the free radical gas NO, 
appears to have started before the evolutionary divergence of 
plant and animal phyla. Thus, the elucidation of basic mecha-
nistic information regarding diverse mechanistic roles of com-
mon sets of chemical messenger molecules has tremendous 
predictive value within biomedical model systems. Briefly, it 
is contended that a likely mechanistic driving force underly-
ing the phenomenon of chemical messenger retention dur-
ing evolution resides in stereo-selective recognition of enan-
tiomeric compounds within multiple stereo-selective enzyme 
and receptor signaling pathways [36]. Thus, the basic preser-
vation of essential chemical information required for recogni-
tion and activation by distinct classes of enzyme and recep-
tors within discrete signaling pathways provides the molecular 
basis for retention of shared sets of chemical compounds in 
diverse plant and animal phyla. Hence stereo-selective con-
formational matching in a multiple enzyme or multiple recep-
tor mediated pathway presents a systemic driving force to re-
tain basic chemical identities across animal and plant phyla 
[9,36–40] and in remarkably different cell types. Another com-
mon chemical feature of retained signal molecules is the wide-
ly expressed precursor to product relationship that allows tem-
poral release of biologically active chemical compounds and 
peptide sequences from biologically inactive prohormone-like 
molecules, notably via the action of endo-proteolytic cleavage 
enzymes [10,41–47].

Chronically activated classes of immune cells may be involved 
in the etiology of a wide variety of neuropsychiatric conditions 
related to infection such as Lyme neuroborreliosis and chron-
ic fatigue syndrome and autoimmune diseases such as rheu-
matoid arthritis, systemic lupus erythematosus, and multiple 
sclerosis. Importantly, a chronic state of prolonged peripheral 
or central pro-inflammation may represent a common causal 
factor in the persistence of diverse psychiatric disorders [48], 
thereby implicating aberrant bidirectional communication be-
tween neurons and immune cells as potentially novel thera-
peutic targets [49–51]. Retroactively, an evolutionary blue print 
for elucidation of neural-immune bidirectional communication 
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mechanisms of higher animals may be gleaned from examina-
tion of neural and immune processes of invertebrates.

Unifying principles responsible for normative bidirectional neu-
ral-immune communication across invertebrate and vertebrate 
species reside in common anatomical and biochemical sub-
strates and pathways involved in energy production and mi-
tochondrial integrity. Within this closed-loop system, it is pre-
dicted that abnormal perturbation of immunological function, 
for example, will have profound ramifications in functional-
ly altering associated nervous and vascular systems [52–56]. 
An initial priming event may appear to be pro-inflammatory 
in nature [48]. We contend, however, that the initial trigger to 
the induction of a physiologically debilitating pro-inflamma-
tory state is a micro-environmental hypoxic event. This can 
come about by trauma, intrinsic (free radicals) and/or extrin-
sic factors, low oxygen levels, compromised oxygen delivery 
etc. It is also evident that requisite mitochondrial ATP produc-
tion for optimal health and long-term survival is critically de-
pendent on oxygen availability for these dynamic purposes. 
Hence, temporal perturbations of normative oxygen tension 
may be tolerated for short but not extended periods.

Significance of Hypoxia-Driven Dysfunctional 
Mitochondria

Trauma, infection and vascular compromise, even short-term 
acute stimulatory phenomena, can elicit innate immune re-
sponses that are existentially protective in nature and re-
quired for long term survival of an organism [2,20,57–61]. If 
an initial immunological response cannot be effectively ter-
minated, a pathophysiological chronic pro-inflammatory state 
may ensue, with dire functional consequences for system-
ic overall health [48]. Maintenance of healthy nervous tissue 

function requires approximately 20% of total oxygen intake 
that is complemented by the high oxygen requirement of ac-
tive vascular and immune cells. In many chronic disorders in-
volving extended pro-inflammatory processes, it is apparent 
that there are micro- and macro-environmental states of hy-
poxic stimuli [60,62–64], which in turn trigger additional com-
promised metabolic processes within multiple organ systems 
(Figure 1). It therefore comes as no surprise that ischemic/hy-
poxic perturbations in the oxygen delivery represent signifi-
cant physiological challenges to overall cellular and multiple 
organ system viability [49, 65]. Hypoxic triggering of multiple 
pro-inflammatory events, if not corrected, will promote patho-
physiological amplification leading to a deleterious cascade of 
bio-senescent cellular and molecular signaling pathways which 
converge to markedly impair mitochondrial energy utilization 
and ATP production.

Recent work has observed significant diversity in mitochon-
drial energy utilization and ATP production functionally linked 
to state dependent aerobic vs. anaerobic conditions [66]. This 
observation in itself demonstrates that sensitive mitochondri-
al processes exist to adapt to mitochondrial perturbations, re-
sulting in its continued functioning under adversity. However, 
these processes allow the mitochondria to function at a lower 
level of efficiency, creating a situation if allowed to continue for 
a prolonged time negative outcomes can be expected, e.g., tis-
sue damage, apoptosis etc. Interestingly, similarities have been 
observed in the biochemical and architectonic properties of an-
aerobically functioning mitochondria from crown gal tissues of 
the invertebrate bivalve M. edulis and anaerobically active mi-
tochondria from human tumors [65]. According to the classic 
Warburg effect, diverse classes of tumorigenic cancer cells have 
been observed to maintain glycolytic metabolic processes for 
cellular ATP production under aerobic conditions, which nor-
mally activate mitochondrial TCA and oxidative phosphorylation 

Figure 1. Initial hypoxic event.
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events. Pathophysiological alterations of mitochondrial ener-
gy metabolism and ATP production under hypoxic, anoxic and 
even during normoxic conditions [67–69] have been proposed 
to promote tumorigenic and metastatic processes and with re-
sultant disruption of the normal metabolic flux of TCA cycle in-
termediates and electron transport complexes.

Normative mitochondrial function in non-proliferating cells 
affects relatively high cytosolic ATP/ADP ratios resulting in 
functional inhibition of aerobic glycolysis [70]. Conversely, 
the classic Warburg effect describes the bioenergetics of tu-
mor cells as highly dependent on enhanced glycolysis under 
aerobic and anaerobic conditions with compensatory suppres-
sion of normative aerobic mitochondrial metabolic processes 
[67–69,71]. By hypothetical functional criteria, aerobic mito-
chondrial respiration in rapidly proliferating cancer cells will 
lead to the production of deleterious free radicals and pro-ox-
idant molecules that can damage DNA, proteins, and essential 
lipids with resultant induction of pro-apoptotic gene products. 
In basic terms, aerobically induced free radical damage is pro-
posed to recruit convergent cellular mechanisms designed to 
significantly diminish the existential viability of cancer cells. 
Along these lines, it has been proposed that a tumor cell may 
be viewed as a phenotypic reversion to the last common eu-
karyotic ancestor of the host cell, i.e., a facultative anaerobic 
microbe with unlimited replication potential [72]. Interestingly, 
anaerobic mitochondria in gill cilia of M. edulis have evolved to 
utilize the phenotype of a facultative anaerobe, demonstrat-
ing that this primitive type of respiration has been evolution-
arily conserved [73,74]. Accordingly, anaerobically functioning 
mitochondria may represent a re-emergence or evolutionary 
retrofit of primordial metabolic processes, some of which are 
fully active under hypoxic conditions.

Conclusions

Mitochondria, enslaved bacteria, are capable of very dynam-
ic behaviors that allow them to survive as well as the host 

cell but not to the same degree of performance. This phe-
nomena occurs because of substrate and chemical messen-
ger similarities. For example, it has been proposed that un-
der hypoxic conditions reduction of inorganic nitrite to NO is 
sufficient to activate mitochondrial electron transport chain 
complexes, thereby allowing for a limited amount of ATP to 
be formed [75–83] (Figure 2). This novel mechanism occurs 
via NOS-independent production of NO via the action of mi-
tochondrial nitrite reductases [81–87]. Inorganic nitrite, previ-
ously thought to represent an inert cellular metabolite of NO, 
is currently proposed as a critically important cellular reser-
voir available for immediate enzymatic conversion to NO in 
response to hypoxic conditions whereby it may reciprocally 
regulate mitochondrial respiratory processes. This phenome-
non also gains meaning from an evolutionary perspective giv-
en the high rate of nitrogen within the earth’s biosphere and 
suggests this mechanism occurred before animals and plants 
split into diverse phyla. Given the pivotal nature of NO signal-
ing in mitochondrial regulation, it has also been proposed that 
reversible nitrite reductase activity may be central to oxygen-
sensing and overall modulation of mitochondrial respiration 

Figure 2.  This illustration represents the 
electron transport system as it 
generates ATP and utilizes oxygen. 
ATP synthesis and H+ movements 
regulate the mitochondrial membrane 
potential, which in turn modulates 
the rate of respiration. In the classical 
rendition of this pathway, we note 
the cytochrome oxidase (Complex 
IV) exerts important control of this 
process because nitric oxide enhances 
the Km for oxygen [79,90,91]. 
In the hypoxia scenario, calcium 
sequestration in mitochondria will be 
compromised allowing it to, at first 
stimulate the Krebs Cycle as well as 
nitric oxide synthase (NOS) to produce 
NO, allowing for more efficient 
oxygen utilization. Simultaneously, 
these same end products may 
enhance ROS from the Coenzyme Q 
complex, which in turn will inhibit 
the electron transport system [92]. 
In this inhibitory phenomenon, we 
surmise peroxynitrite is involved as a 
ROS member, suggesting it originates 
as a “sink” for the constitutive NOS 
released NO. Nitrite presence (upper 
right) in cells is then metabolized to 
form NO, under hypoxic situations, 
acting as a reservoir to continue to 
allow for the oxidation of NADPH. 
Thus, nitric oxide, an old evolutionary 
messenger, is present in the 
mitochondria as a critical regulatory 
messenger.
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[88]. This novel mechanism, in part, occurs via NO inhibiting 
cytochrome c oxidase and affecting other mitochondrial enti-
ties on the inner membrane [81,89].

The overall physiological significance of reversible nitrite reduc-
tase activity is highlighted by its presence in all mitochondria 
and by its shared identity with key enzymes within electron 
transport chain complexes. Again, it illustrates the dynamic na-
ture of the mitochondria in utilizing an “older” regulatory/sup-
ply mechanism to maintain its function and host dependency. 
Given the early contribution of hypoxia to the exacerbation 
of various metabolic disorders associated with diseases, e.g., 
Alzheimer’s, Diabetes Type 2 etc., this modulating influence 
of nitrite, oxygen and NO has gone undetected because later 

events appear larger in influence, masking this prime event 
(Figure 3). Taken together, it would appear this common hypox-
ic trigger is a fundamental event in initiating different types of 
disorders and its sensitivity and speed of occurrence is such, 
that it can and has gone undetected [89]. The ability of nitrite 
to provide an energy process, yielding lower levels of ATP, prob-
ably is one of the reasons associated disorders can exist and 
go undetected for a long period of time. In this regard, novel 
mitochondrial targeted pharmaceuticals in all probability will 
constitute future research and development.
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